			
Date Submitted: 04/24/08		SITE RECLASSIFICATION FORM	Control Number: 2008-003
	Operable Unit(s	s): <u>100-BC-1</u>	<u>Control 1 (dansos)</u> .
Originator: J. M. Capron	Waste Site Cod	e: <u>100-B-21:2</u>	
Phone: 372-9227	Type of Reclass	sification Action:	
	Closed Out RCRA Postcle	Interim Closed Out ⊠ No Action ☐ coure ☐ Rejected ☐ Consolidated ☐	
Out, No Action, RCRA Postclo	sure, Rejected, or nd Interim Closed	sted authorizing classification of the subject Consolidated. This form also authorizes by Out units. Final removal from the NPL of	packfill of the waste management unit,
Description of current waste site	e condition:		
of this site have been performed Record of Decision for the 100-100-KR-2, 100-IU-2, 100-IU-6, ROD), U.S. Environmental Prosite using available information	l in accordance w BC-1, 100-BC-2, and 200-CW-3 ctection Agency, R, (2) remediating	iate area of the DS-100BC-02 pipeline. Reith remedial action objectives and goals es 100 DR-1, 100-DR-2, 100-FR-1, 100-FR-0 perable Units, Hanford Site, Benton Countegion 10, Seattle, Washington. The select the site, (3) demonstrating through verifical assification to Interim Closed Out.	tablished by the Interim Action 2, 100-HR-1, 100-HR-2, 100-KR-1, nty, Washington (Remaining Sites ted action involved: (1) evaluating the
Basis for reclassification:			
Interim Closed Out. The currer goals established in the Remain concentrations do not preclude shallow-zone soils (i.e., surface protective of groundwater and that would require any institution	at site conditions at the conditions at the conditions any future uses (at the columbia Riversal controls. The columbia Riversal controls.	ory and verification sampling results support achieve the remedial action objectives and the results of verification sampling show the shounded by the rural-residential scenarious deep). The results also demonstrate that refer. The site does not have a deep zone or relative to the basis for reclassification is described in CC Discovery Pipeline DS-100BC-002 (attack)	the corresponding remedial action that residual contaminant (b) and allow for unrestricted use of sidual contaminant concentrations are residual contaminant concentrations detail in the <i>Remaining Sites</i>
Waste Site Controls: Engineered Controls: Yes If any of the Waste Site Control TSD Closure Letter, or other re	s are checked Ye	s specify control requirements including re	D&M requirements: Yes \(\subseteq \text{No } \text{No } \end{aligned} \) The effective of the Record of Decision,
R. F. Guercia DOE Federal Project Director (printed)	Signature	5/10/08 Date
N/A			
Ecology Project Manager (print	ed)	Signature	Date
I. C. Paralam		Amen Illand	Chlora
L. C. Buelow EPA Project Manager (printed)	<u> </u>	Signature	Date

WANFORD PROJECT

MAY 1 4 2008

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-B-21:2 SUBSITE (100-B/C DISCOVERY PIPELINE DS-100BC-002)

Attachment to Waste Site Reclassification Form 2008-003

April 2008

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-B-21:2 SUBSITE (100-B/C DISCOVERY PIPELINE DS-100BC-002)

EXECUTIVE SUMMARY

The 100-B-21 site includes miscellaneous pipelines uncovered during the removal of the 100-B/C Reactor effluent pipelines and soils (Shea 2004). These miscellaneous pipelines that did not belong to a previously established waste site were grouped together into the 100-B-21 waste site. The 100-B-21 waste site has been maintained as a collection of pipelines based on the type of pipeline and potential closeout pathways for each. At one time, the Waste Information Data System listed 21 pipelines in 100-B-21. One of these pipelines, originally called discovery pipeline DS-100BC-002, and later designated as waste site 100-B-21:2, is addressed in this report.

When discovered, the 100-B-21:2 pipeline was described as 2.5 cm (1-in.) diameter asbestos-wrapped metal pipe protruding 1.5 m (5 ft) horizontally from the ground at the upper embankment of the Columbia River. This pipeline was determined to extend due south under the 100-BC Perimeter Road to the edge of the 116-B-11 Retention Basin excavation boundary. The pipeline, the soil in contact with the pipe, and soil 0.3 m (1 ft) below the pipeline were removed and disposed of at the Environmental Restoration Disposal Facility (ERDF).

Ten verification soil samples and one field duplicate were collected from the excavated area and three soil samples were collected from the overburden stockpiles. These samples were analyzed for all the contaminants of concern/contaminants of potential concern listed in the *Work Instruction for Verification Sampling of the 100-B-21:2*, *Discovery Pipeline* (WCH, 2007).

A reclassification of Interim Closed Out for the 100-B-21:2 waste site is supported based on site histories, process knowledge, field observations, and laboratory data. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington* (Remaining Sites ROD) (EPA 1999). Residual concentrations at the 100-B-21:2 site support future unrestricted remaining sites land uses that can be represented (or bounded) by a rural-residential scenario and are considered protective of human health, groundwater, and the Columbia River. The site does not have a deep zone or residual contaminant concentrations that would require any institutional controls.

A summary of the cleanup evaluation for the soil results against the applicable criteria is presented in Table ES-1.

A comparison against ecological risk screening levels has been made for the site contaminants of potential concern and other constituents. Screening levels were not exceeded for the site

constituents, with the exception of boron, manganese, molybdenum, vanadium, and zinc. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of manganese, vanadium and zinc are below site background levels; boron and molybdenum concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron or molybdenum).

Table ES-1. Summary of Remedial Action Goals for the 100-B-21:2 Waste Site. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Direct Exposure Radionuclides	Attain 15 mrem/yr dose rate above background over 1,000 years.	Cesium-137 was detected in verification samples, at activities below the single-radionuclide 15-mrem/yr dose-equivalence lookup value	Yes
Direct Exposure Nonradionuclides	Attain individual COC/COPC RAGs.	All individual nonradionuclide COC and COPC concentrations are below the direct exposure RAGs.	Yes
	Attain hazard quotient of less than 1 for noncarcinogens.	The hazard quotients for individual nonradionuclide COCs/COPCs are less than 1.	
Risk Requirements	Attain cumulative hazard quotient of less than 1 for noncarcinogens.	The cumulative hazard quotient for all decision units (7.6×10^{-3}) is less than 1.	
Nonradionuclides	Attain excess cancer risk of <1 x 10 ⁻⁶ for individual carcinogens.	Excess cancer risk values for individual nonradionuclide COCs/COPCs are less than 1 x 10 ⁻⁶ .	Yes
	Attain a total excess cancer risk of <1 x 10 ⁻⁵ for carcinogens.	The total excess carcinogenic risk for all decision units (1.3 x 10 ⁻⁷) is less than 1 x 10 ⁻⁵ .	
	Attain single COC groundwater and river RAGs.	Only cesium-137 was detected in verification samples, at activities significantly below the single-radionuclide lookup values for protection of groundwater and the Columbia River.	
Groundwater/River	Attain National Primary Drinking Water Regulations: ^a 4 mrem/yr (beta/gamma) dose standard to target receptor/organ.	Only cesium-137 was detected in verification samples, at activities significantly below the single-radionuclide lookup values for protection of groundwater and the Columbia River.	Yes
Protection – Radionuclides	Meet drinking water standards for alpha emitters: the more stringent of 15 pCi/L MCL or 1/25 th of the derived concentration guide for DOE Order 5400.5. ^b	No alpha-emitting radionuclide COC/COPCs were detected in verification samples.	Tes
	Meet total uranium standard of 21.2 pCi/L. ^c	Uranium was not identified as a COC/COPC. No uranium isotopes were detected in gamma energy analysis of verification soil samples.	

Table ES-1. Summary of Remedial Action Goals for the 100-B-21:2 Waste Site. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Groundwater/River Protection – Nonradionuclides	Attain individual nonradionuclide groundwater and river cleanup requirements.	All individual nonradiounclide COC/COPC concentrations are below the soil RAGs for protection of groundwater and the Columbia River.	Yes

^a "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

= remedial action goal

COC = contaminant of concern COPC = contaminant of potential concern

RESRAD = RESidual RADioactivity (dose assessment model)

MCL = maximum contaminant level

^b Radiation Protection of the Public and Environment (DOE Order 5400.5).

^c Based on the isotopic distribution of uranium in the 100 Areas, the 30 μg/L MCL corresponds to 21.2 pCi/L. Concentration-toactivity calculations are documented in Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater (BHI 2001).

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-B-21:2 SUBSITE (100-B/C DISCOVERY PIPELINE DS-100BC-002)

STATEMENT OF PROTECTIVENESS

This report demonstrates that the 100-B-21:2 waste site meets the objectives for Interim Closed Out as established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites Rod) (EPA 1999). The results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use and are protective of groundwater and the Columbia River. This site does not have a deep zone; therefore, no deep zone institutional controls are required.*

A comparison against ecological risk screening levels has been made for the site contaminants of potential concern and other constituents. Screening levels were not exceeded for the site constituents, with the exception of boron, manganese, molybdenum, vanadium, and zinc. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of manganese, vanadium and zinc are below site background levels; boron and molybdenum concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron or molybdenum). A more complete quantitative ecological risk assessment will be presented in the baseline risk assessment for the river corridor portion of the Hanford Site and will be used to support the final closeout decision for this site.

GENERAL SITE INFORMATION AND BACKGROUND

Pipelines comprising the 100-B-21 waste site are located in the 100-BC-1 Operable Unit, in the 100-B/C Area of the Hanford Site. The miscellaneous 100-B-21 pipelines were uncovered during the remediation of the 100-B/C reactor effluent pipelines and soils. According to the Waste Information Data System (WIDS) General Summary Report, the 100-B-21 site at one time contained 21 separate pipeline segments, but several of the segments have been deferred to the 118:B-8:3 (105-B Reactor Miscellaneous Pipeline Segments) site, or determined to be part of other waste sites.

The 100-B Area facilities were generally in operation from 1944 to 1968 and the 100-C Area facilities were generally in operation from 1952 to 1969 (Sharpe et al. 2000). Therefore, it is assumed that the operational lifetime of the 100-B-21:2 pipeline lies within the time period of 1944 to 1969.

The 100-B-21:2 waste site consists of the discovery pipeline originally designated DS-100BC-002 (Figure 1). When discovered, this pipeline was described as 2.5 cm (1-in.) diameter asbestos-wrapped metal pipe protruding 1.5 m (5 ft) horizontally from the ground (Figure 2).

The northern end of the 100-B-21:2 pipeline, originally discovered at N145362, E565307, was located west of the 116-B-7 outfall structure and north of the 100-BC perimeter road. The pipeline was determined to extend due south, under the 100-BC perimeter road to the edge of 116-B-11 Retention Basin excavation boundary (Figure 1).

The history of the 100-B-21:2 pipeline, prior to its discovery in 2003, is unknown. The pipeline does not appear on the historical construction drawings. The location and orientation of the pipeline suggests that it was associated with the 116-B-11 Retention Basin and discharged to the river embankment. It is smaller than most drain lines, suggesting it was a pressurized water pipe, though the exact purpose remains unknown.

Field screening, sampling, and geophysical investigations of several pipelines within the 100-B-21 waste site were conducted in June through September 2003 for characterization purposes (Shea 2004, BHI 2003). Additionally, a geophysical investigation of the 100-B-21:2 pipeline was conducted in March 2007.

The July 2003 geophysical survey of the pipeline was performed with a pipe and cable locator. The pipeline was traced due south to the excavation associated with the remediation of 116-B-11 Retention Basin where the signal became indeterminate.

An additional geophysical survey in March 2007 of the 100-B-21:2 pipeline was performed using ground penetrating radar with results similar to those found in 2003 (Mitchell 2007). The geophysical interpretation identified the pipeline and noted low amplitude anomalies (thought to be large boulders) in the subsurface.

A sampling design to confirm the need for remediation (confirmatory sampling) was not conducted at this waste site. However, screening sample results indicated that the pipe wrap contained 10% to 20% asbestos and the contents of the pipe contained elevated levels of arsenic, cadmium, chromium, lead, mercury, selenium, silver, and a number of semivolatile organic compounds (SVOCs). Based on these results it was determined that removal of the 100-B-21:2 pipeline was needed.

G:\RS_SamplingFigures\100BC\DiscoveryPipelines_Fig1.dwg COLUMBIA RIVER DS-100BC-002 (100-B-21:2) 116-B-7 OUTFALL -116-B-11 RETENTION BASIN EXCAVATION BOUNDARY B AVE 100-B/C PERIMETER ROAD Legend SCALE 1:8000 Dirt Roads 80 80 160 320 meters Paved Roads Railroad Tracks Site Location Map 100-B-21:2 Site **Existing Building** 105-C Reactor Footprint

Figure 1. Waste Site 100-B-21:2 Location Map.

Figure 2. 100-B-21:2 Waste Site.

REMEDIAL ACTION SUMMARY

Remediation of the 100-B-21:2 waste site was performed from June 11 through June 18, 2007. The 100 B/C perimeter road was closed to allow remediation. Asphalt removed from the road surface was segregated into a stockpile on the adjacent road surface for disposal at the Environmental Restoration Disposal Facility (ERDF). Overburden soils were removed from above the pipeline and placed into two stockpiles on the west side of the excavation (WCH 2007a). The pipeline, soil in contact with the pipe, and soil 0.3 m (1 ft) below the pipeline were removed and disposed of at ERDF (Figures 3, 4, and 5).

Approximately 91 metric tons (100 US tons) of material was disposed of at ERDF. No anomalies were discovered during the remedial action. Refer to Figure 6 for the post-excavation topography.

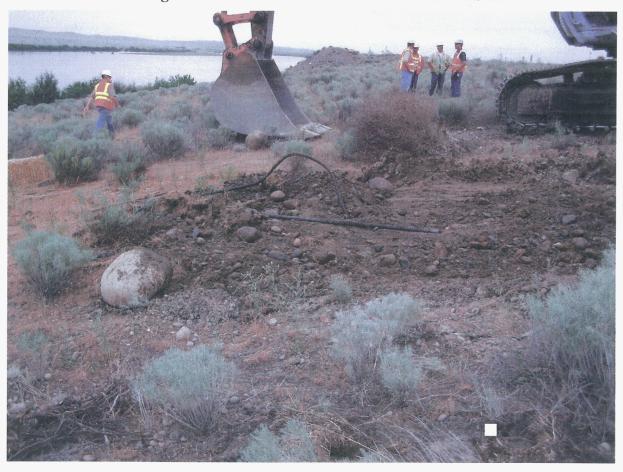


Figure 3. Remediation of the 100-B-21:2 Waste Site.

Figure 5. 100-B-21:2 Waste Site Excavation.

Figure 6. 100-B-21:2 Post-Excavation Topography.

VERIFICATION SAMPLING DESIGN

This section describes the basis for selection of an appropriate sample design and determination of the number of verification samples that were collected. The 100-B-21:2 waste site was divided into two decision units for the purpose of verification sampling. The first decision unit consisted of the excavation footprint of the pipeline, and the second decision unit consisted of the overburden and layback stockpiles. A summary of the samples collected and the analyses performed for the verification sampling event are presented in Table 1.

Verification Sampling – Excavation Footprint

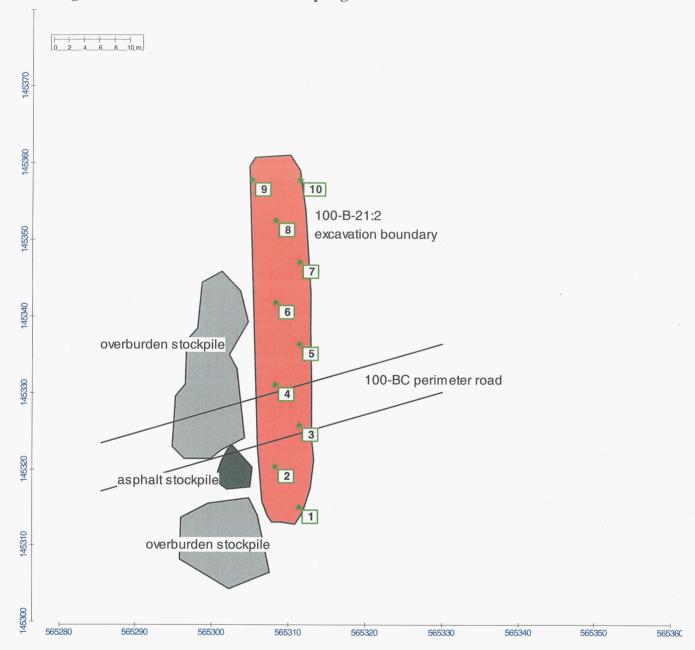
The decision rule for demonstrating compliance with the cleanup criteria requires comparison of the true population mean, as estimated by the 95% upper confidence limit on the sample mean, with the cleanup level. Therefore, a statistical sampling design was selected as the verification sampling approach for the excavation footprint because the distribution of potential residual soil contamination over this area was uncertain. The Washington State Department of Ecology publication, *Guidance on Sampling and Data Analysis Methods* (Ecology 1995), recommends that systematic sampling with sample locations distributed over the entire study area be used. This sampling approach is referred to by the Washington State Department of Ecology as "area-wide sampling."

The excavated areas were delineated in Visual Sample Plan (VSP) and used as the basis for location of a random-start systematic grid for verification soil sample collection within the pipeline excavation. Ten soil samples were collected on a triangular grid as shown in Figure 7.

Verification Sampling – Overburden Stockpile

Two overburden stockpiles were accumulated west of the pipeline excavation. Professional judgment was used to develop a sampling design for these materials to determine if they could be used as backfill. Three verification samples were collected from the stockpiles. Two samples were collected from the larger northern stockpile with the pile stratified into two approximate equal areas and one sample collected from each area. The third sample was collected from the smaller southern stockpile. Each sample consisted of 25 aliquots distributed over the surface of the area being sampled. Aliquot locations were selected at the sampler's discretion to ensure that the surface soil of the area being sampled was represented by the sample.

Additional details concerning the use of VSP to develop the statistical sampling design and the sampling design for the overburden stockpiles can be found in the *Work Instruction for Verification Sampling of the 100-B-21:2, Discovery Pipeline* (WCH 2007a).


Table 1. 100-B-21:2 Verification Sample Summary Table.

Sample Location	Sample Number	Coordinate Locations	Sample Analysis
Staked location #1	J15W21	N 145315.0 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA ^a
Staked location #2	J15W22	N 145320.4 E 565308.3	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #3	J15W23	N 145325.7 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Duplicate of #3	J15W34	N 145325.7 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #4	J15W24	N 145331.1 E 565308.3	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #5	J15W25	N 145336.5 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #6	J15W26	N 145341.8 E 565308.3	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #7	J15W27	N 145347.2 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #8	J15W28	N 145352.6 E 565308.3	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #9	J15W29	N 145357.9 E 565305.2	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
Staked location #10	J15W30	N 145357.9 E 565311.4	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
OB stockpile	J15W31	Southernmost stockpile	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
OB stockpile	J15W32	Northern portion of northern stockpile	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA
OB stockpile	J15W33	Southern portion of northern stockpile	GEA, gross alpha, gross beta, ICP metals, hexavalent Cr, SVOA

^a 100B/C Burial Grounds/Remaining Sites Sampling and Field Activities, Logbook EL-1173-14, pp 15-16, Washington Closure Hanford, Richland, Washington (WCH, 2007b).

ICP = inductively coupled plasma
GEA = gamma energy analysis
SVOA = semivolatile organic analysis

Figure 7. Statistical Verification Sampling Locations at the 100-B-21:2 Waste Site.

Contaminants of Concern (COCs) and Contaminants of Potential Concern (COPCs)

The Work Instruction for Verification Sampling of the 100-B-21:2, Discovery Pipeline DS-100BC-002 (WCH 2007a) provides the basis for the COCs and COPCs listed in Table 2 below.

Radiological	Metals	Semivolatile organic analytes
	Arsenic ^a	Acenaphthene ^b
	Barium ^b	Anthracene ^b
	Cadmium ^a	Bis(2-ethylhexyl)phthalate ^b
	Chromium ^a	Carbaxole ^b
Europium-154	Leada	Dibenzofuran ^a
,	Mercury ^a	Fluorene ^b
	Selenium ^b	Indeno(1,2,3-cd)pyrene ^a Phenanthrene ^b
	Silver ^a	Phenanthrene ^b
	Hexavalent chromium ^b	Pyrene ^b

Table 2. COCs/COPCs for 100-B-21:2 Verification Sampling.

Verification Sampling Results

Verification samples were analyzed using U.S. Environmental Protection Agency-approved analytical methods.

As noted earlier, the 100-B-21:2 waste site was divided into two decision units for verification sampling: (1) excavation footprint, and (2) overburden and layback stockpile.

- (1) The 95% one-sided upper confidence limits (UCLs) on the true population means for residual concentrations of COCs and COPCs were calculated for the remediation footprint as specified by the RDR/RAWP (DOE-RL 2005), with calculations provided in Appendix C. When a nonradionuclide COC or COPC was detected in fewer than 50% of the verification samples collected for the area, the maximum detected value was used for comparison to the remedial action goals (RAGS). If no detections for a given COC/COPC were reported in the data set, then no statistical evaluation or calculations were performed for that COC/COPC.
- (2) Evaluation of the verification data from the overburden stockpiles was performed by direct comparison of the maximum sample results for each COC/COPC against cleanup criteria for each area.

Comparisons of the statistical and maximum results for COCs and COPCs and the site RAGs for each area are summarized in Tables 3 and 4. Contaminants that were not detected by laboratory analysis are excluded from these tables.

^a Contaminant detected in pipe content samples at concentrations greater than cleanup criteria.

^b Contaminant detected in pipe content samples, but less than the cleanup criteria.

Table 3. Comparison of Statistical Containment Concentrations to Action Levels for the 100-B-21:2 Waste Site Statistical Verification Sampling Event.

