IX International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2021
E. Ofiate, M. Papadrakakis and B. Schrefler (Eds)

FEMUS-PLATFORM: A NUMERICAL PLATFORM FOR
MULTISCALE AND MULTIPHYSICS CODE COUPLING

G. BARBI', G. BORNIA?, D. CERRONF, A. CERVONE?, A. CHIERICI'*,
L. CHIRCO®, R. DA VIA‘, V. GIOVACCHINT!, S. MANSERVISI! AND R.
SCARDOVELLI!

L DIN, Lab. of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna, IT
2 Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
3 Politecnico di Milano, P.za Leonardo Da Vinci 32, 20133 Milano, IT
4 ENEA, Via Martiri di Monte Sole 4, Bologna, 40129, Italy
5 Sorbonne Université, Institut Jean Le Rond d’Alembert, 4 Place Jussieu, Paris, F

*e-mail: andrea.chierici4d@unibo.it

Key words: Multiscale problems, Multiphysics platform, Code coupling

Abstract. Nowadays, many open-source numerical codes are available to solve phys-
ical problems in structural mechanics, fluid flow, heat transfer, and neutron diffusion.
However, even if these codes are often highly specialized in the numerical simulation of
a particular type of physics, none of them allows simulating complex systems involving
all the physical problems mentioned above. In this work we present a numerical frame-
work, based on the SALOME platform, developed to perform multiscale and multiphysics
simulations involving all the mentioned physical problems. In particular, the developed
numerical platform includes the multigrid finite element in-house code FEMuS for heat
transfer, fluid flow, turbulence and fluid-structure modeling; the open-source finite volume
CFD software OpenFOAM; the multiscale neutronic code DONJON-DRAGON; and a
system-scale code used for thermal-hydraulic simulations. Efficient data exchange among

these codes is performed within computer memory by using the MED libraries, provided
by the SALOME platform.

1 INTRODUCTION

In this work, we present the multiscale and multiphysics platform FemusPlatform [1]
developed at the Department of Industrial Engineering of the University of Bologna. The
FemusPlatform has been developed as an environment where several open, research, and
commercial numerical codes can be run together and allows modeling complex physical
phenomena on different physical scales. The platform includes the multigrid finite element

1

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

code FEMuS, which is based on a C++ main program that handles several external
open-source libraries, such as the Libmesh and PETSc libraries. Libmesh is a C++ finite
element library used in the code FEMuS to generate and handle numerical meshes with
multiple level refinements [2]. PETSc is a C++4 library for linear and non-linear algebra
developed using LASPack codes written in Fortran and other solvers [3]. The FEMuS
code contains solvers for many different physical problems.

The developed numerical platform is based on the open-source SALOME platform [4],
using an approach similar to the NURESAFE platform, developed by the CEA [5]. We use
the open-software SALOME platform to add new codes and develop coupling interfaces
compatible with open and closed source codes. The SALOME platform brings several
tools: KERNEL, GUI, GEOM, SMESH, MED, and PARAVIS module. The KERNEL
module provides a common shell for all components, which can be integrated into the
SALOME platform. The GUI module provides visual representation with basic widgets
and the GEOM module draws and optimizes geometrical models. The SMESH module
generates meshes on geometrical models previously created or imported by the GEOM
component, PARAVIS performs data visualization and post-processing and finally MED
allows to work with highly compressed files.

Several codes can be integrated into the platform, e.g. the open-source finite volume
CFD software OpenFOAM [6], the multiscale neutronic code DONJON-DRAGON, and
the system-scale code CATHARE used for thermal-hydraulic simulations have been suc-
cessfully integrated into the platform. The platform has been tested on various physical
problems. Some of the more significant applications have been implemented for the nu-
merical simulation of Lead-cooled Fast Reactors (LFR), in a joint effort between ENEA
and UNIBO, to simulate the thermal-hydraulics and neutronic behavior of a full reactor
through the coupling between the codes integrated into the numerical platform.

The work is organized as follows. After a brief introduction on the SALOME platform,
the coupling strategy between all the involved codes is introduced. Then, an example of
numerical code coupling between FEMuS and OpenFOAM is discussed, providing guide-
lines for efficient and optimal data exchange.

