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Abstract: The present paper focuses on the development of an algorithm for safely and 

optimally managing the routing of aircraft on an airport surface in future airport operations. 

This tool is intended to support air traffic controllers’ decision-making in selecting the 

paths of all aircraft and the engine startup approval time for departing ones. Optimal routes 

are sought for minimizing the time both arriving and departing aircraft spend on an airport 

surface with engines on, with benefits in terms of safety, efficiency and costs. The 

proposed algorithm first computes a standalone, shortest path solution from runway to 

apron or vice versa, depending on the aircraft being inbound or outbound, respectively. For 

taking into account the constraints due to other traffic on an airport surface, this solution is 

amended by a conflict detection and resolution task that attempts to reduce and possibly 

nullify the number of conflicts generated in the first phase. An example application on a 

simple Italian airport exemplifies how the algorithm can be applied to true-world 

applications. Emphasis is given on how to model an airport surface as a weighted and 

directed graph with non-negative weights, as required for the input to the algorithm.  
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1. Introduction 

Airport operations are widely recognized to be one of the main bottlenecks of the current Air 

Traffic Management (ATM) system. The Single European Sky ATM Research (SESAR) program, 

which is aimed at renovating the European ATM system, is, indeed, also focused on modifying the 

future airport operations concept, dealt with in the Airport Operations Work Package (WP 6).  

One of the basic principles driving this transformation is the proactive management of airport 

performance [1], e.g., in terms of capacity. This is done by integration of the local Airport Operations 

Plan (AOP) in the global Network Operations Plan (NOP) and sharing data across all airport 

stakeholders, which shall perform timely updates to the AOP under agreed rules and procedures. The 

reference concept upon which this novel airport operations view is built is Airport-Collaborative 

Decision-Making (A-CDM), for which a standard term of reference has been recently updated in [2].  

The present paper deals with the problem of managing aircraft movement on an airport  

surface, taking into account planning and routing functions for aircraft, while being consistent with the 

airport operations concept envisioned by SESAR [3]. As airport dimensions, complexity and surface 

traffic steadily increase, the current first-come first-served approach with conflict detection and 

resolution performed by Air Traffic Controllers (ATCo) is not capable of dealing efficiently with the 

problem of interest. Automated decision support systems are under study and/or development for 

supporting ATCos decision-making in selecting the paths of all aircraft and the time to command the 

off block procedure start for departing ones. The problem is usually tackled describing the airport 

surface system by network and graph theory. In this way, the ground-movement process is  

abstracted into a mixed-integer-continuous-program [4–9], which is either linearized, yielding a  

Mixed-Integer-Linear-Problem (MILP) [4–7], or approached by stochastic optimization algorithms [8]. 

A thorough overview of possible problem settings and popular approaches can be found in [9], to 

which the interested reader can refer. The common trait of the usual ground movement problem’s 

formulations is that they easily result in a computationally intractable problem, and some simplifying 

assumptions must be introduced, such as bounding aircraft taxi speeds [6], applying a receding horizon 

approximation [4,7] and linearizing the continuous problem part [4,6,7,9]. 

This paper proposes an algorithm suitable for tackling the ground movement problem. This Taxi 

Route Planner (XRP) tool aims at minimizing the holding time of aircraft that are maneuvering on 

airport taxiways, for both arriving and departing aircraft. This is done in two consecutive steps, that is, 

a standalone, shortest path solution from runway to apron (or vice versa), neglecting the presence of 

other aircraft on the airport surface, followed by a conflict detection and resolution task that attempts 

to reduce and possibly nullify the number of conflicts generated in the first phase. In this way, the 

computationally intractable problem is simplified by decomposition, and a suboptimal solution can 

always be found within a pre-specified time interval, which makes the algorithm suitable for practical 

use in true-world airport operations.  