		Generic S	Site Lookup Valu	es (pCi/g) ^a	Deside
COC/COPC	Statistical Result (pCi/g)	Shallow Zone Lookup Value	Groundwater Protection Lookup Value	River Protection Lookup Value	Does the Statistical Result Meet Lookup Values?
Cesium-137	0.048	6.2	1,465 ^b	1,465 ^b	Yes
		Remed	ial Action Goals	(mg/kg) ^a	
COC/COPC	Statistical Result ^{bc} (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Does the Statistical Result Meet RAGs?
Arsenic	5.9 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>Yes</td></bg)<>	20	20	20	Yes
Barium	89.4 (<bg)< td=""><td>5,600</td><td>132^c</td><td>224 ·</td><td>Yes</td></bg)<>	5,600	132 ^c	224 ·	Yes
Beryllium	0.19 (<bg)< td=""><td>10.4^d</td><td>1.51^c</td><td>1.51^c</td><td>Yes</td></bg)<>	10.4 ^d	1.51 ^c	1.51 ^c	Yes
Boron ^e	2.4	16,000	320	f	Yes
Cadmium	0.31 (<bg)< td=""><td>13.9^d</td><td>0.81^c</td><td>0.81^c</td><td>Yes</td></bg)<>	13.9 ^d	0.81 ^c	0.81 ^c	Yes
Chromium (total)	16.0 (<bg)< td=""><td>80,000</td><td>18.5^c</td><td>18.5^c</td><td>Yes</td></bg)<>	80,000	18.5 ^c	18.5 ^c	Yes
Chromium (hexavalent)	0.26	2.1	4.8 ^g	2	Yes
Cobalt	7.9 (<bg)< td=""><td>1,600</td><td>32</td><td>f</td><td>Yes</td></bg)<>	1,600	32	f	Yes
Copper	20.9 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0°</td><td>Yes</td></bg)<>	2,960	59.2	22.0°	Yes
Lead	6.3 (<bg)< td=""><td>353</td><td>10.2^c</td><td>10.2^c</td><td>Yes</td></bg)<>	353	10.2 ^c	10.2 ^c	Yes
Manganese	355 (<bg)< td=""><td>11,200</td><td>512^c</td><td>512^c</td><td>Yes</td></bg)<>	11,200	512 ^c	512 ^c	Yes
Molybdenum ^e	2.5	400	8	f	Yes
Nickel	16.4 (<bg)< td=""><td>1,600</td><td>19.1°</td><td>27.4</td><td>Yes</td></bg)<>	1,600	19.1°	27.4	Yes
Silver	0.39 (<bg)< td=""><td>400</td><td>8</td><td>0.73^c</td><td>Yes</td></bg)<>	400	8	0.73 ^c	Yes
Vanadium	51.0 (<bg)< td=""><td>560</td><td>85.1^c</td><td>f</td><td>Yes</td></bg)<>	560	85.1 ^c	f	Yes
Zinc	43.6 (<bg)< td=""><td>67.8</td><td>480</td><td>67.8^c</td><td>Yes</td></bg)<>	67.8	480	67.8 ^c	Yes
Di-n-butylphthalate	0.022	8,000	160	540	Yes
Pyrene	0.021	2,400	480	192	Yes

Lookup values and RAGs obtained from the Remedial Design Report/Remedial Action Work Plan for the 100 Area (DOE-RL 2005b) or calculated per WAC 173-340-720, WAC 173-340-730, and WAC 173-340-740, Method B, 1996, unless otherwise noted.

= not applicable BG

RAG WAC = remedial action goal

= Washington Administrative Code

COC

= background

= contaminant of concern

COPC

= contaminant of potential concern

Lookup value calculated per 100 Area Radionuclide and Nonradionuclide Lookup Values for the 1995 Interim Remedial Action Record of Decision (BHI 2004).

Where cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d], 1996).

Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], 1996) and an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).

No Hanford Site-specific or Washington State background value available.

No cleanup level is available from the Cleanup Levels and Risk Calculations (CLARC) Database (Ecology 2005), and no bioconcentration factor or ambient water quality criteria values are available to calculate cleanup levels (WAC 173-340-730(3)(a)(iii), 1996 [Method B for surface waters]).

Calculated cleanup level presented is more restrictive than that presented in the RDR/RAWP (DOE-RL 2005b). Cleanup level presented is per (WAC 173-340-720(3), 1996 [Method B for groundwater] and WAC 173-340-740(3)(a)(ii)(A), 1996 ["100 times rule"]), based on updated oral reference dose value (as provided in the EPA's Integrated Risk Information System available on the internet at http://www.epa.gov/iris).

Table 4. Comparison of Maximum Contaminant Concentrations to Action Levels for the 100-B-21:2 Overburden Stockpile Verification Sampling Event.

		Generic S	Site Lookup Valu	es (pCi/g) ^a	Does the
COC/COPC	Maximum Result (pCi/g)	Shallow Zone Lookup Value	Groundwater Protection Lookup Value	River Protection Lookup Value	Maximum Result Meet Lookup Values?
Cesium-137	0.048	6.2	1,465 ^b	1,465 ^b	Yes
		Remed	ial Action Goals	(mg/kg) ^a	
COC/COPC	Maximum Result ^b (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Does the Maximum Result Meet RAGs?
Arsenic	4.8 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>Yes</td></bg)<>	20	20	20	Yes
Barium	89.8 (<bg)< td=""><td>5,600</td><td>132^c</td><td>224</td><td>Yes</td></bg)<>	5,600	132 ^c	224	Yes
Beryllium	0.19 (<bg)< td=""><td>10.4^d</td><td>1.51^c</td><td>1.51^c</td><td>Yes</td></bg)<>	10.4 ^d	1.51 ^c	1.51 ^c	Yes
Cadmium	0.33(<bg)< td=""><td>13.9^d</td><td>0.81^c</td><td>0.81^c</td><td>Yes</td></bg)<>	13.9 ^d	0.81 ^c	0.81 ^c	Yes
Chromium (total)	15.8 (<bg)< td=""><td>80,000</td><td>18.5°</td><td>18.5°</td><td>Yes</td></bg)<>	80,000	18.5°	18.5°	Yes
Chromium (hexavalent)	0.26	2.1	4.8 ^e	2	Yes
Cobalt	8.6 (<bg)< td=""><td>1,600</td><td>32</td><td>f</td><td>Yes</td></bg)<>	1,600	32	f	Yes
Copper	20.6 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0°</td><td>Yes</td></bg)<>	2,960	59.2	22.0°	Yes
Lead	6.5 (<bg)< td=""><td>353</td><td>10.2°</td><td>10.2°</td><td>Yes</td></bg)<>	353	10.2°	10.2°	Yes
Manganese	363 (<bg)< td=""><td>11,200</td><td>512^c</td><td>512^c</td><td>Yes</td></bg)<>	11,200	512 ^c	512 ^c	Yes
Molybdenum ^g	0.83	400	8	f	Yes
Nickel	17.8 (<bg)< td=""><td>1,600</td><td>19.1^c</td><td>27.4</td><td>Yes</td></bg)<>	1,600	19.1 ^c	27.4	Yes
Vanadium	53.3 (<bg)< td=""><td>560</td><td>85.1°</td><td>f</td><td>Yes</td></bg)<>	560	85.1°	f	Yes
Zinc	48.7 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8°</td><td>Yes</td></bg)<>	24,000	480	67.8°	Yes

^a Lookup values and RAGs obtained from the Remedial Design Report/Remedial Action Work Plan for the 100 Area (DOE-RL 2005b) or calculated per WAC 173-340-720, WAC 173-340-730, and WAC 173-340-740, Method B, 1996, unless otherwise noted.

^g No Hanford Site-specific or Washington State background value available.

= not applicable RAG = remedial action goal
G = background WAC = Washington Administrative Code

BG = background COC = contaminant of concern

COPC = contaminant of potential concern

b Lookup value calculated per 100 Area Radionuclide and Nonradionuclide Lookup Values for the 1995 Interim Remedial Action Record of Decision (BHI 2004).

Where cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d], 1996).

^d Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], 1996) and an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).

^c Calculated cleanup level presented is more restrictive than that presented in the RDR/RAWP (DOE-RL 2005b). Cleanup level presented is per (WAC 173-340-720(3), 1996 [Method B for groundwater] and WAC 173-340-740(3)(a)(ii)(A), 1996 ["100 times rule"]), based on updated oral reference dose value (as provided in the EPA's Integrated Risk Information System available on the internet at http://www.epa.gov/iris).

No cleanup level is available from the *Cleanup Levels and Risk Calculations (CLARC) Database* (Ecology 2005), and no bioconcentration factor or ambient water quality criteria values are available to calculate cleanup levels (WAC 173-340-730(3)(a)(iii), 1996 [Method B for surface waters]).

DATA EVALUATION

This section demonstrates that remedial actions at waste site 100-B-21:2 have achieved the applicable remedial action objectives by meeting the RAGs and determining that groundwater and the river are protected.

Evaluation of the results listed in Tables 3 and 4 indicates none of the contaminants exceed the soil RAGs for the protection of groundwater and/or the Columbia River in either of the decision units.

When using a statistical sampling approach, a RAG requirement for nonradionuclides is the WAC 173-340-740(7)(e) three-part test. The application of the three-part test for the 100-B-21:2 remediation footprint is included in the statistical calculations (Appendix C). The three-part test is not applicable to the overburden and layback stockpile results because direct evaluation of nonstatistical sampling results was used as the compliance basis. All residual COC/COPC concentrations for the 100-B-21:2 remediation footprint pass the three-part test in comparison to the most stringent RAG value.

Assessment of the risk requirements for the 100-B-21:2 waste site is determined by calculation of the hazard quotient and excess carcinogenic risk values for nonradionuclides. These calculations are located in Appendix C. The requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10⁻⁶, and a cumulative excess carcinogenic risk of less than 1 x 10⁻⁵. The hazard quotient and excess cancer risk calculations demonstrate that the 100-B-21:2 waste site meets the requirements as identified in the RDR/RAWP (DOE-RL 2005).

DATA QUALITY ASSESSEMENT

A DQA is performed to compare the verification sampling approach and resulting analytical data with the sampling and data quality requirements specified by the project objectives and performance specifications. The DQA for waste site 100-B-21:2 waste site established that the data are of the right type, quality, and that the number of random samples specified in the work instruction have been correctly collected and analyzed. The evaluation verified that the sample design was sufficient for the purpose of clean site verification. The detailed DQA is presented in Appendix B.

SUMMARY FOR INTERIM CLOSE OUT

The 100-B-21:2 waste site has been remediated in accordance with the Remaining Sites ROD (EPA 1999) and the RDR/RAWP (DOE-RL 2005). The site was remediated by removing approximately 91 metric tons (100 US tons) of material for disposal at the Environmental Restoration Disposal Facility. Statistical and judgmental sampling to verify the completeness of remediation was performed, and analytical results for the two decision units (excavation footprint and overburden stockpiles) were shown to meet the cleanup objectives for direct exposure, groundwater protection, and river protection. Accordingly, an interim closure reclassification is

supported for the 100-B-21:2 waste site. The site does not have a deep zone or residual contaminant concentrations that would require any institutional controls.

REFERENCES

- BHI, 2001, Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater, 0100X-CA-V0038, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003, *Remaining Sites Field Sampling*, Logbook EL-1548-3, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2004, 100 Area Radionuclide and Nonradionuclide Lookup Values for the 1995 Interim Remedial Action Record of Decision, 0100X-CA-V0046, Rev. 0, Bechtel Hanford Inc., Richland, Washington.
- DOE-RL, 1996, *Hanford Site Background: Part 2, Soil Background for Radionuclides*, DOE/RL-96-12, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2001, *Hanford Site Background: Part 1, Soil Background for Nonradioactive Analytes*, DOE/RL-92-24, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005, Remedial Design Report/Remedial Action Work Plan for the 100 Area, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1995, *Guidance on Sampling and Data Analysis Methods*, Publication No. 94-49, Washington State Department of Ecology, Olympia, Washington.
- EPA, 1994, Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children, EPA/540/R-93/081, Publication No. 9285.7, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.
- Mitchell, T. H., 2007, *Geophysical Site Investigation Summary*, Geophysical Investigation No. 0578518, Washington Closure Hanford, Richland, Washington.

- Sharpe, J. J., J. K. Linville, G. Cruz, and J. M. Wimett, 2000, 100-B/C Reactor Area Underground Pipeline Historical Information Summary, BHI-01453, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- Shea, D. W., 2004, Summarization of Information on Pipes and Other Structures Entering the 100-B/C Effluent Pipeline Project's Excavations, CCN 112478, Interoffice Memorandum to L. R. Miller, dated April 12, 2004, Bechtel Hanford, Inc., Richland, Washington.
- WAC 173-340, 1996, "Model Toxics Control Act -- Cleanup," Washington Administrative Code.
- WCH, 2007, Work Instruction for Verification Sampling of the 100-B-21:2, Discovery Pipeline DS-100BC-002, Work Instruction No. 0100B-WI-G0026, Rev. 0, Washington Closure Hanford, Richland, Washington.

APPENDIX A VERIFICATION SAMPLING RESULTS

Table A-1. 100-B-21:2 Verification Sampling Results. (10 Pages)

C 1 1 1 - 1'	Sample	Sample	Amer	riciur	n-241	Ces	ium-	137	Co	balt-	-60	Euro	piun	1-152	Euro	piun	n-154	Euro	pium	n-155
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
1	J15W21	10/22/07	0.045	U	0.045	0.051	U	0.051	0.029	U	0.029	0.075	U	0.075	0.090	U	0.090	0.068	U	0.068
2	J15W22	10/22/07	0.209	U	0.209	0.093		0.038	0.031	U	0.031	0.093	U	0.093	0.104	U	0.104	0.108	U	0.108
3	J15W23	10/22/07	0.075	U	0.075	0.045	U	0.045	0.041	U	0.041	0.112	U	0.112	0.139	U	0.139	0.175	U	0.175
Duplicate of J15W23	J15W34	10/22/07	0.070	U	0.070	0.040	U	0.040	0.038	U	0.038	0.100	U	0.100	0.123	U	0.123	0.129	U	0.129
4	J15W24	10/22/07	0.270	U	0.270	0.042	U	0.042	0.035	U	0.035	0.106	U	0.106	0.116	U	0.116	0.138	U	0.138
5	J15W25	10/22/07	0.414	U	0.414	0.057	U	0.057	0.048	U	0.048	0.132	U	0.132	0.182	U	0.182	0.155	U	0.155
6	J15W26	10/22/07	0.062	U	0.062	0.045	U	0.045	0.043	U	0.043	0.123	U	0.123	0.152	U	0.152	0.122	U	0.122
7	J15W27	10/22/07	0.060	U	0.060	0.067		0.026	0.035	U	0.035	0.116	U	0.116	0.121	U	0.121	0.101	U	0.101
8	J15W28	10/22/07	0.216	U	0.216	0.045	U	0.045	0.028	U	0.028	0.086	U	0.086	0.086	U	0.086	0.111	U	0.111
9	J15W29	10/22/07	0.403	U	0.403	0.052	U	0.052	0.049	U	0.049	0.123	U	0.123	0.178	U	0.178	0.145	U	0.145
10	J15W30	10/22/07	0.054	U	0.054	0.042	U	0.042	0.045	U	0.045	0.109	U	0.109	0.145	U	0.145	0.112	U	0.112
OB stockpile (south)	J15W31	10/22/07	0.058	U	0.058	0.078		0.040	0.033	U	0.033	0.123	U	0.123	0.112	U	0.112	0.137	U	0.137
OB stockpile (north)	J15W32	10/22/07	0.210	U	0.210	0.050		0.031	0.031	U	0.031	0.089	U	0.089	0.092	U	0.092	0.108	U	0.108
OB stockpile (center)	J15W33	10/22/07	0.055	U	0.055	0.062	U	0.062	0.043	U	0.043	0.109	U	0.109	0.139	U	0.139	0.186	U	0.186

6 11 4	Sample	Sample	Gre	oss al	pha	Gr	oss b	eta	Pota	ssiur	n-40	Rac	lium-	-226	Rac	lium-	-228	Silv	er-10	8m
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
1	J15W21	10/22/07	14.4		6.53	13.5		5.95	14.6		0.269	0.553		0.049	0.743		0.114	0.021	U	0.021
2	J15W22	10/22/07	14.3		8.21	19.8		6.30	15.8		0.349	0.729		0.044	0.971		0.137	0.024	U	0.024
3	J15W23	10/22/07	23.0		10.7	23.7		5.52	16.3		0.490	1.31		0.095	1.78		0.165	0.030	U	0.030
Duplicate of J15W23	J15W34	10/22/07	21.4		11.3	24.6		8.68	16.4		0.314	1.50		0.076	1.71		0.168	0.028	U	0.028
4	J15W24	10/22/07	31.9		8.79	23.8		5.54	17.0		0.373	1.06		0.077	1.32		0.167	0.030	U	0.030
5	J15W25	10/22/07	36.9		5.84	23.2		8.97	15.3		0.602	0.896		0.113	1.25		0.229	0.039	U	0.039
6	J15W26	10/22/07	30.1		6.36	20.4		5.93	15.4		0.482	1.69		0.078	1.90		0.185	0.034	U	0.034
7	J15W27	10/22/07	19.3		5.74	21.5		8.95	14.7		0.361	0.909		0.068	1.15		0.137	0.024	U	0.024
8	J15W28	10/22/07	16.2		9.82	21.9		5.68	16.2		0.295	0.781		0.061	1.12		0.117	0.023	U	0.023
9	J15W29	10/22/07	12.1		8.96	17.1		5.65	16.7		0.525	0.798		0.087	0.980		0.195	0.039	U	0.039
10	J15W30	10/22/07	15.4		8.99	22.2		5.54	15.4		0.396	0.697		0.077	1.12		0.161	0.031	U	0.031
OB stockpile (south)	J15W31	10/22/07	17.4		9.39	21.2		8.99	15.9		0.329	0.799		0.055	1.18		0.155	0.023	U	0.023
OB stockpile (north)	J15W32	10/22/07	17.0		11.6	16.3		8.70	15.9		0.286	0.771		0.045	1.08		0.126	0.023	U	0.023
OB stockpile (center)	J15W33	10/22/07	9.66		8.28	15.9		5.60	16.6		0.388	0.828		0.074	1.24		0.171	0.031	U	0.031

Note: Data qualified with B, C, or J are considered acceptable values.

B = method blank contamination (organics)

MDA = minimum detectable activity

C = method blank contamination (inorganics)

PQL = practical quantitation limit

OB = overburden

Q = qualifier

J = estimate

U = undetected

Table A-1. 100-B-21:2 Verification Sampling Results. (10 Pages)

Cla Ition	Sample	Sample	Tho	rium	-228	Tho	rium	-232	Ura	nium	-235	Uranium-238			
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	
1	J15W21	10/22/07	0.688		0.036	0.743		0.114	0.115	U	0.115	3.07	U	3.07	
2	J15W22	10/22/07	0.964		0.044	0.971		0.137	0.156	U	0.156	3.74	U	3.74	
3	J15W23	10/22/07	1.74		0.056	1.78		0.165	0.188	U	0.188	4.91	U	4.91	
Duplicate of J15W23	J15W34	10/22/07	1.76		0.049	1.71		0.168	0.174	U	0.174	4.55	U	4.55	
4	J15W24	10/22/07	1.41		0.055	1.32		0.167	0.186	U	0.186	4.26	U	4.26	
5	J15W25	10/22/07	1.18		0.066	1.25		0.229	0.233	U	0.233	5.68	U	5.68	
6	J15W26	10/22/07	1.99		0.057	1.90		0.185	0.187	U	0.187	5.10	U	5.10	
7	J15W27	10/22/07	1.15		0.042	1.15		0.137	0.154	U	0.154	4.46	U	4.46	
8	J15W28	10/22/07	1.10		0.044	1.12		0.117	0.185	U	0.185	3.44	U	3.44	
9	J15W29	10/22/07	0.950		0.066	0.980		0.195	0.218	U	0.218	5.70	U	5.70	
10	J15W30	10/22/07	1.02		0.052	1.12		0.161	0.164	U	0.164	5.20	U	5.20	
OB stockpile (south)	J15W31	10/22/07	1.12		0.040	1.18		0.155	0.144	U	0.144	3.83	U	3.83	
OB stockpile (north)	J15W32	10/22/07	1.05		0.039	1.08		0.126	0.146	U	0.146	3.69	U	3.69	
OB stockpile (center)	J15W33	10/22/07	1.23		0.050	1.24		0.171	0.166	U	0.166	4.77	U	4.77	

C 1. T	Sample	Sample	Alı	ımin	um	Ar	itimo	ny	A	rsen	c	В	Bariu	m	Ве	rylliu	ım	J	Boror	1
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	4910		12.0	0.90	U	0.90	1.8		1.5	49.4		0.30	0.15	U	0.15	1.6		1.5
2	J15W22	10/22/07	7780		11.6	0.87	U	0.87	4.1		1.5	83.2		0.29	0.15	U	0.15	2.4		1.5
3	J15W23	10/22/07	9310		11.6	0.87	U	0.87	6.9		1.4	80.0		0.29	0.19		0.14	1.7		1.4
Duplicate of J15W23	J15W34	10/22/07	8180		11.6	0.87	U	0.87	5.7		1.4	74.6		0.29	0.14	U	0.14	1.4	U	1.4
4	J15W24	10/22/07	9590		11.8	0.89	U	0.89	5.7		1.5	86.1		0.30	0.18		0.15	2.2		1.5
5	J15W25	10/22/07	8390		11.9	0.89	U	0.89	5.0		1.5	107		0.30	0.15	U	0.15	2.7		1.5
6	J15W26	10/22/07	8880		11.6	0.87	U	0.87	7.9		1.5	85.9		0.29	0.15	U	0.15	2.5		1.5
7	J15W27	10/22/07	7760		10.6	0.80	U	0.80	4.0		1.3	75.7		0.27	0.13	U	0.13	2.1		1.3
8	J15W28	10/22/07	7450		10.8	0.81	U	0.81	4.3		1.4	75.2		0.27	0.14	U	0.14	2.1		1.4
9	J15W29	10/22/07	10000		11.9	0.89	U	0.89	5.6		1.5	91.1		0.30	0.15	U	0.15	2.6		1.5
10	J15W30	10/22/07	9150		11.5	0.87	U	0.87	5.1		1.4	86.5		0.29	0.14	U	0.14	2.4		1.4
OB stockpile (south)	J15W31	10/22/07	6550		11.3	0.85	U	0.85	3.5		1.4	65.0		0.28	0.14	U	0.14	1.4	U	1.4
OB stockpile (north)	J15W32	10/22/07	9390		11.0	0.82	U	0.82	4.6		1.4	89.8		0.27	0.14	U	0.14	2.5		1.4
OB stockpile (center)	J15W33	10/22/07	8300		11.9	0.89	U	0.89	4.8		1.5	86.3		0.30	0.15	U	0.15	1.7		1.5
Equipment blank	J15W35	10/22/07	51.0		3.6	0.27	Ü	0.27	0.45	U	0.45	1.4		0.09	0.04	U	0.04	0.54		0.45