2 FEMuS FEM LIBRARY

The numerical platform introduced in this work derives from the multigrid finite ele-
ment library FEMuS. Such a library has been developed at the Department of Industrial
Engineering of the University of Bologna, and contains several solvers for incompressible
Navier-Stokes equations, heat transfer, turbulence models, Fluid-Structure Interaction
problems, multi-phase flows and optimal control with adjoint method.

The FEMuS FEM library has been integrated with the SALOME platform by writing
a MEDMem C++ interface to be able to couple the three-dimensional computation ob-
tained with the finite element library with system codes (e.g. CATHARE, RELAP, etc.)
or other CFD codes. The interface between the MEDMem and the FEMuS libraries con-
sists basically of three classes: FEMuS, EquationSystemsExtendedM and MeshExtendedM.

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

All these classes are located in the src and include directories of the FEMuS library.
The FEMuS class is the interface between the library FEMuS and the SALOME plat-
form. The FEMuS interface allows passing commands from the MEDMem library to the
EquationSystemsExtendedM class which is the problem solver core. To interact with the
FEMusS library two existing FEMuS classes have been extended: the MGEquationsSystem
and the MGMesh. The extensions are simply named as EquationsSystemExtendedM and
MeshExtendedM, respectively.

The EquationSystemsExtendedM class, which uses only MEDMem functions, inher-
its the EquationSystem which uses only FEMuS functions. The EquationSystem class
contains all the assembly and solver of the FEMuS code. The data from the FEMuS class
can be transferred into the assembly routine by a dynamic cast operator, that allows to
use child class functions from the parent class. Data can also be transferred in the op-
posite direction from the EquationSystem to the MEDMem interface by standard C++
inheritance rules.

The MGMesh class contains the multilevel mesh in FEMuS format. To interface FE-
MuS with MEDMem library a new mesh format should be introduced and the mesh class
should be extended. The MeshExtendedM class, which uses only MEDMem functions,
inherits the MGMesh which uses only libMesh functions [2]. In the FEMuS library, differ-
ently from LibMesh library, the mesh is known inside the EquationSystemsExtendedM
class. Therefore, the interface FEMuS class does not need to communicate directly to the
MeshExtendedM class. As mentioned above, the data from the FEMuS class can be trans-
ferred by using a dynamic cast operator into the assembly routine which is user-accessible.

MGLUtils

.
f « _mgutils
) B
/ ™
! _mg_utils MGTimelLoop MGFemusinit MGFEMap
%
.. X [7
e “_mg_time_loop | _start 4 _mg_femap
- . p

o ~ |
— - -
- -

-

—_—
-

FEMUS

Figure 1: FEMuS class data to communicate with the FEMuS library.

The FEMuS class is the unique interface class. It contains data from both FEMuS and
MEDMem libraries to transfer data from one mesh to another (e.g. from FEMuS mesh
format, MGMesh, to the MED format). Thus, inside this class there are both pointers
_mg_mesh and _med_mesh to their respective MGMesh and MED formats. The FEMuS class
needs information to extract data from these different mesh structures. In particular, as

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

shown in Figure 1, the classes MGUtils, MGFEMap and MGFEMuSinit are available inside
FEMuS to transfer basic information such as file names, parameters, multigrid level, fem
elements, etc. The MGUtils contains all the file names and input parameter values. The
MGFEMap contains information about the finite element mesh structure and MGFEMuSinit
class is the manager class for MPI and multigrid solvers.

3 THE NUMERICAL PLATFORM

The numerical platform SALOME introduced above has been developed by Commis-
sariat & lénergie atomique (CEA) and Electricité de France (EDF) to provide an advanced
open-source platform for Computer-Aided Engineering (CAE) purposes. The platform is
composed of several modules, such as KERNEL, GEOM, MESH, PARAVIS, and MED,
that can be used for integrating external codes. These modules have been previously
described.

We focus now on the MED module, which provides a standard for storing and recovering
computer data associated with numerical meshes and fields and facilitates the exchange
between codes and solvers. This module is used to read a numerical field from file, and
store it in the memory by using the MEDMem library. Moreover, the library provides a
complete set of functions, used to access, modify, create meshes and perform operations
on fields. Note that with the MED memory library data exchange between numerical
codes can be performed at the memory level, avoiding read/write operations and data
access on the hard disk.