Algorithms 2013, 6 497 

 

 

The paper is organized as follows. First, a possible scenario for future airport operations, which is 

taken as a reference in developing the algorithm, is outlined following the latest SESAR’s concept of 

operations. Subsequently, target requirements for the system are derived. Then, the algorithmic 

structure of the tool is laid out, and its contents discussed in detail. An example application on an 

Italian airport exemplifies how true-world applications can be modeled to suit the algorithm’s needs. 

Last, a preliminary assessment of the algorithm’s performance is presented.  

2. Airport Operations Reference Scenario  

In order to define the functionalities of the XRP decision support tool, we introduce in this section a 

series of general assumptions that contribute in defining a reference scenario for the airport 

environment in which the XRP is intended to operate. As stated in the introduction,  

Airport-Collaborative Decision-Making (A-CDM) is the key element of the reference scenario.  

A-CDM is a concept that aims at improving air traffic flow and capacity management at airports by 

reducing delays, improving the predictability of events and optimizing the utilization of resources. The 

decision making by the Airport CDM partners is facilitated by sharing accurate and timely information 

and by adapted procedures, mechanisms and tools [2]. We will assume that the arrival and departure 

flows are managed by two of such advanced ATCo tools, which cooperate with the Airport-CDM 

concept by sharing information and optimizing arrivals and departures, as follows [2]: 

 Arrival Manager (AMAN), which is an arrival flow management tool, optimizes the traffic 

flow into a Terminal Management Area (TMA) and/or runway(s) by calculating Target 

Landing Time (TLDT), taking various constraints and preferences into account. 

 Departure Manager (DMAN), which is a planning system to improve the departure flows at an 

airport by calculating Target Take-Off Time (TTOT) and Target Start-up Approval Time 

(TSAT) for each flight, taking multiple constraints and preferences into account. 

The arrival and departure processes we will use as a reference for deriving the XRP functionalities 

are developed according to EUROCONTROL’s
 
Milestones Approach, part of the Airport-CDM 

concept. In practice, the milestones approach standardizes, as possible, the sequence of events, denoted 

as “milestones”, that shall occur to the typical profile of a flight transiting at an airport. We focus only 

on the reference arrival and departure processes, enhancing the elements relevant to the taxi route 

assignment, referring the interested reader to [2]. 

A major milestone for inbound flights, at least from the routing standpoint, is the Estimated 

Landing Time (ELDT). Given the guidelines for information sharing in the reference A-CDM concept, 

relevant information of an inbound flight is available with reasonable accuracy to the routing planning 

process at ELDT—20 min. The AMAN tool is in charge of determining the optimal sequence of 

ELDTs for all inbound flights, improving the exploitation of runways’ capacity and increasing 

punctuality. For doing so, an estimate of the time at which the aircraft will arrive at its assigned gate, 

the Estimated In-Block Time (EIBT), shall be computed by means of the Estimated Taxi in Time 

(EXIT), which is the estimated taxi time between landing and in-block. The reference inter-operational 

concept assumed in this paper is that AMAN computes the optimal ELDT sequence. The ELDT 
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sequence is then delivered to XRP, which determines the EIBT for each inbound aircraft, by means of 

an accurate computation of the EXIT. 

For an outbound flight, the milestone sequence is more involved, also when focusing only on the 

aspects relevant to the route assignment problem. A major role is played by the Target Off-Block Time 

(TOBT), which is the time that the aircraft operator and handling agents estimate that an aircraft will 

be ready, all doors closed, boarding bridge removed, push back vehicle present, ready to start-up/push 

back immediately upon reception of clearance from the control tower (TWR). The availability of an 

accurate TOBT is the pre-requisite for performing a collaborative pre-departure sequence optimization. 