Table A-1. 100-B-21:2 Verification Sampling Results. (10 Pages)

						·					-0	· · · · · · · · · · · · · · · · · · ·			·			T		
Sample Location	Sample	Sample	Ca	ıdmiı	ım	С	alciu	m	Ch	romi	um	(Cobal	t	C	Coppe	r	Hexavale	ent Cl	ıromium
1	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	0.30	U	0.30	4880	С	12.0	6.9		0.6	5.3		0.60	17.4	С	0.60	0.20	U	0.20
2	J15W22	10/22/07	0.29	U	0.29	6130	С	11.6	10.8		0.58	7.9		0.58	20.6	C	0.58	0.21	U	0.21
3	J15W23	10/22/07	0.29	U	0.29	6340	С	11.6	19.7		0.58	8.0		0.58	21.1	С	0.58	0.23		0.21
Duplicate of J15W23	J15W34	10/22/07	0.31		0.29	5930	С	11.6	16.1		0.58	7.4		0.58	18.9	C	0.58	0.21	U	0.21
4	J15W24	10/22/07	0.30	U	0.30	8080	C	11.8	16.3		0.59	7.6		0.59	21.2	С	0.59	0.27		0.20
5	J15W25	10/22/07	0.30	U	0.30	6140	С	11.9	12.0		0.60	7.3		0.60	18.5	С	0.60	0.32		0.20
6	J15W26	10/22/07	0.29	U	0.29	10000	С	11.6	18.3		0.58	8.2		0.58	24.0	С	0.58	0.23		0.20
7	J15W27	10/22/07	0.27	U	0.27	4410	С	10.6	11.6		0.53	7.4		0.53	17.3	C	0.53	0.31		0.20
8	J15W28	10/22/07	0.27	U	0.27	4920	С	10.8	10.8		0.54	7.3		0.54	16.4	C	0.54	0.29		0.20
9	J15W29	10/22/07	0.30	U	0.30	5780	С	11.9	14.4		0.59	8.3		0.59	19.9	C	0.59	0.22		0.20
10	J15W30	10/22/07	0.29	U	0.29	5440	С	11.5	12.5		0.58	7.9		0.58	19.8	С	0.58	0.20	U	0.20
OB stockpile (south)	J15W31	10/22/07	0.28	U	0.28	4620	С	11.3	10.4		0.56	6.5		0.56	15.3	С	0.56	0.20	U	0.20
OB stockpile (north)	J15W32	10/22/07	0.33		0.27	5970	С	11.0	15.8		0.55	8.6		0.55	20.6	С	0.55	0.20	U	0.20
OB stockpile (center)	J15W33	10/22/07	0.31		0.30	10900	C	11.9	13.5		0.59	6.6		0.59	18.4	С	0.59	0.26		0.20
Equipment blank	J15W35	10/22/07	0.09	U	0.09	28.9	UJ	3.6	0.18	U	0.18	0.18	U	0.18	0.26	UJ	0.18	<u> </u>		

	Sample	Sample		Iron			Lead		Ma	gnesi	ium	Ma	ngan	ese	M	ercu	гу	Mol	ybder	ium
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	14100	С	13.4	3.0		0.90	3490	С	7.5	250	С	0.12	0.02	U	0.02	0.90	U	0.90
2	J15W22	10/22/07	23800	С	13.1	6.8		0.87	4840	С	7.3	359	С	0.12	0.02	U	0.02	0.87	U	0.87
3	J15W23	10/22/07	23000	С	13.0	7.2		0.87	5080	С	7.2	371	С	0.12	0.01	U	0.01	0.87		0.87
Duplicate of J15W23	J15W34	10/22/07	21400	С	13.0	6.3		0.87	4870	С	7.2	339	С	0.12	0.02	U	0.02	1.0		0.87
4	J15W24	10/22/07	22400	С	13.3	6.5		0.89	5160	С	7.4	353	С	0.12	0.02	U	0.02	0.89	U	0.89
. 5	J15W25	10/22/07	24000	С	13.4	5.6		0.89	4070	С	7.4	346	С	0.12	0.02	U	0.02	2.5		0.89
6	J15W26	10/22/07	23200	С	13.1	5.9		0.87	4800	С	7.3	366	С	0.12	0.01	U	0.01	0.97		0.87
7	J15W27	10/22/07	21000	С	11.9	5.5		0.80	4200	С	6.6	324	С	0.11	0.01	U	0.01	0.80	U	0.80
8	J15W28	10/22/07	20400	С	12.2	6.0		0.81	4280	С	6.8	331	С	0.11	0.01	U	0.01	0.81	U	0.81
9	J15W29	10/22/07	24100	С	13.4	5.8		0.89	5800	С	7.4	352	С	0.12	0.01	U	0.01	0.89	U	0.89
10	J15W30	10/22/07	22600	С	13.0	5.9		0.87	5020	С	7.2	338	С	0.12	0.02	U	0.02	0.87	U	0.87
OB stockpile (south)	J15W31	10/22/07	18500	С	12.7	4.5		0.85	3660	С	7.1	297	С	0.11	0.02	U	0.02	0.85	U	0.85
OB stockpile (north)	J15W32	10/22/07	24800	С	12.4	6.3		0.82	5450	С	6.9	363	С	0.11	0.01	U	0.01	0.83		0.82
OB stockpile (center)	J15W33	10/22/07	20600	С	13.3	6.5		0.89	4930	С	7.4	.287	С	0.12	0.01	U	0.01	0.89	U	0.89
Equipment blank	J15W35	10/22/07	94.7	С	4.0	0.35		0.27	7.3	UJ	2.2	3.3	С	0.04	0.01	U	0.01	0.27	U	0.27

Table A-1.	100-B-21:2	Verification	Sampling R	esults.	(10 Pages)
------------	------------	--------------	------------	---------	------------

	Sample	Sample	1	Nicke	<u>.</u>	Po	tassii	ım	Se	leniu	m	9	Silico	n	1	Silver	•	S	odiur	n
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	8.7		0.60	704		12.0	1.8	U	1.8	2080		12.0	0.30	U	0.30	189	С	6.0
2	J15W22	10/22/07	13.6		0.58	1430		11.6	1.7	U	1.7	2510		11.6	0.29	U	0.29	281	С	5.8
3	J15W23	10/22/07	17.6		0.58	1280		11.6	1.7	U	1.7	1280		11.6	0.39		0.29	236	С	5.8
Duplicate of J15W23	J15W34	10/22/07	16.5		0.58	1170		11.6	1.7	U	1.7	1900		11.6	0.29	U	0.29	228	С	5.8
4	J15W24	10/22/07	15.8		0.59	1370		11.8	1.8	U	1.8	2090		11.8	0.30	U	0.30	308	С	5.9
5	J15W25	10/22/07	12.2		0.60	1480		11.9	1.8	U	1.8	1630		11.9	0.30	U	0.30	278	С	6.0
6	J15W26	10/22/07	18.3		0.58	1160		11.6	1.7	U	1.7	3030		11.6	0.29	U	0.29	434	C	5.8
7	J15W27	10/22/07	11.7		0.53	1490		10.6	1.6	U	1.6	1670		10.6	0.27	U	0.27	225	C	5.3
8	J15W28	10/22/07	11.2		0.54	1510		10.8	1.6	U	1.6	2690		10.8	0.27	U	0.27	232	С	5.4
9	J15W29	10/22/07	18.2		0.59	1800		11.9	1.8	U	1.8	1070		11.9	0.30	U	0.30	287	С	5.9
10	J15W30	10/22/07	13.2		0.58	2020		11.5	1.7	U	1.7	2210		11.5	0.29	U	0.29	212	С	5.8
OB stockpile (south)	J15W31	10/22/07	11.3		0.56	1010		11.3	1.7	U	1.7	2670		11.3	0.28	U	0.28	233	С	5.6
OB stockpile (north)	J15W32	10/22/07	17.8		0.55	1680		11.0	1.6	U	1.6	1120		11.0	0.27	U	0.27	247	С	5.5
OB stockpile (center)	J15W33	10/22/07	12.8		0.59	1250		11.9	1.8	U	1.8	2390		11.9	0.30	U	0.30	248	С	5.9
Equipment blank	J15W35	10/22/07	0.18	U	0.18	24.2		3.6	0.54	U	0.54	76.3		3.6	0.09	U	0.09	11.6	UJ	1.8

G 1.7	Sample	Sample	Va	nadi	um		Zinc	
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	32.7		0.42	29.8	С	1.8
2	J15W22	10/22/07	44.5		0.41	46.0	С	1.7
3	J15W23	10/22/07	48.6		0.41	43.0	С	1.7
Duplicate of J15W23	J15W34	10/22/07	43.3		0.40	43.9	С	1.7
4	J15W24	10/22/07	49.5		0.41	42.9	С	1.8
5	J15W25	10/22/07	59.4		0.42	41.9	С	1.8
6	J15W26	10/22/07	52.7		0.41	38.6	С	1.7
7	J15W27	10/22/07	43.9		0.37	41.1	С	1.6
8	J15W28	10/22/07	38.0		0.38	41.9	С	1.6
9	J15W29	10/22/07	49.9		0.42	45.0	C	1.8
10	J15W30	10/22/07	42.2		0.40	42.0	С	1.7
OB stockpile (south)	J15W31	10/22/07	35.0		0.40	34.4	С	1.7
OB stockpile (north)	J15W32	10/22/07	53.3		0.38	48.7	С	1.6
OB stockpile (center)	J15W33	10/22/07	41.0		0.41	42.3	С	1.8
Equipment blank	J15W35	10/22/07	0.13	U	0.13	2.1	UJ	0.54

Table A	<u>4-1. 100</u>									·		
	I .	15W2			15W2			15W2			15W3	1
Constituents	I .	ocatio			catio		1	ocation		_		J15W23
Constituents	Sample	Date					Sample			Sample		
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
			emivolati							,		
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350
1,2-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350
1,3-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350
1,4-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350
2,4,5-Trichlorophenol	850	U	850	860	U	860	870	U	870	870	U	870
2,4,6-Trichlorophenol	340	U	340	340	U	340	350	U	350	350	U	350
2,4-Dichlorophenol	340	U	340	340	U	340	350	U	350	350	U	350
2,4-Dimethylphenol	340	U	340	340	U	340	350	U	350	350	U	350
2,4-Dinitrophenol	850	U	850	860	U	860	870	U	870	870	U	870
2,4-Dinitrotoluene	340	U	340	340	U	340	350	U	350	350	U	350
2,6-Dinitrotoluene	340	U	340	340	U	340	350	U	350	350	U	350
2-Chloronaphthalene	340	U	340	340	U	340	350	U	350	350	U	350
2-Chlorophenol	340	U	340	340	U	340	350	U	350	350	U	350
2-Methylnaphthalene	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	350	U	350	350	. U	350
2-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870
2-Nitrophenol	340	U	340	340	U	340	350	U	350	350	U	350
3,3'-Dichlorobenzidine	340	U	340	340	U	340	350	U	350	350	U	350
3-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870
4,6-Dinitro-2-methylphenol	850	U	850	860	U	860	870	U	870	870	U	870
4-Bromophenyl-phenylether	340	U	340	340	U	340	350	U	350	350	U	350
4-Chloro-3-methylphenol	340	U	340	340	U	340	350	U	350	350	U	350
4-Chloroaniline	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350
4-Chlorophenyl-phenylether	340	U	340	340	U	340	350	U	350	350	U	350
4-Methylphenol (p-cresol)	340	U	340	340	U	340	350	U	350	350	U	350
4-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870
4-Nitrophenol	850	U	850	860	U	860	870	U	870	870	U	870
Acenaphthene	340	U	340	340	U	340	350	U	350	350	U	350
Acenaphthylene	340	U	340	340	U	340	350	U	350	350	U	350
Anthracene	340	U	340	340	U	340	350	U	350	350	U	350
Benzo(a)anthracene	340	U	340	340	U	340	350	U	350	350	U	350
Benzo(a)pyrene	340	U	340	340	U	340	350	U	350	350	U	350
Benzo(b)fluoranthene	340	U	340	340	U	340	350	U	350	350	U	350
Benzo(g,h,i)perylene	340	U	340	340	U	340	350	U	350	350	U	350
Benzo(k)fluoranthene	340	U	340	340	U	340	350	U	350	350	U	350
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	350	U	350	350	U	350
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	350	U	350	350	U	350
bis(2-Chloroethyl)ether	340	U	340	340	U	340	350	U	350	350	U	350
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	350	660	U	350
Butylbenzylphthalate	340	U	340	340	U	340	350	U	350	350	U	350
Carbazole	340	U	340	340	U	340	350	U	350	350	U	350
Chrysene	340	U	340	340	U	340	350	U	350	350	U	350
Di-n-butylphthalate	22	J	340	340	U	340	350	U	350	350	U	350
Di-n-octylphthalate	340	U	340	340	U	340	350	U	350	350	U	350
Dibenz(a,h)anthracene	340	U	340	340	U	340	350	U	350	350	U	350
Dibenzofuran	340	U	340	340	U	340	350	U	350	350	U	350
Diethylphthalate	340	U	340	340	U	340	350	U	350	350	U	350

	J. 100	15W2			15W2			15W2		J	15W3	4
Constituents	Lo	catio	1 1	. Lo	catio	n 2	Lo	catio	1 3	Duplica	ate of ,	115W23
Constituents	Sample	Date	10/22/07	Sample	Date:	10/22/07	Sample	Date	10/22/07	Sample	Date	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	Se	mivol	atile Org	anic Cor	npoun	ds (conti	nued)					
Dimethylphthalate	340	U	340	340	U	340	350	U	350	350	U	350
Fluoranthene	340	U	340	340	U	340	350	U	350	350	U	350
Fluorene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorobutadiene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorocyclopentadiene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachloroethane	340	U	340	340	U	340	350	U	350	350	U	350
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	350	U	350	350	U	350
Isophorone	340	U	340	340	U	340	350	U	350	350	U	350
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	350	U	350	350	U	350
N-Nitrosodiphenylamine	340	U	340	340	U	340	350	U	350	. 350	U	350
Naphthalene	340	U	340	340	U	340	350	U	350	350	U	350
Nitrobenzene	340	U	340	340	U	340	350	U	350	350	U	350
Pentachlorophenol	850	U	850	860	U	860	870	U	870	870	. U	870 .
Phenanthrene	340	U	340	340	U	340	350	U	350	350	U	350
Phenol	340	U	340	340	U	340	350	U	350	350	U	350
Pyrene	340	U	340	340	U	340	350	U	350	21	J	350

	J	15W2	4	J	15W2	5	J	15W2	6	J	15W2	7
Constituents	Lo	catior	ı 4	Lo	cation	ı 5	Lo	cation	ı 6	L	ocatio	ı 7
Constituents	Sample	Date 1	10/22/07	Sample	Date:	10/22/07	Sample	Date 1	10/22/07	Sample	Date:	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
		Se	mivolati	le Organ	ic Cor	npounds						
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
1,2-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,3-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,4-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
2,4,5-Trichlorophenol	860	U	860	850	U	850	850	U	850	850	U	850
2,4,6-Trichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dimethylphenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dinitrophenol	860	U	860	850	U	850	850	U	850	850	U	850
2,4-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2,6-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chloronaphthalene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2-Methylnaphthalene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	340	U	340	340	U	340
2-Nitroaniline	860	U	860	850	U	850	850	U	850	850	U	850
2-Nitrophenol	340	U	340	340	U	340	340	U	340	340	U	340
3,3'-Dichlorobenzidine	340	U	340	340	U	340	340	U	340	340	U	340
3-Nitroaniline	860	U	860	850	U	850	850	U	850	850	U	850
4,6-Dinitro-2-methylphenol	860	U	860	850	U	850	850	U	850	850	U	850
4-Bromophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340
4-Chloro-3-methylphenol	340	U	340	340	U	340	340	U	340	340	U	340
4-Chloroaniline	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
4-Chlorophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340

1 able F	<u> </u>									·	1	
	1	15W2		_	15W2		-	15W2		-	15W2	1
Constituents	1	cation		l .	cation			cation			ocation	i
				Sample								10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
				ganic Cor								2.10
4-Methylphenol (p-cresol)	340	U	340	340	U	340	340	U	340	340	U	340
4-Nitroaniline	860	U	860	850	U	850	850	U	850	850	U	850
4-Nitrophenol	860	U	860	850	U	850	850	U	850	850	U	850
Acenaphthene	340	U	340	340	U	340	340	U	340	340	U	340
Acenaphthylene	340	U	340	340	U	340	340	U	340	340	U ·	340
Anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)pyrene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(b)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(g,h,i)perylene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(k)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	340	660	U	340
Butylbenzylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Carbazole	340	U	340	340	U	340	340	U	340	340	U	340
Chrysene	340	U	340	340	U	340	340	U	340	340	U	340
Di-n-butylphthalate	17	J	340	340	U	340	340	U	340	340	U	340
Di-n-octylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Dibenz(a,h)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Dibenzofuran	340	U	340	340	U	340	340	U	340	340	U	340
Diethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Dimethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
Fluorene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobutadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorocyclopentadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachloroethane	340	U	340	340	U	340	340	U	340	340	U	340
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	340	U	340	340	U	340
Isophorone	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitrosodiphenylamine	340	U	340	340	U	340	340	U	340	340	U	340
Naphthalene	340	U	340	340	U	340	340	U	340	340	U	340
Nitrobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Pentachlorophenol	860	U	860	850	U	850	850	U	850	850	U	850
Phenanthrene	340	U	340	340	U	3,40	340	U	340	340	U	340
Phenol	340	U	340	340	U	340	340	U	340	340	U	340
Pyrene	340	U	340	340	U	340	340	U	340	340	U	340

Table A							Results.					
	J	15W2	28	J	115W2	.9	J	15W3	80	J	15W3	1
G4*44	Lo	ocatio	n 8	Lo	ocatio	n 9	Lo	cation	10	OB sto	ckpile	(south)
Constituents	Sample	Date	10/22/07	Sample	Date	10/22/07	Sample	Date	10/22/07	Sample	Date	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	1 1 2 2	S	emivolati	le Organ	ic Cor				·			
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
1,2-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,3-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,4-Dichlorobenzene	340	Ū	340	340	U	340	340	U	340	340	Ū	340
2,4,5-Trichlorophenol	850	Ū	850	850	Ū	850	850	U	850	850	Ü	850
2,4,6-Trichlorophenol	340	U	340	340	Ū	340	340	Ū	340	340	U	340
2,4-Dichlorophenol	340	Ū	340	340	Ū	340	340	Ü	340	340	U	340
2,4-Dimethylphenol	340	U	340	340	Ū	340	340	U	340	340	Ū	340
2,4-Dinitrophenol	850	U	850	850	Ū	850	850	Ü	850	850	U	850
2,4-Dinitrotoluene	340	U	340	340	Ū	340	340	U	340	340	Ū	340
2,6-Dinitrotoluene	340	U	340	340	Ū	340	340	U	340	340	U	340
2-Chloronaphthalene	340	U	340	340	Ū	340	340	U	340	340	U	340
2-Chlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2-Methylnaphthalene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	340	U	340	340	U	340
2-Nitroaniline	850	Ü	850	850	Ū	850	850	Ü	850	850	Ū	850
2-Nitrophenol	340	U	340	340	U	340	340	Ü	340	340	Ü	340
3,3'-Dichlorobenzidine	340	U	340	340	Ū	340	340	Ū	340	340	U	340
3-Nitroaniline	850	U	850	850	Ū	850	850	Ü	850	850	U	850
4,6-Dinitro-2-methylphenol	850	U	850	850	U	850	850	U	850	850	U	850
4-Bromophenyl-phenylether	340	Ū	340	340	Ū	340	340	Ū	340	340	Ū	340
4-Chloro-3-methylphenol	340	U	340	340	Ū	340	340	Ü	340	340	U	340
4-Chloroaniline	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
4-Chlorophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340
4-Methylphenol (p-cresol)	340	U	340	340	U	340	340	U	340	340	U	340
4-Nitroaniline	850	U	850	850	U	850	850	U	850	850	U	850
4-Nitrophenol	850	U	850	850	U	850	850	U	850	850	U	850
Acenaphthene	340	U	340	340	U	340	340	U	340	340	U	340
Acenaphthylene	340	U	340	340	U	340	340	U	340	340	U	340
Anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)pyrene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(b)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(g,h,i)perylene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(k)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	340	660	U	340
Butylbenzylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Carbazole	340	U	340	340	U	340	340	U	340	340	U	340
Chrysene	340	U	340	340	U	340	340	U	340	340	U	340
Di-n-butylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Di-n-octylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Dibenz(a,h)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Dibenzofuran	340	U	340	340	U	340	340	U	340	340	U	340
Diethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340