3.1 SALOME interface

A numerical interface has been developed to couple all the involved codes inside the
computational platform and to control their execution. In this section, we describe the
main classes and functions involved in the developed SALOME interface. The interface
can be divided into different classes. A driver class, belonging to the top level of the
interface, has been implemented to communicate directly with the SALOME platform.
The problem class contains three basic functions: setType, setMesh and solve. The
setType command sets the physical problem to be solved for each involved code (e.g.
Navier-Stokes, energy, turbulence, etc.). The setMesh command sets and prepares the
mesh that should be available in both MED and code-specific formats for data exchange.
The solve command controls the solution of the discrete system. The equations class
inherits the system’s particular class which contains the assembly and solver of the generic
code. In this class, the solution is accessible, and a field can be extracted or set by using
methods class with setField and getField functions. Finally, the grids class is an
extension of the mesh class and allows the exchange of data between the code-specific
format and the MED library. In Figure 2 we show the numerical scheme implemented
to couple the two codes Code 1 and Code 2 in the developed platform. In particular,
the two codes are communicating in a process where a numerical field is extracted from

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

Code 1

/ Equations Code 1

- Supervisor

Qg.*
Qo.med)
|

Figure 2: Example of coupling between two different codes (Code 1 and Code 2) controlled by a super-
visor.

Code 2 and projected and used into Code 1. The solution is read from the mesh ,.* of
the Code 2 and duplicated in MED format, then it is passed to the supervisor through
the function Get. The numerical field is now available in computer memory as a MED
memory object and can be passed to the Code 1 using the function Set. The field is
projected on a MED copy of the target mesh €;.%, i.e. Q;.med.

The presented functions Get and Set are based on code interfaces based on the MED
format. In particular, an interface is created on a volume or boundary portion of the
computational grid €2.*. A MED grid duplicate Q.med of the considered mesh portion is
created together with maps w that allow associating nodes and cells numbering of .* to
nodes and cells numbering of 2.med. For more information on the developed SALOME
interface, the interested reader can consult [7].

3.2 Data manipulation and projection

The coupling between different codes can be implemented by using interpolation meth-
ods to project the field between different meshes. The used MED library offers several
functions for data manipulation and interpolation. In particular, interpolation functions
are provided for the piece-wise PO and node-wise P1 fields. Thus, many algorithms are
provided by the MED library to interpolate between PO and PO, PO and P1, P1 and
P1. Moreover, we added a class for the node-wise interpolation P2. Therefore, it is now
possible to interpolate between P2 and P2 fields. Moreover, a transformation of P2 fields
into PO fields has been implemented. We underline that the advantage of using MED
data structures is that all the developed classes of the interface are not built for a specific
code, but can generally be used wherever the MED library is used.

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

Node-wise field projection We illustrate now the node-wise field projection technique
implemented to project fields between different codes. Let 2, and €2; be the source and
the target mesh divided into N¢ and N finite elements, respectively. Also, let 1, and v,
be the source and the target fields. The projection relies on a point search algorithm, in
order to find the element €2 in the source mesh containing every node xj of the target
mesh. Then a reconstruction step is needed, aimed at locating the :C; node into the
canonical element associated with €.

The interpolation takes place on the canonical element, so the value of ¢, on node x§
can be determined through the value of ¢, on the nodes of {2, and the corresponding
interpolation weights. Therefore, if we define WU, as the array containing the v, values,
and U; as the array containing the 1, values, we have

U, = |P|V,, (1)

where |P| is the projection operator. We define now the linear transformation that
transforms the local canonical element into the original element as 7 = Z;Lil a:j@j(ﬁj),
where &5 are the coordinates of the points in the local reference frame, ¢5(&) are the
approximation functions and n, is the number of nodes that composes the e-th element.
Thus, under the presented hypotheses, the projection operator can be defined as
NE n
V= [PlW, =)) W05 (=) (2)
e=1 j=1
Note that the building of the projection operator requires a searching algorithm to find
the cell in the source mesh containing each node of the target one. We implemented a
numerical search algorithm based on [8]. We use an iterative procedure to calculate the
coordinates & of the selected node in the canonical element [9]. This allows assembling the
projection operator | P|, and then performing the projection (1). The described algorithm
can be used to project numerical fields with both P1 or P2 approximations.