Given the guidelines for information sharing in the reference A-CDM concept, the relevant 

information of an inbound flight is available with reasonable accuracy to the routing planning process 

around 20 min before off-block. After a certain amount of time the TOBT is issued, the ATC issues the 

TSAT: the time that an aircraft can expect to receive start-up/push back approval. The DMAN tool is 

in charge of determining the sequence of TSATs for all outbound flights, computing the optimal 

sequence of TTOT for all runways and all outbound flights, taking into account multiple preferences 

and constraints, such as the available runways’ capacity, wake vortex separations, slot enforcement, 

arrivals data from AMAN, etc. For doing so, it also takes into account the earliest time at which each 

aircraft can be reasonably requested to be at the runway, ready for line-up and take-off. In order to 

estimate such a time, it uses the TOBT as the earliest time an aircraft can be expected to be off-block 

and relates this condition to take-off by means of the Estimated Taxi-Out Time (EXOT), which is the 

estimated taxi time between off-block and take-off. The reference inter-operational concept assumed in 

this paper is that DMAN computes the optimal TTOT sequence using its own EXOT estimates. The 

TTOT sequence is then delivered to XRP, which determines the TSAT sequence that allows outbound 

aircraft to meet the assigned TTOT.  

Reference Taxi Timelines for Inbound and Outbound Flights 

In order to define more precisely the criteria against which the taxi-route optimality is judged, as 

well as all the constraints affecting the taxi route assignment problem, we shall break down the 

timeline of the reference taxi process for both inbound and outbound flights, EXIT and  

EXOT, respectively. 

Considering inbound flights, after touchdown, the aircraft has to complete the landing and free the 

runway. This part of the process is constrained by international regulation to occur as soon as possible 

and cannot be included in any route planning process. As a consequence, it may be only estimated by 

the XRP and is denoted as the Estimated Runway Exit Time (ERET). Then, the aircraft enters the 

airport taxiway system. This phase is obviously subject to route planning and optimization. The time 

necessary to complete this phase is thus determined by the XRP and shall be a target for the relevant 

ATCo, denoted as the Target Taxiways Engagement Time (TXET). At last, the aircraft exits the 

airport’s taxiway system and shall enter the apron. The time necessary to complete this phase is 

estimated by a purposely developed apron model [10] and is denoted as Estimated Apron in Time 

(EAIT). The following relationship is established by the EXIT breakdown (Figure 1), relating the 

ELDT provided by AMAN to the EIBT, which is of interest to multiple stakeholders and shall be 

delivered by the XRP to the CDM. 



Algorithms 2013, 6 499 

 

 

EIBT = TXET + ELDT + ERET + EAIT (1) 

Figure 1. Reference Estimated Taxi in Time (EXIT) breakdown. ELDT, Estimated 

Landing Time; AMAN, Arrival Manager; ERET, Estimated Runway Exit Time; TXET, 

Target Taxiways Engagement Time; EIBT, Estimated In-Block Time. 

 

Considering outbound flights, off-block is estimated to not occur prior to TOBT by the aircraft 

operator and handling agents. The ATCo, upon suggestion by the XRP, has the possibility to delay the 

off-block, specifying its own target time for starting the off-block process (TSAT). Then, upon 

completion of the push-back (if applicable) the aircraft shall exit the apron. Again, the time necessary 

to complete this phase is estimated by a purposely developed apron model [10] and is denoted as 

Estimated Apron-Out Time (EAOT). Then, the aircraft enters the airport’s taxiway system. This phase 

is obviously subject to route planning and optimization. The time necessary to complete this phase is 

thus determined by the XRP and shall be a target for the ATCo, denoted as TXET, as in the arrival 

phase. At last, the aircraft arrives at the Runway Holding Position (RHP), where the TWR is in charge 

of delivering the line-up and take-off clearances to the aircraft. It is clear that the XRP has no control 

on this phase, as well, whose duration is only estimated and denoted as Estimated Runway Clearance 

Time (ERCT). The following relationship is established by the EXOT breakdown (Figure 2). It relates 

the TSAT, delivered by the XRP to TWR, to the TXET optimized by the XRP in order both to meet 

the TTOT provided by DMAN and to comply with the TOBT delivered by the CDM. 

TSAT = TTOT − TXET − EAOT − ERCT ; subject to: TSAT ≥ TOBT (2) 

Figure 2. Reference Estimated Taxi-Out Time (EXOT) breakdown. TWR; TSAT, Target 

Start-up Approval Time; TOBT, Target Off-Block Time; CDM, Collaborative  

Decision-Making; EAOT, Estimated Apron-Out Time; TTOT, Target Take-Off Time. 