T tilloc !	<u>1. 100</u>	15W2			15W2			15W3			15W3	1
~	1 "	cation		ľ	cation		ľ	cation		_		(south)
Constituents	Sample	Date :	10/22/07	Sample	Date 1	10/22/07	Sample	Date :	10/22/07	Sample	Date	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	Se	emivol	atile Org	ganic Cor	npoun	ds (conti	inued)					
Dimethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Fluoranthene	340	U	340	340	U	340	340	Ų	340	340	U	340
Fluorene	340	U	340	340	U	340	340	U	340	340	U,	340
Hexachlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobutadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorocyclopentadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachloroethane	340	U	340	340	U	340	340	U	340	340	U	340
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	340	U	340	340	U	340
Isophorone	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitrosodiphenylamine	340	U	340	340	U	340	340	U	340	340	U	340
Naphthalene	340	U	340	340	U	340	340	U	340	340	U	340
Nitrobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Pentachlorophenol	850	U	850	850	U	850	850	U	850	850	U	850
Phenanthrene	340	U	340	340	U	340	340	U	340	340	U	340
Phenol	340	U	340	340	U	340	340	U	340	340	U	340
Pyrene	340	U	340	340	U	340	340	U	340	340	U	340

	J	15W3	2	J	15W3	3	J	15W3	5
Comptituents	OB sto	ckpile	(north)	OB stoc	kpile	(center)	Equip	ment	blank
Constituents	Sample	Date	10/22/07	Sample	Date :	10/22/07	Sample	Date :	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	Semivol	atile ()rganic (Compoun	ds				
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	330	UJ	330
1,2-Dichlorobenzene	340	ט	340	340	U	340	330	U	330
1,3-Dichlorobenzene	340	U	340	340	U	340	330	U	330
1,4-Dichlorobenzene	340	U	340	340	U	340	330	U	330
2,4,5-Trichlorophenol	850	U	850	850	U	850	830	UJ	830
2,4,6-Trichlorophenol	340	U	340	340	U	340	330	UJ	330
2,4-Dichlorophenol	340	U	340	340	U	340	330	UJ	330
2,4-Dimethylphenol	340	U	340	340	U	340	330	U	330
2,4-Dinitrophenol	850	U	850	850	U	850	830	U	830
2,4-Dinitrotoluene	340	U	340	340	U	340	330	U	330
2,6-Dinitrotoluene	340	U	340	340	U	340	330	U	330
2-Chloronaphthalene	340	U	340	340	U	340	330	U	330
2-Chlorophenol	340	U	340	340	U	340	330	U	330
2-Methylnaphthalene	340	UJ	340	340	UJ	340	330	UJ	330
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	330	U	330
2-Nitroaniline	850	U	850	850	U	850	830	U	830
2-Nitrophenol	340	U	340	340	U	340	330	U	330
3,3'-Dichlorobenzidine	340	U	340	340	U	340	330	U	330
3-Nitroaniline	850	U	850	850	U	850	830	U	830
4,6-Dinitro-2-methylphenol	850	U	850	850	U	850	830	U	830
4-Bromophenyl-phenylether	340	U	340	340	U	340	330	UJ	330
4-Chloro-3-methylphenol	340	U	340	340	U	340	330	U	330
4-Chloroaniline	340	UJ	340	340	UJ	340	330	UJ	330
4-Chlorophenyl-phenylether	340	U	340	340	U	340	330	UJ	330

1 able A-1. 100-B-		15W3			15W3			15W3	5
			(north)	OB stoc			Equip		
Constituents		_	10/22/07		-		Sample		
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
Semi	volatile C						<u> </u>		1 42
4-Methylphenol (p-cresol)	340	U	340	340	U	340	330	U	330
4-Nitroaniline	850	U	850	850	Ū	850	830	Ü	830
4-Nitrophenol	850	U	850	850	U	850	830	Ü	830
Acenaphthene	340	U	340	340	U	340	330	U	330
Acenaphthylene	340	U	340	340	U	340	330	U	330
Anthracene	340	U	340	340	U	340	330	U ·	330
Benzo(a)anthracene	340	U	340	340	U	340	330	U	330
Benzo(a)pyrene	340	U	340	340	U	340	330	U	330
Benzo(b)fluoranthene	340	U	340	340	U	340	330	U	330
Benzo(g,h,i)perylene	340	U	340	340	U	340	330	U	330
Benzo(k)fluoranthene	340	U	340	340	U	340	330	U	330
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	330	U	330
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	330	UJ	330
bis(2-Chloroethyl)ether	340	U	340	340	U	340	330	UJ	330
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	330
Butylbenzylphthalate	340	U	340	340	U	340	330	U	330
Carbazole	340	U	340	340	U	340	330	U	330
Chrysene	340	U	340	340	U	340	330	U	330
Di-n-butylphthalate	340	U	340	340	U	340	32	J	330
Di-n-octylphthalate	340	U	340	340	U	340	330	U	330
Dibenz(a,h)anthracene	340	U	340	340	U	340	330	U	330
Dibenzofuran	340	U	340	340	U	340	330	U	330
Diethylphthalate	340	U	340	340	U	340	330	U	330
Dimethylphthalate	340	U	340	340	U	340	330	U	330
Fluoranthene	340	U	340	340	U	340	330	U	330
Fluorene	340	U	340	340	U	340	330	U	330
Hexachlorobenzene	340	U	340	340	U	340	330	U	330
Hexachlorobutadiene	340	U	340	340	U	340	330	U	330
Hexachlorocyclopentadiene	340	U	340	340	U	340	330	U	330
Hexachloroethane	340	U	340	340	U	340	330	U	330
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	330	U	330
Isophorone	340	U	340	340	U	340	330	U	330
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	330	U	330
N-Nitrosodiphenylamine	340	U	340	340	U	340	330	U	330
Naphthalene	340	U	340	340	U	340	330	U	330
Nitrobenzene	340	U	340	340	U	340	330	U	330
Pentachlorophenol	850	U	850	850	U	850	830	UJ	830
Phenanthrene	340	U	340	340	U	340	330	U	330
Phenol	340	U	340	340	U	340	330	U	330
Pyrene	340	U	340	340	U	340	330	U	330

APPENDIX B VERIFICATION SAMPLING DATA QUALITY ÁSSESSMENT

APPENDIX B

VERIFICATION SAMPLING DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data requirements specified in the site-specific sample designs (WCH 2007a, DOE-RL 2005a). This DQA was performed in accordance with site specific data quality objectives found in the SAP (DOE-RL 2005b).

To ensure quality data, the sampling and analysis plan (SAP) data assurance requirements and the data validation procedures for chemical and radiochemical analysis (BHI 2000a, 2000b) are used as appropriate. This review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support the intended use (i.e., evaluate against cleanup criteria to support a no action or remedial action decision). The DQA completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process (EPA 2000).

A review of the sample design (WCH 2007a), the field logbook (WCH 2007b), and applicable analytical data packages has been performed as part of this DQA. All samples were collected and analyzed per the sample design. The sample design included a statistical sampling approach. In order to calculate the number of samples needed in the statistical sampling plan, the standard deviation for each COC/COPC in the target population was assumed to be less than or equal to 25% of the corresponding decision threshold for each COC/COPC. Examination of the resulting data set shows that the sample standard deviations are consistent with those assumptions.

The verification sample data collected at the 100-B-21:2 waste site were provided by the laboratories in sample delivery group (SDG) K1005. SDG K1005 was submitted for third-party validation. No major deficiencies were identified in the analytical data set. Minor deficiencies are discussed below.

SDG K1005

This SDG comprises 13 field samples (J15W21-J15W34) and an equipment blank (J15W35). A field duplicate pair (J15W23/J15W34) is included in this SDG. These samples were analyzed for inductively coupled plasma (ICP) metals, mercury, hexavalent chromium, semivolatile organic compounds (SVOCs), gross alpha and gross beta by proportional counting, and by gamma spectroscopy. SDG K1005 was submitted for formal third-party validation. Minor deficiencies found in SDG K1005 are as follows:

Reported analytical detection levels are compared against the required quantitation limits (RQLs) to ensure that laboratory detection levels meet the required criteria. In the radiochemical analysis, 37 analytes exceeded the RQL. Under the WCH statement of work, no qualification is required.

In the gross alpha analysis, 10 samples were reported with activities above the accepted background value for alpha activity. Elevated values such as these prompt an evaluation of the data to see if additional isotopic analyses of the samples are needed. Because all of the americium-241 results in these samples were undetected and the typical ratio of plutonium isotopes to americium-241 is approximately 5:1 it is unlikely that the elevated alpha activities are due to plutonium isotopes. Other man-made alpha emitting constituents account for only a small percentage of the overall alpha activity compared to plutonium. This suggests that the elevated gross alpha results are due to naturally occurring isotopes, probably of uranium. Careful analysis of the radium and thorium data from these samples supports the conclusion that the naturally occurring localized background value is higher than the overall site average (Weiss 2008). Because the overall site averages are used to set background values it is expected that some sites will naturally be above those average values. No additional isotopic analyses are indicated in this case. The data are useable for decision-making purposes.

In the SVOC analysis, the common laboratory contaminants bis(2-ethylhexyl)phthalate is detected in the method blank (MB). Third party validation raised the reported values for bis(2-ethylhexyl)phthalate in all samples to the required quantitation limit of 660 µg/kg and qualified them as undetected and flagged "U".

Also in the SVOC analysis, the matrix spike (MS) and the matrix spike duplicate (MSD) are outside quality control (QC) limits for 1,2,4-trichlorobenzene at 52% and 54%, respectively. The MS for 2-methylnaphthalene is also outside QC limits at 58%. Laboratory control sample (LCS) recovery was outside QC limits for 4-chloroanaline, at 43%. The results for these analytes were qualified as estimates and flagged "J" by third party validation. Estimated data are useable for decision-making purposes.

The surrogate recoveries for the following SVOCs were outside QC limits in sample J15W35: 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, bis(2-chloroethyl)ether, bis(2-chloroethoxy)methane, 4-chlorophenyl phenyl ether, 4-bromophenyl phenyl ether. The sample J15W35 results for these SVOCs were qualified as estimates and flagged "J" by third party validation. Estimated data are useable for decision-making purposes.

In the SVOC analysis, 120 analytes exceeded the RQL. Under the WCH statement of work, no qualification is required.

In the ICP metals analysis, the calcium, copper, magnesium, sodium, and zinc results for sample J15W35 (the equipment blank) are of similar magnitude as the method blank results, and are qualified by third party validation as undetected estimates with "UJ" flags, due to method blank contamination. The data are useable for decision-making purposes.

FIELD QUALITY ASSURANCE/QUALITY CONTROL

Relative percent difference (RPD) evaluations of main sample(s) versus the laboratory duplicate(s) are routinely performed and reported by the laboratory. Any deficiencies in those

calculations are reported by SDG in the previous sections.

Field quality assurance/quality control (QA/QC) measures are used to assess potential sources of error and cross contamination of samples that could bias results. Field QA/QC samples, listed in the field logbook (WCH 2007b), are the 100-B-21:2 sample primary and duplicate (J15W23/J15W34). The main and QA/QC sample results are presented in Appendix C.

Field duplicate samples are collected to provide a relative measure of the degree of local heterogeneity in the sampling medium, unlike laboratory duplicates that are used to evaluate precision in the analytical process. The field duplicates are evaluated by comparison of the RPD of the duplicate samples for each contaminant of concern (COC). Only analytes with values above five times the detection limits for both the main and duplicate samples are compared. The 95% upper confidence limit (UCL) calculation brief in Appendix C provides details on duplicate pair evaluation and RPD calculation. The data are useable for decision making purposes.

Radionuclides

None of the RPD calculated for the field QA/QC samples radionuclide results exceeded the acceptance criteria of 30%. The data are useable for decision making purposes.

Nonradionuclides

The RPD calculated for silicon was 39%, which exceeded the acceptance criteria of 30%. An elevated RPD, such as this, in the analysis of environmental soil samples, is largely attributed to heterogeneities in the soil matrix and only in small part attributed to precision and accuracy issues at the laboratory. The data are useable for decision-making purposes.

RPDs for the remaining radionuclides and nonradionuclide analytes are not calculated because an evaluation of the data shows the analytes are not detected in both the main and duplicate sample at more than 5 times the target detection limit. RPDs of analytes detected at low concentrations (less than five times the detection limit) are not considered to be indicative of the analytical system performance. The data are useable for decision making purposes.

A secondary check of the data variability is used when one or both of the samples being evaluated (main and duplicate) is less than 5 times the target detection limit (TDL), including undetected analytes. In these cases, a control limit of \pm 2 times the TDL is used (Appendix C) to indicate that a visual check of the data is required by the reviewer. For the 100-B-21:2 duplicate sample, the difference was less than 2 times the TDL (for all analytes with one or both of the samples less than 5 times the TDL), and did not required the visual check. However, a visual inspection of all of the data is also performed. No additional major or minor deficiencies are noted. The data are useable for decision-making purposes.

SUMMARY

Limited, random, or sample matrix-specific influenced batch quality control (QC) issues such as those discussed above, are a potential for any analysis. The number and types seen in these data sets are within expectations for the matrix types and analyses performed. The DQA review of the 100-B-21:2 verification sampling data found that the analytical results are accurate within the standard errors associated with the analytical methods, sampling, and sample handling. The DQA review for 100-B-21:2 waste site concludes that the data are of the right type, quality, and quantity to support the intended use. The verification sample analytical data are stored in the Environmental Restoration (ENRE) project-specific database prior to being submitted for inclusion in the Hanford Environmental Information System (HEIS) database. The verification sample analytical data are also summarized in Appendix C.

REFERENCES

- BHI, 2000a, *Data Validation Procedure for Chemical Analysis*, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2000b, *Data Validation Procedure for Radiochemical Analysis*, BHI-01433, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2005a, Remedial Design Report/Remedial Action Work Plan for the 100 Area, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 2000, Guidance for Data Quality Assessment, EPA QA/G-9, QA00 Update, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.
- WCH, 2007a, *Work Instruction for Verification Sampling of the 100-B-21:2, Discovery Pipeline DS-100BC-002*, Work Instruction No. 0100B-WI-G0026, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2007b, 100B/C Burial Grounds/Remaining Sites Sampling and Field Activities, Logbook EL-1173-14, pp 15-16, Washington Closure Hanford, Richland, Washington.
- Weiss, R. L. 2008. 100-8-21:2 Verification Data alpha, CCN 138292, e-mail correspondence with J. M. Capron, dated December 5, 2007, Washington Closure Hanford, Richland, Washington.

APPENDIX C CALCULATION BRIEFS

APPENDIX C

CALCULATION BRIEFS

The following calculation briefs have been prepared in accordance with ENG-1, *Engineering Services*, ENG-1-4.5, "Project Calculations," Washington Closure Hanford, Richland, Washington.

- 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations, Calculation No. 0100B-CA-V00310, Rev. 1, Washington Closure Hanford, Richland, Washington.
- 100-B-21:2Waste Site Hazard Quotient and Carcinogenic Risk Calculations, Calculation No. 0100F-CA-V0311, Rev. 0, Washington Closure Hanford, Richland, Washington.

NOTE: The calculation briefs referenced in this appendix are kept in the active Washington Closure Hanford project files and are available upon request. When the project is completed, the files will be stored in a U.S. Department of Energy, Richland Operations Office repository. Only excerpts of the calculation briefs are included in this appendix.

DISCLAIMER FOR CALCULATIONS

The calculations that are provided in the following appendix have been generated to document compliance with established cleanup levels. These calculations should be used in conjunction with other relevant documents in the administrative record.

Acrobat 8.0

CALCULATION COVER SHEET

Project Ti	tle: 100-B/C Field Remedia	ation			Job	No. 14655
Area: <u>100</u>	-B/C		1013 J. 1021 100 12 3 10 11 11 11 11 11 11 11 11 11 11 11 11			
Discipline	: Environmental		*Cal	culation No: 0100)B-CA-V0310	
Subject: 2	100-B-21:2 Waste Site Cle	anup Verification	95% UCL Calcul	ations		
Compute	r Program: Excel		Progra	am No: Excel 200	3	
The atta	ched calculations have been should be used in c					calculations
Committe	d Calculation 🔀	Prelimina	ry 「	Superseded [- Voic	led 🗔
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date
0	Cover = 1 Sheets = 10 Attm. 1 = 10 Total = 21	J. M. Capron	M. J. Appel	N/A	D. N. Strom	12-20-07
1	Cover = 1 Sheets = 9 Attm. 1 = 10 Total = 20	J. M. Capron	M. J. Appel My Appel	N/A	DA Stroph	1-31-08
			The White or the Administration with the Control of			
		SUMM	ARY OF RE	VISION		
1	Revision to include result Cover page replaced in e 3, 5, and 10 revised to re acronyms, based on qual only calculations present	ntirety for conver move bis(2-ethyll ification of all ass	nience. Attachme hexyl)phthalate re sociated data as i	esults and association and established and est	ated calculations	and
WCH-DE-0	18 (05/08/2007)		*Obta	ain Calc. No. from Do	cument Control and F	orm from Intrane

Washington Closure Hanford

Originator J.	M. Capron 🔏	enc.		Date	12/16/07	Calc. No. 0100B-CA-V0310	Rev. No.	0
Project 10	0-B/C Field Reme	ediation		Job No.	14655	Checked M. J. Appel MIAA	- Date	12/17/07
Subject 10	0-B-21:2 Waste S	Site Cleanu	p Verification 95% UCL Calcu	ulations		7	Sheet No.	1 of 18 9
							-	

Summary

9

11

12

14

15 16

17

19

27

28

29

30

37

45

Purpose:

Calculate the 95% upper confidence limit (UCL) values to evaluate compliance with cleanup standards for the subject site. Also, perform the Washington Administrative Code (WAC) 173-340-740(7)(e) 3-part test for each nonradioactive contaminant of concern (COC) and contaminant of potential concern (COPC) and calculate the relative percent difference (RPD) for primary-duplicate sample pairs, as necessary.

Table of Contents:

10 Sheets 1 to 3 - Summary

Sheets 4 to 5 - 100-B-21:2 Remediation Footprint Statistical Calculations

Sheets 6 to 9 - Ecology Software (MTCAStat) Results

13 Sheet 10 - Duplicate Analysis

Attachment 1 - 100-B-21:2 Verification Sampling Results (10 sheets)

Given/References:

- 1) Sample Results (Attachment 1). 18
 - Background values and remedial action goals (RAGs) are taken from DOE-RL (1996, 2001, 2005b) and Ecology (2005).
- DOE-RL, 2001b, Hanford Site Background: Part 1, Soil Background for Nonradioactive Analytes, DOE/RL-92-24, Rev. 4, 20 U.S. Department of Energy, Richland Operations Office, Richland, Washington. 21
- 22 4) DOE-RL, 2005a, 100 Area Remedial Action Sampling and Analysis Plan (SAP), DOE/RL-96-22, Rev. 4, U.S. Department 23 of Energy, Richland Operations Office, Richland, Washington.
- 24 5) DOE-RL, 2005b, Remedial Design Report/Remedial Action Work Plan for the 100 Area (RDR/RAWP), DOE/RL-96-17, 25 Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington. 26
 - Ecology, 1992, Statistical Guidance for Ecology Site Managers, Publication #92-54, Washington Department of Ecology, Olympia, Washington.
 - Ecology, 1993, Statistical Guidance for Ecology Site Managers, Supplement S-6, Analyzing Site or Background Data with Below-detection Limit or Below-PQL Values (Censored Data Sets), Publication #92-54, Washington Department of Ecology, Olympia, Washington.
 - 8) Ecology, 2005, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology, Olympia, Washington, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
 - 9) EPA, 1994, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540/R-94/013. U.S. Environmental Protection Agency, Washington, D.C. 10) WAC 173-340, 1996, "Model Toxic Control Act - Cleanup," Washington Administrative Code.

38 Solution:

Calculation methodology is described in Ecology Pub. #92-54 (Ecology 1992, 1993), below, and in the RDR/RAWP (DOE-RL 2005b). Use data from attached worksheets to perform the 95% UCL calculation for each analyte, the WAC 173-340-740(7)(e) 3-part test for nonradionuclides, and the RPD calculations, as required. The hazard quotient and carcinogenic risk calculations are located in a separate calculation brief as an appendix to the Remaining Sites Verification Package (RSVP).

Calculation Description:

The subject calculations were performed on data from soil verification samples from the subject waste site. The data were entered into an EXCEL 2003 spreadsheet and calculations performed by using the built-in spreadsheet functions and/or creating formulae within the cells. The statistical evaluation of data for use in accordance with the RDR/RAWP (DOE-RL 2005b) is documented by this calculation. Duplicate RPD results are used in evaluation of data quality within the RSVP for this site.

Methodology:

For nonradioactive analytes with ≤50% of the data below detection limits and all detected radionuclide analytes, the statistical value calculated to evaluate the effectiveness of cleanup is the 95% UCL. For nonradioactive analytes with >50% of the data below detection limits, the maximum detected value for the data set is used instead of the 95% UCL. The 95% UCL is not calculated for data sets with no reported detections. The evaluation of the portion of each analyte's data set below detection limits was performed by direct inspection of the attached sample results, and no further calculations were performed for those data sets where >50% of the data was below detection limits. Statistical values were not calculated for radium-226, radium-228, thorium-228, thorium-232, and potassium-40, as these isotopes are excluded from consideration as COCs based on natural occurrence and analogous site information. Statistical values were also not calculated for aluminum, calcium, iron, magnesium, potassium, silicon, and sodium, as no parameters to calculate cleanup values under WAC 173-340-740(3) are available in Ecology (2005) or other reference databases, and these constituents are thus not considered site COCs/COPCs. Statistical values were also not calculated for gross alpha and beta analyses. These analyses were performed only as a screening-level analysis, and review of

Washington Closure Hanford

Originator J. M. Capron Panc	Date 12/16/07		v. No0
Project 100-B/C Field Remediation	Job No. 14655	Checked M. J. Appel	Date 12/19 07
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calc	culations	She	et No. 2 of 100 me

1 Summary (continued)

12 13

20 21 22

23

30 31

37

38 39

40 41

42 43

44

45

50

52

the results and the data for americium-241, radium-226, thorium-228, and thorium-232 concluded that all results were consistent with slightly elevated natural background levels. Therefore, no further isotope-specific analysis for alpha- and beta-emitting radionuclides was performed.