Galerkin field projection We also implemented the Galerkin node-wise field projec-
tion technique [10]. In this work, we report only a brief sketch of the Galerkin field
projection implementation. For more information on the implemented algorithm in the
numerical platform one can refer to [7].
The Galerkin technique relies on the fact that the interpolated field ¥ is the best

approximation in L?-norm, as

P, — U]l = min U, — Pl;2.

.=l = | min [, = s
With Galerkin projection method the target field is approximated through the weighted
interpolation

N ne
V(@) =Y wi(@) > V4 (x)pi(), (3)
j=1 k=1

6

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

where w;(x) are the used weights. The source mesh element containing the j-th target
mesh node has been labeled with superscript e, and it contains n] nodes upon which the
basis functions ¢ (x) are defined.

In general, the pointwise technique is useful to project fields from a coarse mesh to a
finer one. Conversely, the Galerkin technique is used to project fields from a fine mesh to
a coarser one.

4 RESULTS

In this section, some simple numerical results are reported to show the effectiveness
of the implemented coupling platform. In particular, the integration technique used to
couple CFD and system codes is tested, as well as the projection algorithm to couple
two CFD codes. Finally, a simple coupling between the FEMuS code and OpenFOAM is
presented.

4.1 Coupling between system and CFD codes

The coupling between a system code and the FEMuS finite element library has been
presented in past works, and the interested reader can consult [11, 12]. In particular, the
FEMusS library has been coupled with the system code CATHARE to have multiscale
simulations of complex systems. The data are transferred between the two codes while
the program is running, with an efficient algorithm that does not involve reading and
writing fields on external files.

The coupling between the two codes can be performed with many techniques. In most
of them, the CFD code uses the system code variables as inlet values. To have a two-way
coupling, the average value of the solution at the outlet of the CFD code’s domain is used
either as an imposed value in the system code (decomposed domain technique), or to
calculate a fictitious source term to be imposed in the system domain to make the system
code solution equal to the CFD one (overlapping domain technique, see [11]). Thus, we
implemented a function able to build a MED interface on a desired portion of the domain,
containing all the solution fields on it. Then, a function able to integrate all the variables
on a given MED interface based on a classical Gauss integration has been developed as

Integrate(const MEDCoupling::MEDCouplingFieldDouble* Field, int order,
int n_cmp, int first_cmp, int method,
const MEDCoupling::MEDCouplingFieldDouble* VelField) ,

where Field is the MED solution field on the specified interface and method can be method
= mean for a classical integration divided by the value of the area, method = aximean for
axisimmetric integrations, method = bulk for integrals weighed to the velocity field (with
velocity VelField), etc. The user can integrate n_cmp solution components, starting from
the component first_cmp, with interpolation order given by order.

To test this function, we consider a quadrangular domain Q = {x € [0,1],y € [0, 1]},
and initialize an interface on the lower boundary of the domain (/) and an interface on

7

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

the whole domain I. We impose some simple polynomial fields F(x, y) on € and compare
the results of the Integrate function calculated both on It and I with the analytical
results.

Table 1: Comparison between the numerical results obtained with the function Integrate and the
analytical results.

Ir \ Io
Flry) [Fle,y)dy Aws | Floy) [Fla,y)dy A
x 0.5 05 | 05(z+y) 0.5 0.5
2? 0.33333 0.33333 | 0.5(2+4%) 0.33333 0.33333
? 0.25 0.25 | 0.5(2* + 1) 0.25 0.25
! 0.20052 0.20000 | 0.5(z* + %) 0.20052 0.20000
20 0.16797 0.16667 | 0.5(z° +4°) 0.16796 0.16667

In Table 4.1 we report the numerical results of the integral carried out on both I
and Iq, for various functions F(x,y). We also compare the numerical result with the
analytical one, A,.;. The numerical integrating algorithm shows the expected results
since the second-order Gauss integration matches the analytical results for polynomials
of order n < 3. In general, all the results are consistent with the expectations, thus the
implemented function can be considered a useful tool to develop the integration of fields
for all the CFD codes included in the numerical coupling platform.