 

3. Target Operational Requirements 

The XRP shall output the TSAT and EIBT, consistently with the previous equations. In order to 

compute such variables, the XRP is in charge of computing and optimizing the TXET. Moreover, the 
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XRP shall also suggest the taxi route each aircraft shall follow. The XRP thus outputs a timed taxi 

route, which is a sequence of “vertices”, i.e., points of the airport’s taxiway system, which the aircraft 

shall follow in the specified order. Each vertex of the sequence has a time-tag, which specifies at 

which time epoch the aircraft is expected to reach, leave or cross the point. The TXET is obtained by 

the difference of the relevant vertices’ time tags. The constraints to which the timed taxi route shall 

comply are: 

 The first and last vertices shall be consistent with the apron exit point/runway exit point and 

holding position/apron entry point for outbound/inbound traffic, respectively. 

 The route shall be consistent with the airport topology, with the current airport configuration, 

e.g., in terms of runways used for landings, runways used for departures, taxiways closed or 

restricted due to weather or maintenance operations, with airport taxi regulations, depending on 

weather and aircraft parameters, such as wingspan, gross weight, etc. 

 All routes shall be consistent with the expected airport surface traffic, e.g., no vertices can 

receive two aircraft concurrently. 

 Timing shall be consistent with ELDT for arrivals and with TOBT and TTOT for departures, 

via Equations (1) and (2). 

Feasible timed taxi routes shall thus comply with all the previous constraints. Among feasible timed 

routes, the algorithm shall determine the optimal one. In order for a timed route to be optimal, TXET 

shall be minimized. This allows gaining benefits in terms of the safety of airport surface operations 

(less concurrently moving aircraft on the surface implies reduced potentials for conflicts, reduced 

controller workload, etc.) and gaining cost/environmental benefits (minimizing taxi times allows for 

reduced fuel consumption). Furthermore, conflicts of taxi routes shall be avoided if feasible or else 

minimized to the minimum possible extent. The resulting XRP input-output interface is summarized in 

Figure 3. 

Figure 3. Taxi route planner input/output interface. XRP, Taxi Route Planner. 
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4. Route Planning Algorithm 

As previously discussed, the XRP algorithm can be thought of as the outcome of two different 

consecutive steps. First, a standalone, shortest path solution from runway to apron (or vice versa), 

neglecting the presence of other aircraft on the airport surface, is sought for all aircraft in the planning 

horizon. This route, which is clearly the one yielding the minimum time the aircraft can potentially 

spend on the taxiways, does not take into account the constraints due to other traffic on the airport 

surface. Thus, this solution is amended by a conflict detection and resolution task that attempts to 

reduce and possibly nullify the number of conflicts generated in the first phase. 

4.1. Standalone Taxi Route Planning 

This section is concerned with describing how to determine the optimal taxi route for a single 

aircraft, connecting its apron exit point to its RHP (and vice versa), irrespective of the traffic it might 

encounter on the airport taxiways. Given the previous discussion, route optimality in this task is 

equivalent to taxi time minimization.  

The airport taxiway system can be modeled as a weighted and directed graph, in which the travel 

cost of each edge (the “cost” associated with traveling along a certain taxiway) is given by the time 

necessary for an aircraft to pass through the edge itself. Therefore, the travel cost is always  

non-negative for each directed edge of the airport taxiway graph. Given the previously defined 

optimality criterion, the taxi route-planning problem may be recast into what is commonly denoted in 

the combinatorial optimization framework as the shortest path problem. More precisely, the shortest 

path problem is concerned with finding a route from vertex A to vertex B having the minimum 

possible travel cost. The task we are concerned with may be stated as a particular instance of the 

general shortest path problem, called the single-pair shortest path problem. This classification 

emphasizes the fact that one has to find the shortest path from a source, vertex A, to a single 

destination, vertex B, as opposed to, for instance, the single-source shortest path problem, in which one 

has to find the shortest paths from a source, vertex A, to all other vertices in the graph. Several 

algorithms exist for solving this single-pair shortest path problem on a weighted and directed graph, 

with non-negative weights (see [11] and the references therein for an overview). The best known 

algorithms for finding the single pair shortest path are the ones that solve the broader single-source 

shortest path problem. Among these, the most popular algorithm is Dijkstra’s algorithm. Indeed, for 

the problem under analysis, this algorithm may be shown [12] to be: 