All nonradionuclide data reported as being undetected are set to ½ the detection limit value for calculation of the statistics (Ecology 1993). For radionuclide data, calculation of the statistics is done using the reported value. In cases where the laboratory does not report a value below the minimum detectable activity (MDA), half of the MDA is used in the calculation. For the statistical evaluation of duplicate sample pairs, the samples are averaged before being included in the data set, after adjustments for censored data as described above.

For nonradionuclides, the WAC 173-340 statistical guidance suggests that a test for distributional form be performed on the data and the 95% UCL calculated on the appropriate distribution using Ecology software. For nonradionuclide small data sets (n < 10) and all radionuclide data sets, the calculations are performed assuming nonparametric distribution, so no tests for distribution are performed. For nonradionuclide data sets of ten or greater, distributional testing and calculation of the 95% UCL is done using Ecology's MTCAStat software (Ecology 1993). Due to differences in addressing censored data between the RDR/RAWP (DOE-RL 2005b) and MTCAStat coding and due to a limitation in the MTCAStat coding (no direct capability to address variable quantitation limits within a data set), substitutions for censored data are performed before software input and the resulting input set treated as uncensored.

The WAC 173-340-740(7)(e) 3-part test is performed for nonradionuclide analytes only and determines if:

1) the 95% UCL exceeds the most stringent cleanup limit for each COPC/COC,

25 2) greater than 10% of the raw data exceed the most stringent cleanup limit for each COPC/COC,

3) the maximum value of the raw data set exceeds two times the most stringent cleanup limit for each COPC/COC.

The WAC 173-340-740(7)(e) 3-part test is not performed for COPCs/COCs where the statistical value defaults to the maximum value in the data set. Instead, direct comparison of the maximum value against site RAGs (within the RSVP) is used as the compliance basis.

The RPD values are evaluated for analytes detected in a primary-duplicate or primary-split sample pair for the purposes of data quality assessment within the RSVP (where direct evaluation of the attached data showed that a given analyte was undetected in both the primary and duplicate sample or accepted data was not available for both samples in the pair, no further calculations were performed). The RPD is calculated when both the primary value and the duplicate value for a given analyte are above detection limits and are greater than 5 times the target detection limit (TDL). The TDL is a laboratory detection limit pre-determined for each analytical method, listed in Table II-1 of the SAP (DOE-RL 2005a). The RPD calculations use the following formula:

RPD = [|M-S|/((M+S)/2)]*100

where, M = main sample value S = split (or duplicate) sample value

For quality assurance/quality control (QA/QC) split and duplicate RPD calculations, a value less than 30% indicates the data compare favorably. For regulatory splits, a threshold of 35% is used (EPA 1994). If the RPD is greater than 30% (or 35% for regulatory split data), further investigation regarding the usability of the data is performed. To assist in the identification of anomalous sample pairs, when an analyte is detected in the primary or duplicate/split sample, but was quantified at less than 5 times the TDL in one or both samples, an additional parameter is evaluated. In this case, if the difference between the primary and duplicate/split results exceeds a control limit of 2 times the TDL, further assessment regarding the usability of the data is performed. Additional discussion is provided in the data quality assessment section of the RSVP, as necessary.

The results presented in the summary tables that follow are for use in risk analysis and the RSVP for this site. In addition to the statistical samples collected in the remediation footprint, non-statistical samples were collected from stockpiled overburden material. Statistical methodology is not applicable to non-statistical sampling, and direct evaluation of detected values will be used as the compliance basis. The maximum detected value for each analyte from all overburden samples collected is presented in the results summary for use in the RSVP and risk analysis.

Washington Closure Hanford

Originator J. M. Capron From Date 01/22/08 Job No. 14655
Project 100-B/C Field Remediation
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

Calc. No. 0100B-CA-V0310
Checked M. J. Appel M

1 Summary (continued)

Results:

The results presented in the summary tables that follow are for use in risk analysis and the RSVP for this site.

5	Results Summary ^a												
		Remediation	6	7									
6	Analyte	Footprint ^b	Overburden ^b	Units									
7	Cesium-137	0.048	0.078	pCi/g									
8	Arsenic	5.9	4.8	mg/kg									
9	Barium	89.4	89.8	mg/kg									
10	Beryllium	0.19	ND	mg/kg									
11	Boron	2.4	2.5	mg/kg									
12	Cadmium	0.31	0.33	mg/kg									
	Chromium	16.0	15.8	mg/kg									
14	Cobalt	7.9	8.6	mg/kg									
15	Copper	20.9	20.6	mg/kg									
16	Hexavalent chromium	0.26	0.26	mg/kg									
17	Lead	6.3	6.5	mg/kg									
18	Manganese	355	363	mg/kg									
19	Molybdenum	2.5	0.83	mg/kg									
20	Nickel	16.4	17.8	mg/kg									
21	Silver	0.39	ND	mg/kg									
22	Vanadium	51.0	53.3	mg/kg									
23	Zinc	43.6	48.7	mg/kg									
24	Di-n-butylphthalate	0.022	. ND	mg/kg									
25	Pyrene	0.021	ND	mg/kg									

26 WAC 173-340-740(7)(e) Evaluation

32 ^aNo detections were reported in any data set for COCs/COPCs not listed in this table.

- 33 bMaximum or 95% UCL result, depending on data censorship, as described in the calculation methodology.
- 34 ^cMaximum detected result from all overburden samples.
- 35 ND = not detected (for all samples in the data set)

36 RAG = remedial action goal

UCL = upper confidence level

WAC = Washington Adminstrative Code

01		
	Relative Percent Differer	
38	QA/QC Analy	
	Analyte	Duplicate
39	Allalyte	Analysis ^b
40	Potassium-40	0.61%
41	Radium-226	14%
42	Radium-228	4.0%
43	Aluminum	13%
44	Barium	7.0%
45	Calcium	6.7%
46	Chromium (total)	20%
47	Copper	11%
48	Iron	7.2%
49	Magnesium	4.2%
50	Manganese	9.0%
51	Silicon	39%
52	Vanadium	12%
53	Zinc	2.1%

- 54 ^aRelative percent difference evaluation was not required for analytes not included in this table.
- 55 bThe significance of relative percent difference values are discussed within the RSVP for the subject site.
- 56 QA/QC = quality assurance/quality control
- 57 RSVP = remaining sites verification package

Washington Closure Hanford

Originator J. M. Capron Dac
Project 100-B/C Field Remediation
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

Date ____12/16/07 Job No. 14655

Calc. No. <u>0100B-CA-V0310</u> Checked M. J. Appel

Rev. No. __ Date 12 19/04 Sheet No. 4 of 186 me 4340%

1 100-B-21:2 Remediation Footprint Statistical Calculations

			ata

3 Sample	Sample	Sample	Ce	sium-1	37	Arsen	ic	В	Barium		E	Boron		Chromi	um	Col	oalt		Copper	•
4 Location	Number	Date	pCi/g	Q	MDA	mg/kg Q	PQL	mg/kg	Q	PQL	mg/kg	Qi	PQL	mg/kg Q	PQL	mg/kg (PQL	mg/kg	Q	PQL
5 1	J15W21	10/22/07	0.051	U	0.051	1.8	1.5	49.4		0.30	1.6	1	1.5	6.9	0.6	5.3	0.60	17.4	C	0.60
6 2	J15W22	10/22/07	0.093	i I	0.038	4.1	1.5	83.2		0.29	2.4		1.5	10.8	0.58	7.9	0.58	20.6	C	0.58
7 3	J15W23	10/22/07	0.045	U	0.045	6.9	1.4	80.0		0.29	1.7		1.4	19.7	0.58	8.0	0.58	21.1	С	0.58
Duplicate of 8 J15W23	J15W34	10/22/07	0.040	U	0.040	5.7	1.4	74.6		0.29	1.4	U	1.4	16.1	0.58	7.4	0.58	18.9	С	0.58
9 4	J15W24	10/22/07	0.042	U	0.042	5.7	1.5	86.1		0.30	2.2		1.5	16.3	0.59	7.6	0.59	21.2	С	0.59
10 5	J15W25	10/22/07	0.057	U	0.057	5.0	1.5	107	-	0.30	2.7		1.5	12.0	0.60	7.3	0.60	18.5	C	0.60
11 6	J15W26	10/22/07	0.045	U	0.045	7.9	1.5	85.9		0.29	2.5		1.5	18.3	0.58	8.2	0.58	24.0	C	0.58
12 7	J15W27	10/22/07	0.067		0.026	4.0	1.3	75.7		0.27	2.1		1.3	11.6	0.53	7.4	0.53	17.3	C	0.53
13 8	J15W28	10/22/07	0.045	U	0.045	4.3	1.4	75.2		0.27	2.1	1	1.4	10.8	0.54	7.3	0.54	16.4	C	0.54
14 9	J15W29	10/22/07	0.052	U	0.052	5.6	1.5	91.1		0.30	2.6		1.5	14.4	0.59	8.3	0.59	19.9	C	0.59
15 10	J15W30	10/22/07	0.042	U	0.042	5.1	1.4	86.5		0.29	2.4		1 4	12.5	0.58	7.9	0.58	19.8	C	0.58

16 Statistical Computation Input Data

17	Sample	Sample	Sample	Cesium-137	Arsenic	Barium	Boron	Chromium	Cobalt	Copper
18	Location	Number	Date	pCi/g	mg/kg	mg/kg ·	mg/kg	mg/kg	mg/kg	mg/kg
19	1	J15W21	10/22/2007	0.026	1.8	49.4	1.6	6.9	5.3	17.4
20	2	J15W22	10/22/2007	0.093	4.1	83.2	2.4	10.8	7.9	20.6
21	3	J15W23/J15W34	10/22/2007	0.021	6.3	77.3	1.2	17.9	7.7	20.0
22	4	J15W24	10/22/2007	0.021	5.7	86.1	2.2	16.3	7.6	21.2
23	5	J15W25	10/22/2007	0.029	5.0	107	2.7	12.0	7.3	18.5
24	6	J15W26	10/22/2007	0.023	7.9	85.9	2.5	18.3	8.2	24.0
25	7	J15W27	10/22/2007	0.067	4.0	75.7	2.1	11.6	7.4	17.3
26	8	J15W28	10/22/2007	0.023	4.3	75.2	2.1	10.8	7.3	16.4
27	9	J15W29	10/22/2007	0.026	5.6	91.1	2.6	14.4	8.3	19.9
28	10	J15W30	10/22/2007	0.021	5.1	86.5	2.4	12.5	7.9	19.8

29 Statistical Computations

30	tatistical computations	Cesium-137		Arsenic		Barium		Boron		Chromium		Cobalt		Copper	
31	95% UCL value based on	an ont		Large data set (n ≥ 10), use MTCAStat normal distribution.		lognorma distribution	a set (n ≥ 10), al and normal n rejected, use tatistic.	lognorma distributio	ta set (n ≥ 10), al and normal n rejected, use statistic.	Large data set (n ≥ 10), use MTCAStat lognormal distribution.		Large data set (n ≥ 10), lognormal and normal distribution rejected, use z-statistic.		Large data set (n ≥ 10), use MTCAStat lognormal distribution.	
32	N	10		10	The second secon	10	The state of the s	10		10		10		10	
33	% < Detection limit	80%		0%		0%		0%		0%		0%		0%	
34	Mean	0.035		5.0		81.7		2.2		13.2		7.5		19.5	
35	Standard deviation	0.025		1.6		14.7		0.5		3.6		0.8		2.2	
36	95% UCL on mean	0.048		5.9		89.4		2.4		16.0		7.9		20.9	
37	Maximum detected value	0.093		7.9		107		2.7		19.7		8.3		24.0	
38	Background	NA		6.5		132		NA		18.5		15.7		22.0	the Control of the Co
39[Statistical value above background*	0.048	1	5.9		89.4		2.4	1 1	16.0		7.9		20.9	
					Direct										
	Most Stringent Cleanup Limit for				Exposure/GW &	1	BG/GW	1			BG/GW & River	1			BG/River
40	nonradionuclide and RAG type			20	River Protection	132	Protection	320	GW Protection	18.5	Protection	32	GW Protection	22.0	Protection
41	NAC 173-340 3-PART TEST														
42	95% UCL > Cleanup Limit?			NO		NA		NO	THE RESERVE AND ADDRESS OF THE PARTY OF THE	NO	an or an announce with annual constraints of the same and the same of the same	NA NA	Files and be the second	NO	
43	> 10% above Cleanup Limit?			NO		NA		NO		NO	, . ,	NA	· · · · · · · · · · · · · · · · · · ·	NO	
44	Any sample > 2X Cleanup Limit?			NO		NA		NO		NO		NA		NO	
		-		The data s	et meets the 3-part	Because all	values are below	The data :	set meets the 3-				l values are below		
],	WAC 173-340 Compliance? Yes			test criteria	when compared to	background	(132 mg/kg), the	part tes	t criteria when	test criteria	when compared	background	l (15.7 mg/kg), the	test criteria	when compared
	MAG 173-340 Comphance: 165			the most	stringent cleanup	WAC 173-3	340 3-part test is	compare	ed to the most	to the most	stringent cleanup	WAC 173-	340 3-part test is		
45					limit.	not	required.	stringen	t cleanup limit.		limit.	not	t required.	<u></u>	limit.

46 *Background is not subtracted for nonradionuclides; consideration of background is given by direct comparison against background values. MDA = minimum detectable activity

47 BG = background

48 C = method blank contamination

GW = groundwater

NA = not applicable

PQL = practical quantitation limit

Q = qualifier RAG = remedial action goal U = undetected UCL = upper confidence limit

WAC = Washington Administrative Code

C-6

CALCULATION SHEET

Washington Closure Hanford

Originator J. M. Capron 9926

Project 100-B/C Field Remediation Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

Date 01/22/08 Job No. 14655

Calc. No. 0100B-CA-V0310 Checked M. J. Appel M

Rev. No.

1 100-B-21:2 Remediation Footprint Statistical Calculations (continued)

Vorifi	cation	Data
verm	cation	Data

~-	verification Da	el Incation Data																			
3	Sample	Sample	Sample	Hexaval	ent Ch	romium		Lead		Ma	angane	se	N	lickel		V	anadiun	n		Zinc	
4	Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
5	1	J15W21	10/22/07	0.20	U	0.20	3.0		0.90	250	C	0.12	8.7	***************************************	0.60	32.7		0.42	29.8	С	1.8
6	2	J15W22	10/22/07	0.21	U	0.21	. 6.8		0.87	359	С	0.12	13.6		0.58	44.5		0.41	46.0	С	1.7
7	3	J15W23	10/22/07	0.23		0.21	7.2		0.87	371	С	0.12	17.6		0.58	48.6		0.41	43.0	С	1.7
8	Duplicate of J15W23	J15W34	10/22/07	0.21	U	0.21	6.3	:	0.87	339	С	0.12	16.5		0.58	43.3		0.40	43.9	С	1.7
9	4	J15W24	10/22/07	0.27		0.20	6.5		0.89	353	С	0.12	15.8		0.59	49.5	1	0.41	42.9	С	1.8
10	5	J15W25	10/22/07	0.32		0.20	5.6		0.89	346	С	0.12	12.2		0.60	59.4		0.42	41.9	С	1.8
11	6	J15W26	10/22/07	0.23		0.20	5.9		0.87	366	С	0.12	18.3		0.58	52.7	!	0.41	38.6	C	1.7
12	7	J15W27	10/22/07	0.31		0.20	5.5		0.80	324	С	0.11	11.7		0.53	43.9		0.37	41.1	C	1.6
13	8	J15W28	10/22/07	0.29		0.20	6.0		0.81	331	С	0.11	11.2		0.54	38.0		0.38	41.9	С	1.6
14	9	J15W29	10/22/07	0.22		0.20	5.8		0.89	352	С	0.12	18.2	1	0.59	49.9		0.42	45.0	С	1.8
15	10	J15W30	10/22/07	0.20	U	0.20	5.9	1	0.87	338	C	0.12	13.2		0.58	42.2		0.40	42.0	С	1.7

16 Statistical Computation Input Data

	The state of the s													
17	Sample	Sample	Sample	Hexavalent Chromium	Lead	Manganese	Nickel	Vanadium	Zinc					
18	Location	Number	Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
19	1	J15W21	10/22/2007	0.10	3.0	250	8.7	32.7	29.8					
20	2	J15W22	10/22/2007	0.11	6.8	359	13.6	44.5	46.0					
21	3	J15W23/J15W34	10/22/2007	0.17	6.8	355	17.1	46.0	43.5					
22	4	J15W24	10/22/2007	0.27	6.5	353	15.8	49.5	42.9					
23	5	J15W25	10/22/2007	0.32	5.6	346	12.2	59.4	41.9					
24	6	J15W26	10/22/2007	0.23	5.9	366	18.3	52.7	38.6					
25	7	J15W27	10/22/2007	0.31	5.5	324	11.7	43.9	41.1					
26	8	J15W28	10/22/2007	0.29	6.0	331	11.2	38.0	41.9					
27	9	J15W29	10/22/2007	0.22	5.8	352	18.2	49.9	45.0					
28	10	J15W30	10/22/2007	0.10	5.9	338	13.2	42.2	42.0					

	Hexavalen	t Chromium	Lead		Manganes	se '	Nickel		Vanadium	,	Zinc	
95% UCL value based on	МТС	Large data set (n ≥ 10), use MTCAStat normal distribution.		e Large data set (n ≥ 10), lognormal and normal distribution rejected, use z-statistic.		ata set (n ≥ 10), mal and normal ion rejected, use z-statistic.	MTCAS	set (n ≥ 10), use Stat lognormal tribution.	MTCASt	set (n ≥ 10), use at lognormal ribution.	lognorma distribution	a set (n ≥ 10), al and normal n rejected, use tatistic.
N	10		10		10		10		10	proper construction of the contract of the con	10	i i
% < Detection limit	30%		0%		0%		0%		0%		0%	
Mean	0.21		5.8		337		14.0		45.9		41.3	
Standard deviation	0.09		1.1		33		3.2		7.6		4.5	
95% UCL on mean	0.26		6.3	1	355		16.4		51.0		43.6	
Maximum detected value	0.32	!	7.2	1	371		18.3	!	59.4		46.0	
Statistical value	0.26		6.3		355		16.4		51.0		43.6	i
Most Stringent Cleanup Limit for				BG/GW & River		BG/GW & River		BG/GW		BG/GW		BG/River
nonradionuclide and RAG type	2	River Protection	10.2	Protection	512	Protection	19.1	Protection	85.1	Protection	67.8	Protection
WAC 173-340 3-PART TEST												
95% UCL > Cleanup Limit?	NO		NA		NA		NA		NA		NA	
> 10% above Cleanup Limit?	NO		NA		NA		NA		NA		NA	
Any sample > 2X Cleanup Limit?	NO		NA		NA		NA		NA		NA	
	The data s	et meets the 3-part	Because a	all values are below	Because a	all values are below	Because al	I values are below	Because all	values are below	Because all	values are bel
WAC 173-340 Compliance? Yes	test criter	ia when compared	backgrour	id (10.2 mg/kg), the	backgroui	nd (512 mg/kg), the	backgrou	nd (19.1 mg/kg),	background	(85.1 mg/kg), the	background	(67.8 mg/kg),
Tes	to the mos	st stringent cleanup	WAC 173	3-340 3-part test is	WAC 173	3-340 3-part test is	the WAC 1	73-340 3-part test	WAC 173-3	340 3-part test is	WAC 173-3	340 3-part test
		limit.	n	ot required.	n	ot required.	is no	ot required.	not	required.	not	required.