This approach can be reproduced to pass information from the CFD code to the system
one, and it allows an efficient code coupling. At the same time, the values can be passed
from the system code to the CFD one by a developed function that allows imposing a
fixed value on a certain MED interface.

4.2 Coupling between different CFD codes

The developed numerical platform provides the coupling between different CFD codes,
as stated above. Since the information between the codes passes through the MED for-
mat, we can couple different numerical schemes (e.g. finite element, finite volume, etc.)
or different element orders (e.g. linear and quadratic finite elements). To do so, we im-
plemented various functions to extract a numerical field from a mesh, and project it into
a copy of the source mesh in the MED format. Then, as reported in Section 3, we project
the field into a copy of the target mesh in the MED format. Lastly, we project the field
from the MED format to the target format. In particular, the projection of the field
srcField between the two MED meshes is performed through the function

setFieldSource(int interface_name, int n_cmp,
const MEDCoupling::MEDCouplingFieldDouble* srcField) ,

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

where n_cmp components are projected from the source MED mesh to the MED interface
interface name. Then, the values are projected from the MED format to the target
mesh format with the function

write_Boundary_value(int interface_name, std::string mgsystem_name,
int n_cmp, int first_cmp) ,

where mgsystem name is a string which identifies the physical system to be solved.

Figure 3: Source (left) and target (right) meshes used to the projection test. The mapping of the target
nodes in the source meshes is also highlighted.

We test these functions by developing the projection of some simple fields between two
different meshes. In Figure 3 we report the source T, and the target 7; meshes used to
test the coupling algorithm, defined on the domain €2. We also report the reverse mapping
of the nodes of the target mesh. In particular, we find the source cell containing every
target node (in red in Figure). This search algorithm is the basis of the data projection
described in section 3.2.

We impose different fields F(z,y) on T;, and we project them on 7;. In particular,
we consider a quadratic case Fi(z,y) = (2o — 1) + (2y — 1)? + 0.5, a quartic case
Fo(z,y) = 2z —1)* + (2y — 1)* + 0.5, and a sinusoidal function F3(z,y) = 2 — 2 cos(mx).

In Figure 4 we report the projection between the two presented meshes in the sinusoidal
case. Note that the projection algorithm projects the field correctly. To analyze the
correct field projection, we report in Table 4.2 the L?-norm of the solution calculated over
Q) in all the tested cases. We also report the percentage error between the source and
the target fields. Note that the L?-norm of the target fields matches the L?-norm of the
tested source fields, and all the errors are smaller than 1%.

Therefore, the function implemented for the CFD code coupling works properly for the
field projection in all the simple cases tested. The implemented functions are designed to
project fields between different finite-element and/or finite-volume codes.

9

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

4.0e+00
I 3.5

—3
Projection
operator

Figure 4: Sinusoidal projected field F3(z,y) between T and ;.

Table 2: L2-norm of the source and target solution in all the tested cases. The percentage error is also
reported.

Flry) ulls ulls ew
Fi(z,y) 09856 09795 0.62%

(z,9)
Folz,y) 1.2437 1.2417 0.16%
Fs(z,y) 24497 2.4492 0.02%

4.3 Coupling FEMuS-OpenFOAM: natural convection in a squared cavity

We now briefly report the numerical results presented in [7, 13] to illustrate the nu-
merical coupling between the finite element platform FEMuS and the finite volume code
OpenFOAM. We consider the laminar Navier Stokes system of equations, with Boussinesq
approximation for the buoyancy term, composed by the continuity equation V - u = 0,
the momentum equation, given by

p (%—u +u- V’u,) = —VP+ V- [u(Vu+Vul)] + pgB(T — Tyey) (4)
t —_——

coupling term

and the temperature equation pc, (%—f +u- VT) = kAT. We consider the domain 2 =
{z €]0,L],y € [0, L]}, and we impose no-slip velocity boundary conditions on the bottom,
right and left walls, and tangent velocity condition on the top wall. For the temperature
field, we impose insulation boundary conditions on the top and the bottom walls, T =T,
Dirichlet boundary condition on the left wall, and T = T}, Dirichlet boundary condition
on the right wall.