 Complete, in the sense that it guarantees finding a solution if one exists; 

 Optimal, in the sense that is capable of identifying the best of several different solutions; 

 Polynomial in time, in the sense that the running time is proportional to a polynomial function 

of the number of the graph’s vertices, i.e., it is computationally efficient. In particular, 

Dijkstra’s algorithm has an O(n
2
) time complexity, where n is the number of the  

graph’s vertices. 

For a given source vertex in the graph, the algorithm finds the path with the lowest cost (i.e., the 

shortest path) between that vertex and every other vertex. This algorithm uses a greedy technique often 

employed in optimization problems. Greedy algorithms make locally optimal choices at each step, 
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assuming that these choices will produce a globally optimal solution. Dijkstra’s algorithm maintains a 

set of vertices whose minimum costs relative to the origin vertex are already known. Initially, this set 

contains only the origin vertex. At each step, it adds to the set one remaining vertex whose cost relative 

to the origin vertex is as small as possible. Because all segments have non-negative costs, the shortest 

path route from the origin vertex to this remaining vertex passes only through vertices in the set. The 

algorithm repeats this basic step until the set includes all vertices, so this output array will hold the 

shortest path and relevant distance from the origin to each vertex in the graph. Dijkstra’s algorithm 

does actually output a wider solution than what it is strictly needed for solving our task. Nonetheless, it 

has numerous advantages, such as conceptual simplicity, computational efficiency and a wide 

availability of tested implementations. Thus, we first solve the standalone taxi route planning task 

using Dijkstra’s algorithm with the apron exit point (runway exit point for landings) as the source 

vertex. The output will be a shortest path tree: a subgraph of the airport taxiway graph, constructed so 

that the distance between the source vertex and all other vertices is minimal. Then, we find the path to 

the desired destination vertex by means of a path finding algorithm on the shortest path tree, such as 

depth-first search. In summary, the main steps of the standalone taxi route planning algorithm are: 

 Determine the forbidden states. We shall take into account that not all the taxiways may be 

accessible to an aircraft, depending on some of its characteristics, such as gross weight and 

wingspan. Moreover, taxi regulations might restrict the usable taxiways depending on the 

actual weather. Thus, depending on the problem input, not all taxiways may be used for route 

planning. A simple way of dealing with this problem is to dynamically incorporate this 

information into forbidden states for the corresponding vertex data structure. Forbidden 

vertices cannot be used in construction of the graph search tree, so the system automatically 

avoids forbidden taxiways.  

 Solve the single-source shortest path using Dijkstra’s algorithm. 

 Find the aircraft taxi route on the shortest path tree using depth-first search. 

 Compute EIBT and TSAT. This step includes the models for the apron and runways entry/exit 

time estimates, for determining EAOT, ERCT, ERET and EAIT. Then, Equations (1) and (2) 

may be used to obtain EIBT and TSAT. Route timing shall also be shifted to match the 

opportune time-epochs, e.g., the route’s final time epoch shall be set equal to TTOT for 

outbound aircraft. 