45 BG = background

46 C = method blank contamination (inorganics) 47 GW = groundwater

MDA = minimum detectable activity NA = not applicable

PQL = practical quantitation limit Q = qualifier RAG = remedial action goal

U = undetected UCL = upper confidence limit

WAC = Washington Administrative Code

Washington Closure Hanford
Originator J. M. Capron Machine Project 100-B/C Field Remediation J
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

Date 12/16/07 Job No. 14655

Calc. No. 0100B-CA-V0310 Checked M. J. Appel My4Rev. No. 0
Date 12/19/07
Sheet No. 6 of 10 0 13408

Ecology Software (MTCAStat) Results

2												
3	DATA	ID	Arsenic 95%	6 UCI	_ Calculation		DATA	ID	Barium 95%	UCL	_ Calculation	
4	1.8	J15W21					49.4	J15W21				
5	4.1	J15W22					83.2	J15W22				
6	6.3	J15W23/	J15W34				77.3	J15W23/J	15W34			
7	5.7	J15W24	Number of samples		Uncensored values		86.1	J15W24	Number of samples		Uncensored values	
8	5.0	J15W25	Uncensored	10	Mean	5.0	107.0	J15W25	Uncensored	10	Mean	81.7
9	7.9	J15W26	Censored		Lognormal mean	5.1	85.9	J15W26	Censored		Lognormal mean	82.0
10	4.0	J15W27	Detection limit or PQL		Std. devn.	1.6	75.7	J15W27	Detection limit or PQL		Std. devn.	14.7
11	4.3	J15W28	Method detection limit		Median	5.1	75.2	J15W28	Method detection limit		Median	84.6
12	5.6	J15W29	TOTAL	10	Min.	1.8	91.1	J15W29	TOTAL	10	Min.	49.4
13	5.0	J15W29	TOTAL	10	Max.	7.9	86.5	J15W30	1017.2	.0	Max.	107
	5.1	1134430			iviax.	1.5	00.5	3134430			Wax.	107
14			Lognormal distribution?		Normal distribution?				Lognormal distribution?		Normal distribution?	
15			3 ,				1		r-squared is: 0.806		r-squared is: 0.871	
16			r-squared is: 0.836		r-squared is: 0.944		ĺ		Recommendations:		1-squared is. 0.071	
17			Recommendations:				1				a a rea al diatributia a a	
18			Use normal distribution.						Reject BOTH lognormal	anuı	ionnai distributions.	
19							İ					
20					7.0				1101 /1	-\ :-	89.4	
21			UCL (based on t-statistic) IS	5.9				UCL (based on Z-statisti	c) is	89.4	
22												
	5.71	16	D 059/	1101	0-11-1'		DATA	ID	Chuamium 05	0/ 11/	Calculation	
23	DATA	ID	Boron 95%	UCL	Calculation		DATA	ID	Chromium 95	% UC	CL Calculation	
23 24	1.6	J15W21	Boron 95%	UCL	Calculation		6.9	J15W21	Chromium 95	% UC	CL Calculation	
23 24 25	1.6 2.4	J15W21 J15W22		UCL	Calculation		6.9 10.8	J15W21 J15W22		% UC	CL Calculation	
23 24 25 26	1.6 2.4 1.2	J15W21 J15W22 J15W23/	J15W34	UCL			6.9 10.8 17.9	J15W21 J15W22 J15W23/J	15W34	% UC		
23 24 25 26 27	1.6 2.4 1.2 2.2	J15W21 J15W22 J15W23/J J15W24	J15W34 Number of samples		Uncensored values	0.0	6.9 10.8 17.9 16.3	J15W21 J15W22 J15W23/J J15W24	15W34 Number of samples		Uncensored values	12.2
23 24 25 26 27 28	1.6 2.4 1.2 2.2 2.7	J15W21 J15W22 J15W23/J J15W24 J15W25	J15W34 Number of samples Uncensored	UCL 10	Uncensored values Mean	2.2	6.9 10.8 17.9 16.3 12.0	J15W21 J15W22 J15W23/J J15W24 J15W25	15W34 Number of samples Uncensored	% UC	Uncensored values Mean	13.2
23 24 25 26 27 28 29	1.6 2.4 1.2 2.2 2.7 2.5	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26	J15W34 Number of samples Uncensored Censored		Uncensored values Mean Lognormal mean	2.2	6.9 10.8 17.9 16.3 12.0 18.3	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26	15W34 Number of samples Uncensored Censored		Uncensored values Mean Lognormal mean	13.2
23 24 25 26 27 28 29 30	1.6 2.4 1.2 2.2 2.7 2.5 2.1	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27	J15W34 Number of samples Uncensored Censored Detection limit or PQL		Uncensored values Mean Lognormal mean Std. devn.	2.2 0.5	6.9 10.8 17.9 16.3 12.0 18.3 11.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27	15W34 Number of samples Uncensored Censored Detection limit or PQL		Uncensored values Mean Lognormal mean Std. devn.	13.2 3.6
23 24 25 26 27 28 29 30 31	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28	J15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit	10	Uncensored values Mean Lognormal mean Std. devn. Median	2.2 0.5 2.3	6.9 10.8 17.9 16.3 12.0 18.3 11.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28	15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit	10	Uncensored values Mean Lognormal mean Std. devn. Median	13.2 3.6 12.3
23 24 25 26 27 28 29 30 31 32	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	J15W34 Number of samples Uncensored Censored Detection limit or PQL		Uncensored values Mean Lognormal mean Std. devn. Median Min.	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	15W34 Number of samples Uncensored Censored Detection limit or PQL		Uncensored values Mean Lognormal mean Std. devn. Median Min.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28	J15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit	10	Uncensored values Mean Lognormal mean Std. devn. Median	2.2 0.5 2.3	6.9 10.8 17.9 16.3 12.0 18.3 11.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28	15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit	10	Uncensored values Mean Lognormal mean Std. devn. Median	13.2 3.6 12.3
23 24 25 26 27 28 29 30 31 32 33 34	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution?	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution?	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	15W34 Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution?	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819 Recommendations:	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.889	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922 Recommendations:	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.889	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819 Recommendations:	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.889	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922 Recommendations:	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819 Recommendations: Reject BOTH lognormal	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.889	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922 Recommendations: Use lognormal distributio	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.949	13.2 3.6 12.3 6.9
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.6 2.4 1.2 2.2 2.7 2.5 2.1 2.1 2.6	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.819 Recommendations:	10 10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max. Normal distribution? r-squared is: 0.889	2.2 0.5 2.3 1.2	6.9 10.8 17.9 16.3 12.0 18.3 11.6 10.8 14.4	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29	Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL Lognormal distribution? r-squared is: 0.922 Recommendations:	10	Uncensored values Mean Lognormal mean Std. devn. Median Min. Max.	13.2 3.6 12.3 6.9

⁴³ PQL = practical quantitation limit

C-8

CALCULATION SHEET

Washing	ton Closu	re Hanford

Originator J. M. Capron J. M. C

Date 12/16/07 Job No. 14655 Calc. No. 0100B-CA-V0310 Checked M. J. Appel m Rev. No. 0
Date 12/6/07
Sheet No. 7 of 189
we 131/08

Ecology Software (MTCAStat) Results (continued)

2			logy Software (f					
3 DATA 4 5.3 5 7.9 6 7.7 7 7.6 8 7.3 9 8.2 0 7.4 1 7.3 2 8.3 3 7.9	JD J15W21 J15W22 J15W23/ J15W24 J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Number of samples Uncensored values of the Uncensored Uncensored Uncensored Values of the Uncens	Mean 7.5	DATA 17.4 20.6 20.0 21.2 18.5 24.0 17.3 16.4 19.9 19.8	ID J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Copper 95% UC 115W34 Number of samples Uncensored 10 Censored Detection limit or PQL Method detection limit TOTAL 10	Uncensored values Mean Lognormal mean Std. devn. Median	19.5 19.5 2.2 19.9 16.4 24.0
4 5 6 7 8 9 0 1		Lognormal distribution? Normal distribution r-squared is: 0.679 r-squared is: 0.679 Recommendations: Reject BOTH lognormal and normal distribution UCL (based on Z-statistic) is 7.9	.735			Lognormal distribution? r-squared is: 0.958 Recommendations: Use lognormal distribution. UCL (Land's method) is	Normal distribution? r-squared is: 0.944	
2 DATA 3 DATA 0.10 5 0.11 6 0.17 7 0.27 8 0.32 9 0.23 0.31 1 0.29 2 0.22 3 0.10	J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Hexavalent Chromium 95% UCL Calculation 115W34 Number of samples Uncensored 10 Censored Lognormal Detection limit or PQL Std.	alues Mean 0.21	DATA 3.0 6.8 6.8 6.5 5.6 5.9 5.5 6.0 5.8 5.9	ID J15W21 J15W22 J15W23/J J15W24 J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Lead 95% UCL 15W34 Number of samples Uncensored 10 Censored Detection limit or PQL Method detection limit TOTAL 10	Uncensored values	5.8 5.8 1.1 5.9 3.0 6.8
		Lognormal distribution? Normal distribution: r-squared is: 0.872 r-squared is: 0 Recommendations: Use normal distribution.				Lognormal distribution? r-squared is: 0.634 Recommendations: Reject BOTH lognormal and	Normal distribution? r-squared is: 0.733 normal distributions.	

⁴³ PQL = practical quantitation limit

⁴⁴ UCL = upper confidence limit

Washington Closure Hanford
Originator J. M. Capron Project 100-B/C Field Remediation
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

Date 12/16/07 Job No. 14655

Calc. No. 0100B-CA-V0310 Checked M. J. Appel mg Rev. No. 0
Date 12/19/274
Sheet No. 8 of 189 131/08

Fcology Software (MTCAStat) Results (continued)

1				Ecology S	oftware (A	ATCASta	i) Results (continuea)			
3 4 5 6 7	DATA 250 359 355 353 346	J15W21 J15W22 J15W23/3 J15W24 J15W25	Manganese 95% UG J15W34 Number of samples Uncensored 10	CL Calculation Uncensored values Mean	337	8.7 13.6 17.1 15.8 12.2	ID J15W21 J15W22 J15W23/J J15W24 J15W25	Nickel 95% 15W34 Number of samples Uncensored	UCL 10	Calculation Uncensored values Mean	14.0
8 9 10 11 12 13 14	346 366 324 331 352 338	J15W26 J15W27 J15W28 J15W29 J15W30	Detection limit or PQL Method detection limit TOTAL 10	Lognormal mean Std. devn. Median Min. Max.	338 33 349 250 366	18.3 11.7 11.2 18.2 13.2	J15W26 J15W27 J15W28 J15W29 J15W30	Censored Detection limit or PQL Method detection limit TOTAL	10	Lognormal mean Std. devn. Median Min. Max.	14.0 14.0 3.2 13.4 8.7 18.3
15 16 17 18 19 20			Lognormal distribution? r-squared is: 0.659 Recommendations: Reject BOTH lognormal and n	Normal distribution? r-squared is: 0.704 ormal distributions.				Lognormal distribution? r-squared is: 0.952 Recommendations: Use lognormal distribution	n.	Normal distribution? r-squared is: 0.958	
21 22			UCL (based on Z-statistic) is	355				UCL (Land's method) is		16.4	
23 24 25 26 27	DATA 32.7 44.5 46.0 49.5	ID J15W21 J15W22 J15W23/J J15W24	Vanadium 95% UC 15W34 Number of samples	L Calculation Uncensored values		DATA 29.8 46.0 43.5 42.9	J15W21 J15W22 J15W23/J J15W24	Zinc 95% U 15W34 Number of samples	CL C	alculation Uncensored values	
28 29 30 31 32 33 34	59.4 52.7 43.9 38.0 49.9 42.2	J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Uncensored 10 Censored Detection limit or PQL Method detection limit TOTAL 10	Mean Lognormal mean Std. devn. Median Min. Max.	45.9 46.0 7.6 45.2 32.7 59.4	41.9 38.6 41.1 41.9 45.0 42.0	J15W25 J15W26 J15W27 J15W28 J15W29 J15W30	Censored Detection limit or PQL Method detection limit	10	Mean Lognormal mean Std. devn. Median Min. Max.	41.3 41.3 4.5 42.0 29.8 46.0
35 36 37 38 39			Lognormal distribution? r-squared is: 0.970 Recommendations: Use lognormal distribution.	Normal distribution? r-squared is: 0.981				Lognormal distribution? r-squared is: 0.709 Recommendations: Reject BOTH lognormal a	ind n	Normal distribution? r-squared is: 0.762 ormal distributions.	
40 41 42			UCL (Land's method) is	51.0				UCL (based on Z-statistic) is	43.6	

⁴³ PQL = practical quantitation limit

⁴⁴ UCL = upper confidence limit

Washington Closure Hanford
Originator J. M. Capron
Project 100-B/C Field Remediation
Subject 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations

TDL = target detection limit

U = undetected

Date 01/22/08 Job No. 14655 Calc. No. 0100B-CA-V0310 Checked M. J. Appel M

Sample	Sample	Sample	Gro	ss alp	pha	Gro	oss be	eta	Potas	sium-40	Ra	dium-	226	Radiu			oriun	n-228		rium-			minum
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q MDA	pCi/g	Q	MDA	pCi/g		pCi/g	Q	MDA	pCi/g	Q	MDA	1113113	Q PQL
3	J15W23	10/22/07	23.0		10.7	23.7		5.52	16.3	0.490	1.31		0.095	1.78	0.165	1.74		0.056	1.78	.	0.165	9310	11.6
Ouplicate of J15W23	J15W34	10/22/07	21.4		11.3	24.6		8.68	16.4	0.314	1.50		0.076	1.71	0.168	1.76		0.049	1.71		0.168	8180	11.6
nalysis:																							
	TDL			10			15			0.5		0.1		0.	2		1			1			5
	Both > M	DA/PQL?	Yes	conti	nue)	Yes	conti	nue)	Yes (c	ontinue)	Yes	(cont	inue)	Yes (co	ntinue)	Yes	(con	ntinue)		(conti	Market Strategy and Company of the Strategy of	WALKERSON AS ADDRESS WAS PROPERTY OF THE PERSON AND	continue)
Duplicate Analysis	Both >5	xTDL?	No - eval	uate c	difference	No - eval	uate d	ifference	Yes (c	alc RPD)	Yes	(calc	RPD)	Yes (ca	lc RPD)	No - eva	luate	difference	No - eva	luate d	lifference		calc RPD)
Duplicate Alialysis	RF								0.	61%		14%		4.0									13%
<u>_</u>	Difference	>2xTDL?	No -	ассер	table	No -	accep	table	Not a	pplicable	Not	applic	able	Not app	olicable	No -	acce	eptable	No -	accep	table	Not a	pplicable
Sample	Sample	Sample	Δ	rseni	С	E	Bariun	<u> </u>	Ber	vllium		Boro	i I	Cadr	nium		Calci	um	Chro	mium	(total)	C	obalt
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q PQL	mg/kg	Q	PQL	mg/kg (PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q PQL
3	J15W23	10/22/07	6.9		1.4	80.0	\Box	0.29	0.19	0.14	1.7		1.4	0.29	0.29	6340	C		19.7		0.58	8.0	0.58
Duplicate of J15W23	J15W34	10/22/07	5.7		1.4	74.6		0.29	0.14	U 0.14	1.4	U	1.4	0.31	0.29	5930	С	11.6	16.1		0.58	7.4	0.58
Analysis:			***************************************	4	***************************************																		
	TDL			10			2			0.5		2		0	.2		100	0		1			2
	Both >		Yes	(conti	inue)	Yes	(conti	nue)	No - evalu	ate differend	e No - eva	aluate	difference	No - evalua	e difference			ntinue)	THE R. P. LEWIS CO., LANSING MICH. LANSING MICH.	(cont	management of the control of the		continue)
Duplicate Analysis	Both >	5xTDL?	No - evaluate difference No - acceptable	Yes	Yes (calc RPD)									Yes	CAL PROPERTY.	c RPD)	Yes	(calc		No - evalu	uate differen		
Dupilicate Arialysis	Ri	PD			7.0%									6.7% Not applicable		····		20%					
	Difference	>2xTDL?	No -	accep	table	Not	applic	able	No - a	cceptable	No -	acce	otable	No - ac	ceptable	Not	t app	licable	Not	applic	able	No - 8	acceptable
Sample	Sample	Sample	(Coppe	er	Hexaval	ent Ci	romium		ron		Lead		Magn	esium	Ma	anga	nese	Mo	lybde	num	P	Nickel
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q PQL	mg/kg		PQL	mg/kg	Q PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q PQL
3	J15W23	10/22/07	21.1	Ĉ	0.58	0.23	+=+	0.21	23000	C 13.0	7.2		0.87	5080	7.2	371	С		0.87		0.87	17.6	0.58
Duplicate of J15W23	J15W34	10/22/07	18.9	C	0.58	0.21	U	0.21	21400	C 13.0	6.3	1	0.87	4870	7.2	339	C		1.0		0.87	16.5	0.58
Analysis:			· ·			I			<u></u>		······································												
	TDL			1			0.5			5		5		7	'5		5			2			4
	Both >	PQL?	Yes	(cont	inue)	No - eva	luate d	difference	Yes (continue)	Yes	(con	linue)	Yes (co	ontinue)	Yes	(co	ntinue)	No - eva	aluate	difference	and the first territory of the second section of the second secon	(continue)
Duplicate Analysis	Both >	5xTDL?	Yes	(calc	RPD)				Yes (calc RPD)	No - eva	aluate	difference	Yes (ca	lc RPD)	Yes	(cal	c RPD)	1.			No - eval	uate differen
Duplicate Alialysis	RI	PD		11%	Selection of the select	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1				7.2%				4.	2%		9.0	1%					
	Difference	>2xTDL?	Not	applic	cable	No -	accep	table	Not a	pplicable	No	- acce	ptable	Not ap	plicable	No	t app	olicable	No	- acce	ptable	. No -	acceptable
Sample	Sample	Sample	Po	otassi	um	T	Silico	n		Silver		Sodiu	ım .	Vana	dium		Zir	าต	1	Pyrer	ne		
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q PQL	mg/kg				Q PQL	mg/kg			μg/kg	Q	PQL		
3	J15W23	10/22/07	1280	1	11.6	1280		11.6	0.39	0.29		C		48.6	0.41	43.0		1.7	350	U	350		
Duplicate of J15W23		10/22/07	1170		11.6	1900	and the same and an address of	11.6	0.29	U 0.29	a considerate design contractor and an expension	С		43.3	0.40	43.9	C	1.7	21	J	350		
Analysis:					·																		
	TDL			400			2			0.2		50		2	2.5		1			330			
	Both >	PQL?	Yes	(cont	tinue)	Yes	(cont	inue)	No - evalu	uate differen	ce Ye	s (con	tinue)	Yes (c	ontinue)			ntinue)	No - ev	aluate	difference	a 1401 Mil	
Duplicate Analysis	Both >	5xTDL?	No - eva	luate	difference	Yes	(calc	RPD)			No - ev	aluate	difference	Yes (ca	alc RPD)	Yes		lc RPD)		anger to the second of the second		a 134 Aug	
Duplicate Allalysis	R	PD					39%								2%		2.1						
	Difference	e >2xTDL?	No -	acce	ptable	Not	applic	cable	No - a	acceptable	No	- acce	ptable	Not ap	plicable	No	ot app	olicable	No	- acce	ptable		
C = method blank contan					gualifier																		

47 MDA = minimum detectable activity

48 PQL = practical quantitation limit

						CACARC A.						8								
C 1. T	Sample	Sample	Amei	riciur	n-241	Ces	ium-	137	Co	balt-	-60	Euro	piun	1-152	Euro	piun	1-154	Euro	pium	-155
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
1	J15W21	10/22/07	0.045	Ü	0.045	0.051	U	0.051	0.029	U	0.029	0.075	υ	0.075	0.090	U	0.090	0.068	U	0.068
2	J15W22	10/22/07	0.209	Ü	0.209	0.093		0.038	0.031	IJ	0.031	0.093	U	0.093	0.104	U	0.104	0.108	U	0.108
3	J15W23	10/22/07	0.075	υ	0.075	0.045	U	0.045	0.041	U	0.041	0.112	U	0.112	0.139	υ	0.139	0.175	U	0.175
Duplicate of J15W23	J15W34	10/22/07	0.070	υ	0.070	0.040	U	0.040	0.038	U	0.038	0.100	U	0.100	0.123	U	0.123	0.129	ט	0.129
4	J15W24	10/22/07	0.270	U	0.270	0.042	U	0.042	0.035	U	0.035	0.106	U	0.106	0.116	U	0.116	0.138	כ	0.138
5	J15W25	10/22/07	0.414	U	0.414	0.057	Ü	0.057	0.048	U	0.048	0.132	U	0.132	0.182	Ū	0.182	0.155	Ü	0.155
6	J15W26	10/22/07	0.062	U	0.062	0.045	U	0.045	0.043	U	0.043	0.123	U	0.123	0.152	U	0.152	0.122	U	0.122
7	J15W27	10/22/07	0.060	U	0.060	0.067		0.026	0.035	U	0.035	0.116	U	0.116	0.121	U	0.121	0.101	Ū	0.101
8	J15W28	10/22/07	0.216	U	0.216	0.045	U	0.045	0.028	U	0.028	0.086	U	0.086	0.086	U	0.086	0.111	U	0.111
9	J15W29	10/22/07	0.403	U	0.403	0.052	U	0.052	0.049	υ	0.049	0.123	U	0.123	0.178	U	0.178	0.145	U	0.145
10	J15W30	10/22/07	0.054	U	0.054	0.042	U	0.042	0.045	U	0.045	0.109	IJ	0.109	0.145	U	0.145	0.112	U	0.112
OB stockpile (south)	J15W31	10/22/07	0.058	U	0.058	0.078		0.040	0.033	U	0.033	0.123	U	0.123	0.112	U	0.112	0.137	IJ	0.137
OB stockpile (north)	J15W32	10/22/07	0.210	U	0.210	0.050		0.031	0.031	υ	0.031	0.089	υ	0.089	0.092	U	0.092	0.108	U	0.108
OB stockpile (center)	J15W33	10/22/07	0.055	U	0.055	0.062	U	0.062	0.043	U	0.043	0.109	U	0.109	0.139	U	0.139	0.186	U	0.186

	Sample	Sample	Gre	oss al	pha	Gr	oss b	eta	Pota	ssiur	n-40	Rad	dium-	-226	Rac	dium-	-228	Silv	er-1()8m
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
1	J15W21	10/22/07	14.4		6.53	13.5		5.95	14.6		0.269	0.553		0.049	0.743		0.114	0.021	U	0.021
2	J15W22	10/22/07	14.3		8.21	19.8		6.30	15.8		0.349	0.729		0.044	0.971		0.137	0.024	U	0.024
3	J15W23	10/22/07	23.0		10.7	23.7		5.52	16.3		0.490	1.31		0.095	1.78		0.165	0.030	U	0.030
Duplicate of J15W23	J15W34	10/22/07	21.4		11.3	24.6		8.68	16.4		0.314	1.50		0.076	1.71		0.168	0.028	U	0.028
4	J15W24	10/22/07	31.9		8.79	23.8		5.54	17.0		0.373	1.06		0.077	1.32		0.167	0.030	U	0.030
5	J15W25	10/22/07	36.9		5.84	23.2		8.97	15.3		0.602	0.896		0.113	1.25		0.229	0.039	U	0.039
6	J15W26	10/22/07	30.1		6.36	20.4		5.93	15.4		0.482	1.69		0.078	1.90		0.185	0.034	U	0.034
7	J15W27	10/22/07	19.3		5.74	21.5		8.95	14.7		0.361	0.909		0.068	1.15		0.137	0.024	U	0.024
8	J15W28	10/22/07	16.2		9.82	21.9		5.68	16.2		0.295	0.781		0.061	1.12		0.117	0.023	U	0.023
9	J15W29	10/22/07	12.1		8.96	17.1		5.65	16.7		0.525	0.798		0.087	0.980		0.195	0.039	U	0.039
10	J15W30	10/22/07	15.4		8.99	22.2		5.54	15.4		0.396	0.697		0.077	1.12		0.161	0.031	U	0.031
OB stockpile (south)	J15W31	10/22/07	17.4		9.39	21.2		8.99	15.9		0.329	0.799		0.055	1.18		0.155	0.023	U	0.023
OB stockpile (north)	J15W32	10/22/07	17.0		11.6	16.3		8.70	15.9		0.286	0.771		0.045	1.08		0.126	0.023	υ	0.023
OB stockpile (center)	J15W33	10/22/07	9.66		8.28	15.9		5.60	16.6		0.388	0.828		0.074	1.24		0.171	0.031	U	0.031

Note: The following abbreviations apply to all Attachment 1 tables.