The temperature field is calculated with OpenFOAM, then it is projected to FEMuS
for the buoyancy force term calculation. The results are presented in terms of non-
dimensional variables, namely 2™ = z/L, y* = y/L, ut = Z2uL, vt = Z2yL, and

10

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

0.8 [~

0.6 |~

0.4 &

Figure 5: Non-dimensional temperature T (left) and velocity v (right) profiles along y* = 0.5.

T+ = (T - Tc)/(Th - Tc)'

In Figure 5 we report the non-dimensional temperature 7" and velocity vt profiles
along the line y* = 0.5. Solid lines stand for OpenFOAM solutions,while dash-dotted lines
stand for the solution of the coupling between FEMuS and OpenFOAM. The different
used meshes can be identified by the line color: green for the 20 x 20 coarse mesh, blue
for the 40 x 40 mesh, and red for the 80 x 80 fine mesh. Dots represent reference values
taken from [14].

The presented results show that the coupling between the two codes works properly, and
the temperature field is successfully passed from OpenFOAM to FEMuS. The obtained
numerical fields match the standalone OpenFOAM results and the reference results.

5 CONCLUSIONS

In this work, the numerical platform FemusPlatform has been presented. The platform
allows the coupling of several different codes, ranging from one-dimensional system codes
to finite element and finite volume CFD codes, in a unified framework. The SALOME
platform has been used as a central tool to develop all the routines and classes for the
projection and integration of fields through the MED format. The platform can be used
for complex multiscale and multiphysics numerical simulations, combining different codes.

The presented preliminary results show that the implemented routines for the inte-
gration and projection of numerical fields work properly. Finally, a simple example of
numerical coupling between the finite element code FEMuS and the finite volume code
OpenFOAM has been reported, showing the proper functioning of the coupling process.

11

Barbi, Bornia, Cerroni, Cervone, Chierici, Chirco, Da Via, Giovacchini, Manservisi, Scardovelli

REFERENCES

[9]

[10]

FemusPlatform https://github.com/FEMuSPlatform

Kirk B. S., et al. libMesh: a C++ library for parallel adaptive mesh refine-
ment/coarsening simulations. Engineering with Computers 22.3-4 (2006): 237-254.

Balay, Satish, et al. PETSc users manual. (2019).

Bergeaud V. and Lefebvre V. SALOME. A software integration platform for multi-
physics, pre-processing and visualisation. (2010).

Chanaron B. Owerview of the NURESAFE European Project. Nuclear Engineering
and Design 321 (2017): 1-7.

OpenFOAM project. URL:https://www.openfoam.com/

Da Via R. Development of a computational platform for the simulation of low Prandtl
number turbulent flows. (2019).

Lohner R. Robust, vectorized search algorithms for interpolation on unstructured
grids. Journal of computational Physics 118.2 (1995): 380-387.

Silva, G.H.C., et al. Ezact and efficient interpolation using finite elements shape
functions. European Journal of Computational Mechanics 18.3-4 (2009): 307-331.

Farrell P. E. and Maddison J. R. Conservative interpolation between volume meshes by
local Galerkin projection. Computer Methods in Applied Mechanics and Engineering
200.1-4 (2011): 89-100.

Chierici A., et al. A multiscale numerical algorithm for heat transfer simulation be-
tween multidimensional CFD and monodimensional system codes. Journal of Physics:
Conference Series. Vol. 923. No. 1. IOP Publishing, 2017.

Cervone A., et al. Validation of a multiscale coupling algorithm by experimental tests
in tall-3D facility. 6th ECCM and 7th ECFD ECCOMAS 2018 conference, 2020.

Da Via R, et al. Natural convection in a squared cavity via a numerical coupling
between a FEM code and OpenFOAM. AIP Conference Proceedings. Vol. 1978. No.
1. AIP Publishing LLC, 2018.

Wan C., et al. A new benchmark quality solution for the buoyancy-driven cavity by
discrete singular convolution. Numerical Heat Transfer: Part B: Fundamentals 40.3
(2001): 199-228.

12