4.2. Conflict Detection and Resolution 

A conflict is detected when two aircraft cross the same graph node for a time of less than a given, 

pre-specified, tolerance, Δ, fixed to 30 s. The check is computed by iterating on all aircraft that 

movement on the ground of the airport during the planning time horizon. When a conflict between two 

aircraft is detected, priority is given to one of the two aircraft for determining which one shall be  

re-planned. The following rules are considered for flight prioritization, in order of importance: 

1. Aircraft in planning horizon vs. aircraft with frozen route; 

2. User-assigned priority levels (0–2); 

3. Inbound aircraft has priority over outbound aircraft; 
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4. Between outbound aircraft, the one with the smallest value of TSAT–TOBT has priority; 

5. Between inbound aircraft, the one that landed earlier has priority. 

Analyzing the conflicts between individual pairs of aircraft has the advantage that the possible 

resolution maneuvers can be screened with limited computational load, especially if compared to a 

global conflict resolution strategy attempting to solve all (or most, at least) conflicts concurrently. 

With this single-conflict approach, however, care must be exercised in selecting a resolution maneuver 

that does not generate new conflicts with other aircraft. This is done in the current algorithm, checking 

that the resolution maneuver decreases the number of total conflicts. Because the resolution maneuver 

solves the conflict between the two aircraft under analysis by definition, requiring the number of total 

conflicts to decrease assures that the number of conflicts with all other aircraft does not increase. The 

overall strategy for managing the single-conflict approach is shown in Figure 4. This flow diagram is 

based on assuming that a single-conflict resolution that is not increasing the number of other conflicts 

can always be found. This heuristic assumption imposes some specific requirements on the  

single-conflict resolution maneuver described in the next paragraph. Furthermore, the overall 

computational time is bounded by a pre-defined threshold, T, to cope with the previously discussed 

requirements. If this threshold is reached, a suboptimal solution will be output, in which only part of 

the conflicts are solved. 

Figure 4. Managing the single-conflict approach. 
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Single-conflict resolution can be achieved by three alternative maneuvers of the aircraft with  

lower priority: 

1. Modifying its TSAT for outbound aircraft. Steps of Δs are selected up to the time that complies 

with both the TOBT and the take-off sequence defined by DMAN. Compliance is enforced 

with Δs tolerance. 

2. Forbidding the vertex where the conflict occurs and re-computing the standalone solution; 

3. Increasing the waiting time at holding points. Steps of Δs are selected also in this case. 

Solution 1 is preferable over the other two, because it does not increase the TXET, but only shifts 

the taxi route in time. Between Solutions 2 and 3, the one that induces the smaller increase is 

preferable. Solution 2 is executed only once and is checked for conflicts only after Solutions 3 with 

smaller delays is ascertained to yield a nuisance. Because of the overall conflict management, we 

assume that a single-conflict resolution that is not increasing the number of other conflicts can always 

be found by repeatedly applying Solution 3. In other terms, an aircraft may be asked to queue at a 

Holding Position (HP) until there is at least a 2Δ window between other aircraft crossing in front of the 

HP. The overall de-conflicting strategy is summarized in Figure 5. Solution 1, being the most 

complicated of the three, is further discussed in the following paragraphs. 

Figure 5. De-conflicting strategy. 
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shall not be modified. Compliance with the take-off sequence implies, thus, that no aircraft may be 

allowed by XRP to take off, either after the following or before the preceding aircraft in the sequence. 

The compliance of the modified timed taxi route to these conditions shall be enforced with a tolerance 

of Δ, which yields: 

 (3) 

In Equation (3), TSAT, TTOT and TOBT refer to the current aircraft, i.e., the one that is being 

deconflicted, whilst TTOTprecAC refers to the TTOT of the aircraft preceding the current one in the 

take-off sequence, and TTOTfollAC refers to the TTOT of the aircraft following the current one in the 

take-off sequence. Equation (3) constrain the amount by which TSATNom may be varied. Since 

Solution 1 modifies TSATNom at steps of Δs, the amount of variation that can be applied to anticipate 

or delay an aircraft is given by: 

 (4) 

where NEarly and NDelay are the integer numbers of steps the aircraft being de-conflicted that have been 

anticipated and delayed, respectively. In fact, the de-conflicting logic may increase the amount of time 

an aircraft is anticipated or delayed, until either the conflict is solved or the aircraft cannot be further 

anticipated or delayed. This is equal to increasing the integer numbers, NEarly and NDelay. In order to 

evaluate if a certain aircraft can be further delayed or anticipated, conditions (3) shall be checked 

against the amount of anticipation or delay one wishes to apply for solving the conflict.  