Note: Data qualified with B, C, or J are considered acceptable values.

B = method blank contamination (organics) C = method blank contamination (inorganics) MDA = minimum detectable activity

PQL = practical quantitation limit

OB = overburden

O = qualifier

J = estimate

~		7
U	222	undetected

Attachment	1	Sheet No.	1 of 10
Originator	J. M. Capron JA.	Date	12/16/07
Checked	M. J. Appel	Date	mtt-
Calc. No.	0100B-CA-V0310	Rev. No.	9,

Rev. 0

Attachment 1.	100-B-21:2	Verification	Sampling Results.
---------------	------------	--------------	-------------------

recaemine 2. 100 B 21.B / Clineation Gamping Results.														
Sample Location	Sample	Sample	Tho	rium	-228	Tho	rium	-232	Ura	nium	-235	Ura	nium	-238
Sample Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
1	J15W21	10/22/07	0.688		0.036	0.743		0.11.4	0.115	U	0.115	3.07	U	3.07
2	J15W22	10/22/07	0.964		0.044	0.971		0.137	0.156	U	0.156	3.74	U	3.74
3	J15W23	10/22/07	1.74		0.056	1.78		0.165	0.188	U	0.188	4.91	U	4.91
Duplicate of J15W23	J15W34	10/22/07	1.76		0.049	1.71		0.168	0.174	U	0.174	4.55	U	4.55
4	J15W24	10/22/07	1.41		0.055	1.32		0.167	0.186	U	0.186	4.26	U	4.26
5	J15W25	10/22/07	1.18		0.066	1.25		0.229	0.233	Ü	0.233	5.68	υ	5.68
6	J15W26	10/22/07	1.99		0.057	1.90		0.185	0.187	U	0.187	5.10	U	5.10
7	J15W27	10/22/07	1.15		0.042	1.15		0.137	0.154	U	0.154	4.46	U	4.46
8	J15W28	10/22/07	1.10		0.044	1.12		0.117	0.185	U	0.185	3.44	U	3.44
9	J15W29	10/22/07	0.950		0.066	0.980		0.195	0.218	Ŭ	0.218	5.70	U	5.70
10	J15W30	10/22/07	1.02		0.052	1.12		0.161	0.164	U	0.164	5.20	U	5.20
OB stockpile (south)	J15W31	10/22/07	1.12		0.040	1.18		0.155	0.144	U	0.144	3.83	U	3.83
OB stockpile (north)	J15W32	10/22/07	1.05		0.039	1.08		0.126	0.146	υ	0.146	3.69	U	3.69
OB stockpilc (center)	J15W33	10/22/07	1.23		0.050	1.24		0.171	0.166	U	0.166	4.77	U	4.77

Sample Location	Sample	Sample	Al	umin	um	Aı	itimo	ny	l A	rsen	ic	E	Bariu	m	Be	ryllit	ım		Boror	1
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	4910		12.0	0.90	U	0.90	1.8		1.5	49.4		0.30	0.15	U	0.15	1.6		1.5
2	J15W22	10/22/07	7780		11.6	0.87	υ	0.87	4.1		1.5	83.2		0.29	0.15	U	0.15	2.4		1.5
3	J15W23	10/22/07	9310		11.6	0.87	U	0.87	6.9		1.4	80.0		0.29	0.19		0.14	1.7		1.4
Duplicate of J15W23	J15W34	10/22/07	8180		11.6	0.87	U	0.87	5.7		1.4	74.6		0.29	0.14	U	0.14	1.4	υ	1.4
4	J15W24	10/22/07	9590		11.8	0.89	U	0.89	5.7		1.5	86.1		0.30	0.18		0.15	2.2		1.5
5	J15W25	10/22/07	8390		11.9	0.89	U	0.89	5.0		1.5	107		0.30	0.15	U	0.15	2.7		1.5
6	J15W26	10/22/07	8880		11.6	0.87	υ	0.87	7.9		1.5	85.9		0.29	0.15	U	0.15	2.5		1.5
7	J15W27	10/22/07	7760		10.6	0.80	U	0.80	4.0		1.3	75.7		0.27	0.13	U	0.13	2.1		1.3
8	J15W28	10/22/07	7450		10.8	0.81	U	0.81	4.3		1.4	75.2		0.27	0.14	U	0.14	2.1		1.4
9	J15W29	10/22/07	10000		11.9	0.89	U	0.89	5.6		1.5	91.1		0.30	0.15	U	0.15	2.6		1.5
10	J15W30	10/22/07	9150		11.5	0.87	U	0.87	5.1		1.4	86.5		0.29	0.14	U	0.14	2.4		1.4
OB stockpile (south)	J15W31	10/22/07	6550		11.3	0.85	U	0.85	3.5		1.4	65.0		0.28	0.14	U	0.14	1.4	U	1.4
OB stockpile (north)	J15W32	10/22/07	9390		11.0	0.82	U	0.82	4.6		1.4	89.8		0.27	0.14	U	0.14	2.5		1.4
OB stockpile (center)	J15W33	10/22/07	8300		11.9	0.89	U	0.89	4.8		1.5	86.3		0.30	0.15	Ü	0.15	1.7		1.5
Equipment blank	J15W35	10/22/07	51.0		3.6	0.27	υ	0.27	0.45	U	0.45	1.4		0.09	0.04	U	0.04	0.54		0.45

Attachment	1	Sheet No.	2 of 10	
Originator	J. M. Capron	Date	12/16/07	
Checked	M. J. Appel	Date		
Calc. No.	0100B-CA-V0310	Rev. No.	0	

Sample Location	Sample	Sample	Ca	dmi	um	С	alciu	m	Ch	romi	um	(Cobal	t	C	Сорре	er	Hexavale	nt Cl	ıromium
•	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	0.30	U	0.30	4880	С	12.0	6.9		0.6	5.3		0.60	17.4	С	0.60	0.20	U	0.20
2	J15W22	10/22/07	0.29	U	0.29	6130	С	11.6	10.8		0.58	7.9		0.58	20.6	С	0.58	0.21	Ü	0.21
3	J15W23	10/22/07	0.29	U	0.29	6340	С	11.6	19.7		0.58	8.0		0.58	21.1	C	0.58	0.23		0.21
Duplicate of J15W23	J15W34	10/22/07	0.31		0.29	5930	С	11.6	16.1		0.58	7.4		0.58	18.9	C	0.58	0.21	U	0.21
4	J15W24	10/22/07	0.30	U	0.30	8080	С	11.8	16.3		0.59	7.6		0.59	21,2	С	0.59	0.27		0.20
5	J15W25	10/22/07	0.30	U	0.30	6140	С	11.9	12.0		0.60	7.3		0.60	18.5	C	0.60	0.32		0.20
6	J15W26	10/22/07	0.29	U	0.29	10000	С	11.6	18.3		0.58	8.2		0.58	24.0	С	0.58	0.23		0.20
7	J15W27	10/22/07	0.27	U	0.27	4410	С	10.6	11.6		0.53	7.4		0.53	17.3	С	0.53	0.31		0.20
8	J15W28	10/22/07	0.27	U	0.27	4920	С	10.8	10.8		0.54	7.3		0.54	16.4	С	0.54	0.29		0.20
9	J15W29	10/22/07	0.30	U	0.30	5780	C	11.9	14.4		0.59	8.3		0.59	19.9	С	0.59	0.22		0.20
10	J15W30	10/22/07	0.29	U	0.29	5440	С	11.5	12.5		0.58	7.9		0.58	19.8	С	0.58	0.20	U	0.20
OB stockpile (south)	J15W31	10/22/07	0.28	U	0.28	4620	С	11.3	10.4		0.56	6.5		0.56	15.3	С	0.56	0.20	U	0.20
OB stockpile (north)	J15W32	10/22/07	0.33		0.27	5970	С	11.0	15.8		0.55	8.6		0.55	20.6	С	0.55	0.20	U	0.20
OB stockpile (center)	J15W33	10/22/07	0.31		0.30	10900	С	11.9	13.5		0.59	6.6		0.59	18.4	С	0.59	0.26		0.20
Equipment blank	J15W35	10/22/07	0.09	U	0.09	28.9	UJ	3.6	0.18	U	0.18	0.18	U	0.18	0.26	Ü	0.18	L		

	Sample	Sample		Iron			Lead		Ma	gnesi	ium	Ma	ngan	ese	M	Tercu:	ry	Mol	ybdei	ıum
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	14100	С	13.4	3.0		0.90	3490	С	7.5	250	С	0.12	0.02	U	0.02	0.90	U	0.90
2	J15W22	10/22/07	23800	С	13.1	6.8		0.87	4840	С	7.3	359	С	0.12	0.02	U	0.02	0.87	U	0.87
3	J15W23	10/22/07	23000	C	13.0	7.2		0.87	5080	С	7.2	371	С	0.12	0.01	U	0.01	0.87		0.87
Duplicate of J15W23	J15W34	10/22/07	21400	С	13.0	6.3		0.87	4870	С	7.2	339	С	0.12	0.02	U	0.02	1.0		0.87
4	J15W24	10/22/07	22400	С	13.3	6.5		0.89	5160	С	7.4	353	С	0.12	0.02	U	0.02	0.89	U	0.89
5	J15W25	10/22/07	24000	С	13.4	5.6		0.89	4070	С	7.4	346	С	0.12	0.02	U	0.02	2.5		0.89
6	J15W26	10/22/07	23200	С	13.1	5.9		0.87	4800	С	7.3	366	С	0.12	0.01	U	10.0	0.97		0.87
7	J15W27	10/22/07	21000	С	11.9	5.5		0.80	4200	С	6.6	324	С	0.11	0.01	U	10.0	0.80	U	0.80
8	J15W28	10/22/07	20400	С	12.2	6.0		0.81	4280	С	6.8	331	С	0.11	0.01	U	0.01	0.81	U	0.81
9	J15W29	10/22/07	24100	С	13.4	5.8		0.89	5800	С	7.4	352	С	0.12	0.01	U	0.01	0.89	U	0.89
10	J15W30	10/22/07	22600	С	13.0	5.9		0.87	5020	С	7.2	338	С	0.12	0.02	U	0.02	0.87	U	0.87
OB stockpile (south)	J15W31	10/22/07	18500	С	12.7	4.5		0.85	3660	С	7.1	297	С	0.11	0.02	U	0.02	0.85	U	0.85
OB stockpile (north)	J15W32	10/22/07	24800	С	12.4	6.3		0.82	5450	С	6.9	363	С	0.11	0.01	U	0.01	0.83		0.82
OB stockpile (center)	J15W33	10/22/07	20600	С	13.3	6.5		0.89	4930	Ç	7.4	287	С	0.12	0.01	U	0.01	0.89	U	0.89
Equipment blank	J15W35	10/22/07	94.7	С	4.0	0.35		0.27	7.3	UJ	2.2	3.3	С	0.04	0.01	U	0.01	0.27	U	0.27

Attachment	. 1	Sheet No	3 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

Rev. 0

					A COM CANA	ment 1.	200				~ 4444	200								
Sample Location	Sample	Sample	1	Nicke	l	Po	tassi	ım	So	eleniu	m		Silico	n	1	Silve	<u> </u>	S	odiur	n
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	8.7		0.60	704		12.0	1.8	U	1.8	2080		12.0	0.30	U	0.30	189	С	6.0
2	J15W22	10/22/07	13.6		0.58	1430		11.6	1.7	U	1.7	2510		11.6	0.29	U	0.29	281	С	5.8
3	J15W23	10/22/07	17.6		0.58	1280		11.6	1.7	U	1.7	1280		11.6	0.39		0.29	236	С	5.8
Duplicate of J15W23	J15W34	10/22/07	16.5		0.58	1170		11.6	1.7	U	1.7	1900		11.6	0.29	U	0.29	228	С	5.8
4	J15W24	10/22/07	15.8		0.59	1370		11.8	1.8	U	1.8	2090		11.8	0.30	U	0.30	308	С	5.9
5	J15W25	10/22/07	12.2		0.60	1480		11.9	1.8	U	1.8	1630		11.9	0.30	U	0.30	278	С	6.0
6	J15W26	10/22/07	18.3		0.58	1160		11.6	1.7	U	1.7	3030		11.6	0.29	U	0.29	434	С	5.8
7	J15W27	10/22/07	11.7		0.53	1490		10.6	1.6	U	1.6	1670		10.6	0.27	U	0.27	225	С	5.3
8	J15W28	10/22/07	11.2		0.54	1510		10.8	1.6	U	1.6	2690		10.8	0.27	Ü	0.27	232	С	5.4
9	J15W29	10/22/07	18.2		0.59	1800		11.9	1.8	U	1.8	1070		11.9	0.30	U	0.30	287	С	5.9
10	J15W30	10/22/07	13.2		0.58	2020		11.5	1.7	U	1.7	2210		11.5	0.29	U	0.29	212	С	5.8
OB stockpile (south)	J15W31	10/22/07	11.3		0.56	1010		11.3	1.7	υ	1.7	2670		11.3	0.28	U	0.28	233	С	5.6
OB stockpile (north)	J15W32	10/22/07	17.8		0.55	1680		11.0	1.6	U	1.6	1120		11.0	0.27	U	0.27	247	С	5.5
OB stockpile (center)	J15W33	10/22/07	12.8		0.59	1250		11.9	1.8	U	1.8	2390		11.9	0.30	U	0.30	. 248	С	5.9
Equipment blank	J15W35	10/22/07	0.18	U	0.18	24.2		3.6	0.54	U	0.54	76.3		3.6	0.09	U	0.09	11.6	UJ	1.8

C	Sample	Sample	Va	nadi	um			
Sample Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL
1	J15W21	10/22/07	32.7		0.42	29.8	С	1.8
2	J15W22	10/22/07	44.5		0.41	46.0	С	1.7
3	J15W23	10/22/07	48.6		0.41	43.0	С	1.7
Duplicate of J15W23	J15W34	10/22/07	43.3		0.40	43.9	С	1.7
4	J15W24	10/22/07	49.5		0.41	42.9	С	1.8
. 5	J15W25	10/22/07	59.4		0.42	41.9	С	1.8
6	J15W26	10/22/07	52.7		0.41	38.6	С	1.7
7	J15W27	10/22/07	43.9		0.37	41.1	С	1.6
8	J15W28	10/22/07	38.0		0.38	41.9	С	1.6
9	J15W29	10/22/07	49.9		0.42	45.0	С	1.8
10	J15W30	10/22/07	42.2		0.40	42.0	С	1.7
OB stockpile (south)	J15W31	10/22/07	35.0		0.40	34.4	С	1.7
OB stockpile (north)	J15W32	10/22/07	53.3		0.38	48.7	С	1.6
OB stockpile (center)	J15W33	10/22/07	41.0		0.41	42.3	С	1.8
Equipment blank	J15W35	10/22/07	0.13	U	0.13	2.1	UJ	0.54

Attachment	1	Sheet No	4 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

Attachment 1. 100-B-21:2 Verification Sampling Results. J15W21 J15W23 J15W34 J15W34													
				J	15W2	2	l			i			
Constituents	Lo	cation	ı 1	Lo	cation	2		cation		Duplica	ite of J	15W23	
Constituents	Sample	Date:	10/22/07	Sample	Date 1	0/22/07	Sample	Date	10/22/07	Sample	Date 1	0/22/07	
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	
	Marian Control		mivolati	e Organi	c Con	pounds							
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350	
1,2-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350	
1,3-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350	
1,4-Dichlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350	
2,4,5-Trichlorophenol	850	U	850	860	U	860	870	U	870	870	U	870	
2,4,6-Trichlorophenol	340	U	340	340	U	340	350	U	350	350	U	350	
2,4-Dichlorophenol	340	U	340	340	U	340	350	U	350	350	U	350	
2,4-Dimethylphenol	340	U	340	340	U	340	350	U	350	350	U	350	
2,4-Dinitrophenol	850	U	850	860	U	860	870	U	870	870	U	870	
2,4-Dinitrotoluene	340	U	340	340	U	340	350	U	350	350	U	350	
2,6-Dinitrotoluene	340	U	340	340	U	340	350	U	350	350	U	350	
2-Chloronaphthalene	340	U	340	340	U	340	350	U	350	350	U	350	
2-Chlorophenol	340	U	340	340	U	340	350	U	350	350	U	350	
2-Methylnaphthalene	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350	
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	350	U	350	350	U	350	
2-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870	
2-Nitrophenol	340	U	340	340	U	340	350	U	350	350	U	350	
3,3'-Dichlorobenzidine	340	U	340	340	U	340	350	υ	350	350	U	350	
3-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870	
4,6-Dinitro-2-methylphenol	850	U	850	860	U	860	870	U	870	870	U	870	
4-Bromophenyl-phenylether	340	U	340	340	U	340	350	U	350	350	U	350	
4-Chloro-3-methylphenol	340	U	340	340	U	340	350	U	350	350	U	350	
4-Chloroaniline	340	UJ	340	340	UJ	340	350	UJ	350	350	UJ	350	
4-Chlorophenyl-phenylether	340	U	340	340	U	340	350	U	350	350	U	350	
4-Methylphenol (p-cresol)	340	U	340	340	U	340	350	U	350	350	U	350	
4-Nitroaniline	850	U	850	860	U	860	870	U	870	870	U	870	
4-Nitrophenol	850	U	850	860	U	860	870	U	870	870	U	870	
Acenaphthene	340	U	340	340	U	340	350	U	350	350	U	350	
Acenaphthylene	340	U	340	340	U	340	350	U	350	350	U	350	
Anthracene	340	U	340	340	Ū	340	350	Ū	350	350	U	350	
Benzo(a)anthracene	340	U	340	340	U	340	350	U	350	350	υ	350	
Benzo(a)pyrene	340	Ū	340	340	U	340	350	Ü	350	350	U	350	
Benzo(b)fluoranthene	340	Ū	340	340	Ū	340	350	Ū	350	350	U	350	
Benzo(g,h,i)perylene	340	Ū	340	340	Ū	340	350	Ū	350	350	U	350	
Benzo(k)fluoranthene	340	Ū	340	340	U	340	350	U	350	350	U	350	
bis(2-Chloro-1-methylethyl)ether	340	Ū	340	340	Ū	340	350	Ū	350	350	U	350	
bis(2-Chloroethoxy)methane	340	Ū	340	340	Ū	340	350	Ū	350	350	U	350	
bis(2-Chloroethyl)ether	340	Ū	340	340	Ū	340	350	U	350	350	U	350	
bis(2-Ethylhexyl)phthalate	660	Ū	340	660	Ū	340	660	U	350	660	U	350	
Butylbenzylphthalate	340	U	340	340	U	340	350	Ū	350	350	U	350	
Carbazole	340	U	340	340	ΙÜ	340	350	Ū	350	350	T U	350	
Chrysene	340	T U	340	340	U	340	350	T U	350	350	1 0	350	
Di-n-butylphthalate	22	J	340	340	TÜ	340	350	U	350	350	1 0	350	
Di-n-octylphthalate	340	U	340	340	U	340	350	U	350	350	1 0	350	
Dibenz(a,h)anthracene	340	U	340	340	U	340	350	U	350	350	ΤÜ	350	
Dibenzofuran	340	U	340	340	U	340	350	U	350	350	TU	350	
						52111	1 (71)	1 1 1	1 370		1 11		

Attachment	1	Sheet No.	5 of 10
Originator	J. M. Capron	Date_	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

	J.	15W2			15W2		<u> </u>	15W2		· .I	15W3	4
	ì	cation			cation			cation				J15W23
Constituents	Sample	Date :	0/22/07	Sample	Date 1	10/22/07	Sample	Date :	10/22/07	Sample		i
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	Se	mivol	atile Org	anic Con	poun	ds (conti	nued)					
Dimethylphthalate	340	U	340	340	U	340	350	U	350	350	U	350
Fluoranthene	340	U	340	340	U	340	350	U	350	350	U	350
Fluorene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorobenzene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorobutadiene	340	U	340	340	U	340	350	U	350	350	U	350
Hexachlorocyclopentadiene	340	ט	340	340	U	340	350	U	350	350	U	350
Hexachloroethane	340	Ü	340	340	IJ	340	350	U	350	350	U	350
Indeno(1,2,3-cd)pyrene	340	U	340	340	ט	340	350	U	350	350	U	350
Isophorone	340	U	340	340	U	340	350	Ų	350	350	U	350
N-Nitroso-di-n-dipropylamine	340	IJ	340	340	υ	340	350	U	350	350	U	350
N-Nitrosodiphenylamine	340	U	340	340	ט	340	350	U	350	350	U	350
Naphthalene	340	U	340	340	U	340	350	U	350	350	U	350
Nitrobenzene	340	U	340	340	U	340	350	U	350	350	U	350
Pentachlorophenol	850	U	850	860	ט	860	870	U	870	870	U	870
Phenanthrene	340	U	340	340	U	340	350	U	350	350	U	350
Phenol	340	U	340	340	U	340	350	U	350	350	U	350
Pyrene	340	U	340	340	U	340	350	U	350	21	J	350