Let us refer to the case of an aircraft being de-conflicted. Assume that anticipating this aircraft 

NEarly times and delaying it NDelay times has not yet solved the conflict. We wish to check if we can 

further anticipate or delay this aircraft for solving the conflict.  

Consider first the anticipation case: this implies that we wish to check if the aircraft being  

de-conflicted can have a TSAT = TSATNom − (NEarly + 1) Δ. The first and the second of conditions (3) 

shall be verified for increasing NEarly to NEarly + 1. These can be combined in a Boolean flag, isE, 

which is a necessary condition for further anticipating the aircraft, i.e., NEarly = NEarly + 1, as follows: 

 (5) 

Consider, now, the delay case: this implies that we wish to check if the aircraft being de-conflicted 

can have a TSAT = TSATNom + (NDelay + 1) Δ. Only the third condition in Equation (3) applies.  

A Boolean flag, isD, is introduced, also, in this case, being a necessary condition for further delaying 

the aircraft, i.e., NDelay = NDelay + 1, as follows: 

 (6) 

5. Example Application to Rome Ciampino Airport 

The airport information needed to support the development of the route planner can be summarized 

in the below reported list: 
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 Runway(s) in use for arrivals and departures; 

 Length, maximum allowed wingspan, maximum allowed aircraft gross weight for  

each taxiway; 

 Location of crossroads between two taxiways; 

 Holding points on taxiways; 

 Special rules for taxiway use in particular conditions, such as wet ground, poor visibility and 

daytime restrictions. 

This information is available via the Air National Service Provider in charge of the airport ATCo, 

e.g., Ente Nazionale Assistenza al Volo (ENAV) S.p.a. for Italian airports, which is thus responsible 

for maintaining the Integrated Aeronautical Information Package document conforming to applicable 

international standards [13]. Figure 6 shows the aerodrome chart of the Rome Ciampino airport 

(International Civil Aviation Organization (ICAO) code LIRA), publicly made available by ENAV in 

the Italian Aeronautical Information Publication [14]. LIRA airport is selected in this paper only for 

validation and illustrative purposes, the target airports for the deployment of advanced airport 

operation concepts being substantially bigger and more complex. Nonetheless, LIRA is a good 

compromise for initial testing of the algorithm, as well as for understanding the issues in modeling an 

airport for XRP. 

Figure 6. LIRA aerodrome chart (taken from [14]). 
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As reported in the first section of this report, a graph structure shall represent the graph to solve the 

shortest path problem. The type of graph shall be non-unidirectional, since some taxiways can be 

travelled in both ways, and weighted, since a distance is defined for each edge. Two separate graphs 

are built for computing the standalone shortest path solution, that is, one encoding the available paths 

for the aircraft at arrival and one for the aircraft at departure. The procedure that allows for building 

the two graphs consists of the following steps: 

1. Identify all crossroads between at least two taxiways on the map. They will be the internal 

vertices of the graph; 

2. Retrieve the distances between each pair of contiguous crossroads. Two crossroads are 

contiguous if they are on the same taxiway and there is no other crossroad between them; 

3. Set a starting vertex on each runway/apron for arriving/departing aircraft; 

4. Set an ending vertex on each apron/runway for arriving/departing aircraft; 

5. Add an edge for each (portion of) taxiway that connects two vertices. The right way to travel 

the taxiway at departure/arrival shall be taken into account. Two edges shall be added if both 

ways are available; 

6. Distances obtained at point 2 shall be associated with each edge introduced at point 5; 

7. The maximum aircraft wingspan allowed for each taxiway shall be associated with the  

relevant edges; 

8. The maximum aircraft reference mass allowed for each taxiway shall be associated with the 

relevant edges; 

9. Taxiways that cannot be travelled in special weather, visibility and daytime conditions must be 

noted to insert the proper graph forbidden states in the tool. 

Following this procedure, arrival and departure graphs can be easily built for Rome Ciampino 

airport and are shown in Figure 7. Source vertices are colored in orange, taxiways crossroads and 

holding positions are drawn in blue and the end vertices are in red and green. The vertices are labeled 

using the same nomenclature used in [14], making the resulting graph easily understandable by 

comparing Figure 7 with LIRA data. 

Figure 7. LIRA airport coding onto arrival (top) and departure (bottom) graphs for XRP. 
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Figure 7. Cont. 

 

6. Preliminary Performance Assessment 

The algorithm functionalities have been tested on a hypothetical airport representing Milano 

Malpensa (LIMC) airport, one of the two Italian hubs. A one day-long dataset has been used, which 

reproduces the actual traffic experienced on the LIMC surface during June 15, 2010. Traffic data has 

been retrieved with the help of the LIMC operator. Such data encloses scheduled and actual time of 

arrival/departure, actual off-block and on-block times, the runway used, the gate assigned and all other 

relevant flight information. LIMC airport data, available in the relevant section of the Aeronautical 

Information Publication (AIP) Italy document [14], has been coded into the format required by the 

XRP tool, following the procedure outlined in the previous section. The traffic sample has an average 

of 38 movements per hour (Figure 8) and peak values of more than 60 movements per hour. A 

comparison was made between data with and without the XRP algorithm enabled, and the results are 

shown in Figure 8. The details of the validation procedure can be found in [15]. 

Data suggest that the algorithm is capable of speeding up the aircraft traffic on the airport surface 

with respect to the unregulated case. However, this effect decreases as the number of aircraft 

concurrently moving on the airport surface increases. This is mainly due to the conflict resolution 

strategy selected by the algorithm. As the traffic increases on the airport surface, Solution 1 (TSAT 

modification) does not allow for solving the conflicts without introducing new ones. In these 

conditions, the algorithm typically requires the conflicting aircraft to either take a longer route or rest 

at an HP until the route is cleared by other traffic. Nonetheless, the algorithm is always capable of 

finding a conflict-free solution, even in the presence of five simultaneous conflicts. This is done within 

at most 3 s, which is a value well below the O(10 s) typical solution update interval requested by ATCo 

decision support tools. 
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Figure 8. XRP preliminary validation: traffic sample (top), aircraft travel-Time (middle), 

and computational time (bottom). (source: [15]). 
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7. Conclusions 

A novel algorithm has been presented, aimed at safely and optimally managing the routing of 

aircraft on an airport surface in future airport operations envisioned by the SESAR project. A reference 

scenario has been defined for taking into account the features of future airport operations that are 

relevant to aircraft taxi routing and planning. Target operational requirements are laid out for 

developing the routing algorithm. Constraints have been identified, and route optimality has been 

defined based on the minimization of the time the aircraft spends on the airport surface with  

engines on. 

The proposed algorithm first computes a standalone, shortest path solution from runway to apron or 

vice versa, depending on the aircraft being inbound or outbound, respectively. The presence of other 

aircraft on the airport surface is neglected at this stage. For taking into account the constraints due to 

other traffic on the airport surface, this solution is amended by a conflict detection and resolution task 

that attempts to reduce and possibly nullify the number of conflicts generated in the first phase. The 

conflict resolution makes use of the prioritization of aircraft in conflict and chooses the conflict 

resolution that allows for the minimum increase of the taxi time. 

An example application on a simple Italian airport exemplifies how the algorithm can be applied to 

true-world applications. Emphasis is given on how to model the airport surface as a weighted and 

directed graph with non-negative weights, as required for the input to the algorithm. A preliminary 

performance assessment is also presented on a hypothetical airport representing an Italian hub. Results 

suggest that the algorithm concept is capable of coping with heavy traffic levels. Future work will be 

concerned with evaluation of the algorithm’s performances on the actual aircraft data of an Italian hub.  
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