		15W2	•	_	15W2	-	_	15W2	-	1	15W2	
Constituents	Sample			Sample			Sample			Sample		· .
	μg/kg	O	POL	μg/kg	O	PQL	μg/kg	O	PQL	μg/kg	Q	PQL
	MS/NS			le Organi			μg/Kg	V	TQL	ив/кв		TQL
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
1,2-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,3-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,4-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
2,4,5-Trichlorophenol	860	U	860	850	U	850	850	U	850	850	U	850
2,4,6-Trichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dimethylphenol	340	U	340	340	U	340	340 -	U	340	340	U	340
2,4-Dinitrophenol	860	U	860	850	U	850	850	U	850	850	U	850
2,4-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2,6-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chloronaphthalene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2-Methylnaphthalene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	340	U	340	340	U	340
2-Nitroaniline	860	U	860	850	U	850	850	U	850	850	U	850
2-Nitrophenol	340	U	340	340	U	340	340	U	340	340	U	340
3,3'-Dichlorobenzidine	340	U	340	340	U	340	340	U	340	340	U	340
3-Nitroaniline	860	U	860	850	U	850	850	U	850	850	U	850
4,6-Dinitro-2-methylphenol	860	U	860	850	U	850	850	U	850	850	U	850
4-Bromophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340
4-Chloro-3-methylphenol	340	U	340	340	U	340	340	U	340	340	U	340
4-Chloroaniline	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
4-Chlorophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340

Attachment	1	Sheet No.	6 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1
		-	

Attachment 1, 100-B-21:2 Verification Sampling Results. J15W24 J15W25 J15W26 J15W27												
	1			-		_	-		-	1	15W2	1
Constituents	1	cation		I	cation			cation		ł	cation	
			10/22/07			10/22/07			10/22/07	Sample		
	μg/kg	Q	PQL	ˈμg/kg anic Con	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
4-Methylphenol (p-cresol)	340	U	340	340	U	340		11	240	240	¥1	240
4-Nitroaniline	860	U	860		U	850	340	U	340	340	U	340
4-Nitrophenol	860	U	860	850	U	850	850 850	U	850	850	U	850
Acenaphthene	340	U	340	850	U				850	850	U	850
	340	U		340	IJ	340	340	U	340	340	U	340
Acenaphthylene Anthracene	340	U	340	340		340	340	U	340	340	U	340
	340	U	340 340	340	U	340 340	340	U	340	340	U	340
Benzo(a)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)pyrene Benzo(b)fluoranthene	340	U		340			340		340	340	U	340
Benzo(g,h,i)perylene	340	U	340 340	340	U	340	340	U	340	340	U	340
Benzo(g,n,1)perylene Benzo(k)fluoranthene	340	U	340	340 340	U	340 340	340 340	U	340 340	340	U	340
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	340	U	340	340	U	340 340
bis(2-Chloroethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	340	660	U	340
Butylbenzylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Carbazole	340	U	340	340	U	340	340	U	340	340	U	340
Chrysene	340	U	340	340	U	340	340	U	340	340	U	340
Di-n-butylphthalate	17	J	340	340	U	340	340	U	340	340	U	340
Di-n-octylphthalate	340	U	340	340	U	340	340	U	340	340	TI.	340
Dibenz(a,h)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Dibenzofuran	340	U	340	340	U	340	340	U	340	340	U	340
Diethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Dimethylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
Fluorene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobutadiene	340	U	340	340	Ū	340	340	ΙŪ	340	340	U	340
Hexachlorocyclopentadiene	340	U	340	340	U	340	340	Ū	340	340	U	340
Hexachloroethane	340	U	340	340	U	340	340	Ū	340	340	U	340
Indeno(1,2,3-cd)pyrene	340	U	340	340	Ū	340	340	U	340	340	U	340
Isophorone	340	U	340	340	Ū	340	340	U	340	340	Ū	340
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitrosodiphenylamine	340	U	340	340	U	340	340	U	340	340	U	340
Naphthalene	340	U	340	340	U	340	340	U	340	340	U	340
Nitrobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Pentachlorophenol	860	U	860	850	U	850	850	U	850	850	U	850
Phenanthrene	340	U	340	340	U	340	340	U	340	340	U	340
Phenol	340	U	340	340	U	340	340	U	340	340	U	340
Pyrene	340	U	340	340	U	340	340	U	340	340	U	340

Attachment	1	Sheet No.	7 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

Attachment 1. 100-B-21:2 Verification Sampling Results.												
	1	15W2		J15W29			J15W30			J15W31		
Constituents	1	cation		1	ocation		i .	cation		OB sto		
						10/22/07			,	Sample		
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	1 2 12			e Organi					r	T		
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
1,2-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,3-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
1,4-Dichlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
2,4,5-Trichlorophenol	850	U	850	850	U	850	850	U	850	850	U	850
2,4,6-Trichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dichlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dimethylphenol	340	U	340	340	U	340	340	U	340	340	U	340
2,4-Dinitrophenol	850	U	850	850	U	850	850	U	850	850	U	850
2,4-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2,6-Dinitrotoluene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chloronaphthalene	340	U	340	340	U	340	340	U	340	340	U	340
2-Chlorophenol	340	U	340	340	U	340	340	U	340	340	U	340
2-Methylnaphthalene	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	340	U	340	340	U	340
2-Nitroaniline	850	U	850	850	U	850	850	U	850	850	U	850
2-Nitrophenol	340	·U	340	340	U	340	340	U	340	340	U	340
3,3'-Dichlorobenzidine	340	U	340	340	U	340	340	U	340	340	U	340
3-Nitroaniline	850	U	850	850	U	850	850	U	850	850	U	850
4,6-Dinitro-2-methylphenol	850	U	850	850	U	850	850	U	850	850	U	850
4-Bromophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	υ	340
4-Chloro-3-methylphenol	340	U	340	340	U	340	340	U	340	340	U	340
4-Chloroaniline	340	UJ	340	340	UJ	340	340	UJ	340	340	UJ	340
4-Chlorophenyl-phenylether	340	U	340	340	U	340	340	U	340	340	U	340
4-Methylphenol (p-cresol)	340	U	340	340	U	340	340	U	340	340	U	340
4-Nitroaniline	850	U	850	850	U	850	850	U	850	850	U	850
4-Nitrophenol	850	U	850	850	U	850	850	U	850	850	U	850
Acenaphthene	340	U	340	340	U	340	340	U	340	340	U	340
Acenaphthylene	340	U	340	340	U	340	340	U	340	340	U	340
Anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)anthracene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(a)pyrene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(b)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(g,h,i)perylene	340	U	340	340	U	340	340	U	340	340	U	340
Benzo(k)fluoranthene	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethoxy)methane	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Chloroethyl)ether	340	U	340	340	U	340	340	U	340	340	U	340
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	340	660	U	340
Butylbenzylphthalate	340	U	340	340	U	340	340	U	340	340	U	340
Carbazole	340	U	340	340	U	340	340	U	340	340	U	340
Chrysene	340	U	340	340	U	340	340	U	340	340	U	340
Di-n-butylphthalate	340	Ū	340	340	Ū	340	340	Ū	340	340	U	340
Di-n-octylphthalate	340	Ū	340	340	U	340	340	U	340	340	U	340
Dibenz(a,h)anthracene	340	Ū	340	340	U	340	340	U	340	340	U	340
Dibenzofuran	340	ΙŪ	340	340	T U	340	340	Ü	340	340	TÜ	340
Diethylphthalate	340	U	340	340	TÜ	340	340	U	340	340	1 0	340

Attachment	1	Sheet No.	8 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

		15W2			15W2	9		15W3		J	15W3	1
Constituents	Lo	catio	ı 8	Lo	Location 9		Location 10			OB stockpile (south)		(south)
Constituents	Sample	Date :	10/22/07	Sample	Date:	10/22/07	Sample	Date	10/22/07	Sample	Date :	0/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
Semivolatile Organic Compounds (continued)												
Dimethylphthalate	340	U	340	340	IJ	340	340	U	340	340	U	340
Fluoranthene	340	U	340	340	IJ	340	340	U	340	340	U	340
Fluorene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorobutadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachlorocyclopentadiene	340	U	340	340	U	340	340	U	340	340	U	340
Hexachloroethane	340	U	340	340	ט	340	340	U	340	340	Ŭ	340
Indeno(1,2,3-cd)pyrene	340	υ	340	340	U	340	340	U	340	340	U	340
Isophorone	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	340	U	340	340	U	340
N-Nitrosodiphenylamine	340	U	340	340	U	340	340	U	340	340	U	340
Naphthalene	340	U	340	340	U	340	340	U	340	340	U	340
Nitrobenzene	340	U	340	340	U	340	340	U	340	340	U	340
Pentachlorophenol	850	U	850	850	U	850	850	U	850	850	U	850
Phenanthrene	340	U	340	340	U	340	340	U	340	340	U	340
Phenol	340	U	340	340	U	340	340	U	340	340	U	340
Pyrene	340	U	340	340	U	340	340	U	340	340	U	340

	J	15W3	2	J	15W3	3	J15W35		
Constituents	OB sto	ckpile	(north)	OB stockpile (center)			Equipment blank		
Constituents	Sample	Date 1	10/22/07	Sample	Date :	0/22/07	Sample	Date	10/22/07
	μg/kg	Q	PQL	μg/kg	Q	PQL	μg/kg	Q	PQL
	Semivol	atile C	Organic (Compoun	ds				
1,2,4-Trichlorobenzene	340	UJ	340	340	UJ	340	330	UJ	330
1,2-Dichlorobenzene	340	U	340	340	U	340	330	U	330
1,3-Dichlorobenzene	340	U	340	340	U	340	330	U	330
1,4-Dichlorobenzene	340	U	340	340	U	340	330	U	330
2,4,5-Trichlorophenol	850	U	850	850	U	850	830	UJ	830
2,4,6-Trichlorophenol	340	U	340	340	υ	340	330	UJ	330
2,4-Dichlorophenol	340	ט	340	340	U	340	330	UJ	330
2,4-Dimethylphenol	340	U	340	340	U	340	330	U	330
2,4-Dinitrophenol	850	IJ	850	850	U	850	830	U	830
2,4-Dinitrotoluene	340	ט	340	340	U	340	330	U	330
2,6-Dinitrotoluene	340	Ü	340	340	ט	340	330	U	330
2-Chloronaphthalene	340	U	340	340	ט	340	330	U	330
2-Chlorophenol	340	U	340	340	U	340	330	U	330
2-Methylnaphthalene	340	UJ	340	340	UJ	340	330	UJ	330
2-Methylphenol (cresol, o-)	340	U	340	340	U	340	330	U	330
2-Nitroaniline	850	U	850	850	U	850	830	U	830
2-Nitrophenol	340	U	340	340	U	340	330	U	330
3,3'-Dichlorobenzidine	340	U	340	340	U	340	330	U	330
3-Nitroaniline	850	U	850	850	U	850	830	U	830
4,6-Dinitro-2-methylphenol	850	U	850	850	U	850	830	U	830
4-Bromophenyl-phenylether	340	U	340	340	U	340	330	UJ	330
4-Chloro-3-methylphenol	340	U	340	340	U	340	330	U	330
4-Chloroaniline	340	UJ	340	340	UJ	340	330	UJ	330
4-Chlorophenyl-phenylether	340	U	340	340	U	340	330	UJ	330

Attachment	1	Sheet No.	9 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

Attachment 1. 100-B-21:2 Verification Sampling Results.

Attachment 1. 100-B-21:2 Verification Sampling Results. J15W32 J15W33 J15W35											
	1			OB stockpile (center)			Equipment blank				
Constituents	1	_	10/22/07	Sample			Sample				
	μg/kg	O	PQL	μg/kg	O	PQL	μg/kg	O	PQL		
Semi	volatile O						μg/Kg	<u>V</u>	TQL		
4-Methylphenol (p-cresol)	340	U	340	340	U	340	330	υl	330		
4-Nitroaniline	850	U	850	850	U	850	830	U	830		
4-Nitrophenol	850	U	850	850	U	850	830	U	830		
Acenaphthene	340	U	340	340	U	340	330	U	330		
Acenaphthylene	340	U	340	340	U	340	330	U	330		
Anthracene	340	U	340	340	U	340	330	U	330		
Benzo(a)anthracene	340	U	340	340	U	340	330	U	330		
Benzo(a)pyrene	340	U	340	340	U	340	330	U	330		
Benzo(b)fluoranthene	340	U	340	340	U	340	330	U	330		
Benzo(g,h,i)perylene	340	U	340	340	U	340	330	Ü	330		
Benzo(k)fluoranthene	340	U	340	340	Ū	340	330	U	330		
bis(2-Chloro-1-methylethyl)ether	340	U	340	340	Ū	340	330	U	330		
bis(2-Chloroethoxy)methane	340	Ū	340	340	Ū	340	330	UJ	330		
bis(2-Chloroethyl)ether	340	Ū	340	340	U	340	330	UJ	330		
bis(2-Ethylhexyl)phthalate	660	U	340	660	U	340	660	U	330		
Butylbenzylphthalate	340	U	340	340	U	340	330	U	330		
Carbazole	340	U	340	340	U	340	330	U	330		
Chrysene	340	U	340	340	U	340	330	U	330		
Di-n-butylphthalate	340	U	340	340	U	340	32	J	330		
Di-n-octylphthalate	340	U	340	340	U	340	330	U	330		
Dibenz(a,h)anthracene	340	U	340	340	U	340	330	U	330		
Dibenzofuran	340	U	340	340	U	340	330	U	330		
Diethylphthalate	340	U	340	340	U	340	330	U	330		
Dimethylphthalate	340	U	340	340	U	340	330	U	330		
Fluoranthene	340	U	340	340	U	340	330	U	330		
Fluorene	340	U	340	340	U	340	330	U	330		
Hexachlorobenzene	340	U	340	340	U	340	330	U	330		
Hexachlorobutadiene	340	U	340	340	U	340	330	U	330		
Hexachlorocyclopentadiene	340	U	340	340	U	340	330	U	330		
Hexachloroethane	340	U	340	340	U	340	330	U	330		
Indeno(1,2,3-cd)pyrene	340	U	340	340	U	340	330	U	330		
Isophorone	340	U	340	340	U	340	330	U	330		
N-Nitroso-di-n-dipropylamine	340	U	340	340	U	340	330	U	330		
N-Nitrosodiphenylamine	340	U	340	340	U	340	330	U	330		
Naphthalene	340	U	340	340	U	340	330	U	330		
Nitrobenzene	340	U	340	340	U	340	330	U	330		
Pentachlorophenol	850	U	850	850	U	850	830	UJ	830		
Phenanthrene	340	U	340	340	U	340	330	U	330		
Phenol	340	U	340	340	U	340	330	U	330		
Pyrene	340	U	340	340	U	340	330	U	330		

Attachment	1	Sheet No.	10 of 10
Originator	J. M. Capron	Date	01/22/08
Checked	M. J. Appel	Date	
Calc. No.	0100B-CA-V0310	Rev. No.	1

Acrobat 8.0

CALCULATION COVER SHEET

Project Ti	tle: 100-B/C Field Remedia	ation			Job	No. 14655					
Area: <u>100</u>	-B/C										
Discipline	: Environmental		*Cal	culation No: 010	0B-CA-V0311						
Subject: 1	Subject: 100-B-21:2 Waste Site Hazard Quotient and Carcinogenic Risk Calculations										
Computer	Program: Excel		Progra	m No: Excel 200	03						
The atta	ched calculations have been should be used in c	generated to docur onjunction with oth	ment compliance w er relevant docume	ith established clea ents in the adminis	anup levels. These trative record.	calculations					
Committe	d Calculation	Preliminar	ry 🗖	Superseded	Void	ded [
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date					
0	Cover = 1 Sheets = 3 Total = 4	J. M. Capron	S. W. Clark	Q N/A	D. N. Strøm	12-20-67					
	Total 1	/	~ ~ ~		0 70 100						
, , , , , , , , , , , , , , , , , , ,											
-		CLIBARA	ADV OF DE	VICION							
	T	SUMM	ARY OF RE	VISION							

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

 Washingto	n Closure Hanford C	CALCULATI	ON SHEET				
Originator:	J. M. Capron Janc	Date:	12/16/07	Calc. No.:	0100B-CA-V0311	Rev.:	1
Project:	100-B/C Field Remediation	Job No:	S. W. Clark	- Date:	12/18/07		
Subject:	100-B-21:2 Waste Site Hazard Quot	Sheet No.	1 of 3				

PURPOSE:

Provide documentation to support the calculation of the hazard quotient (HQ) and excess carcinogenic risk values for the 100-B-21:2 waste site remediation verification sampling results. In accordance with the remedial action goals (RAGs) in the remedial design report/remedial action work plan (RDR/RAWP) (DOE-RL 2005), the following criteria must be met:

- 1) An HQ of <1.0 for all individual noncarcinogens
- 2) A cumulative HQ of <1.0 for noncarcinogens
- 3) An excess carcinogenic risk of $<1 \times 10^{-6}$ for individual carcinogens
- 4) A cumulative excess carcinogenic risk of <1 x 10⁻⁵ for carcinogens.

GIVEN/REFERENCES:

1) DOE-RL, 2005, Remedial Design Report/Remedial Action Work Plan for the 100 Areas, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

2) WAC 173-340, "Model Toxics Control Act - Cleanup," Washington Administrative Code, 1996.

3) WCH, 2007, 100-B-21:2 Waste Site Cleanup Verification 95% UCL Calculations, Calculation No. 0100B-CA-V0310, Rev. 0, Washington Closure Hanford, Richland, Washington.

SOLUTION:

1) Calculate an HQ for each noncarcinogenic constituent detected above background and compare to the individual HQ of <1.0 (DOE-RL 2005).

2) Sum the HQs and compare to the cumulative HQ criterion of <1.0.

33 3) Calculate an excess carcinogenic risk value for each carcinogenic constituent detected above background and compare to the individual excess carcinogenic risk criterion of <1 x 10⁻⁶ (DOE-RL 2005).

4) Sum the excess carcinogenic risk values and compare to the cumulative excess carcinogenic risk criterion of $< 1 \times 10^{-5}$.

Washingto	n Closure Hanford	CALCULATI	ON SHEET				
Originator:	J. M. Capron 42	Date:	12/16/07	Calc. No.:	0100B-CA-V0311	Rev.:	1
Project:	100-B/C Field Remediation	Job No:	14655	Checked:	S. W. Clark	Date:	13/18/07
Subject:	100-B-21:2 Waste Site Hazard Quo	tient and Carcir	nogenic Risk (Calculations		Sheet No.	2 of 3

METHODOLOGY:

Hazard quotient and carcinogenic risk calculations were performed for the 100-B-21:2 waste site using the highest of the remediation footprint statistical values and overburden stockpile samples for each analyte detected above background. Of the contaminants of concern (COCs) and contaminants of potential concern (COPCs) for the site, boron and molybdenum require the HQ calculations because they were detected and Washington State or Hanford Site background values are not available. Hexavalent chromium and multiple organic compounds (as identified in Table 1) are included in HQ and excess carcinogenic risk calculations because they were detected by laboratory analysis and cannot be attributed to natural occurrence. All other site nonradionuclide COCs and COPCs were not detected or were quantified below background levels. An example of the HQ and risk calculations is presented below:

1) For example, the maximum value for boron is 2.5 mg/kg, divided by the noncarcinogenic RAG value of 16,000 mg/kg (calculated in accordance with the noncarcinogenic toxics effects formula in WAC 173-340-740[3]), is 1.6 x 10⁻⁴. Comparing this value, and all other individual values, to the requirement of <1.0, this criterion is met.

2) After the HQ calculations are completed for the appropriate analytes, the cumulative HQ is obtained by summing the individual values. (To avoid errors due to intermediate rounding, the individual HQ values prior to rounding are used for this calculation.) The sum of the HQ values is 7.6 x 10⁻³. Comparing this value to the requirement of <1.0, this criterion is met.

3) To calculate the excess carcinogenic risk, the 95% upper confidence limit or maximum value is divided by the carcinogenic RAG value, then multiplied by 1×10^{-6} . For example, the maximum value for hexavalent chromium is 0.26 mg/kg; divided by 2.1 mg/kg and multiplied as indicated is 1.2×10^{-7} . Comparing this value, and all other individual values, to the requirement of $<1 \times 10^{-6}$, this criterion is met.

4) After these calculations are completed for the carcinogenic analytes, the cumulative excess carcinogenic risk is obtained by summing the individual values. (To avoid errors due to intermediate rounding, the individual values prior to rounding are used for this calculation.) The sum of the excess carcinogenic risk values is 1.3 x 10⁻⁷. Comparing this value to the requirement of <1 x 10⁻⁵, this criterion is met.

I

RESULTS:

- 1) List individual noncarcinogens and corresponding HQs >1.0: None
- 2) List the cumulative noncarcinogenic HQ >1.0: None
- 41 3) List individual carcinogens and corresponding excess cancer risk $>1 \times 10^{-6}$: None
- 42 4) List the cumulative excess cancer risk for carcinogens $> 1 \times 10^{-5}$: None.

Table 1 shows the results of the calculations for the 100-B-21:2 waste site.

Washington Closure Hanford		CALCULATION SHEET						
	Originator:	J. M. Capron	Date:	12/16/07	Calc. No.:	0100B-CA-V0311	Rev.:	1
	Project:	100-B/C Field Remediation	Job No:	14655	Checked:	S. W. Clark	Date:	12/18/07
	Subject:	100-B-21:2 Waste Site Hazard Quotient and Carcinogenic Risk Calculations					Sheet No.	3 of 3

Table 1. Hazard Quotient and Excess Cancer Risk Results for the 100-B-21:2 Waste Site.

Contaminants of Concern/ Contaminants of Potential Concern	Maximum or Statistical Value ^a (mg/kg)	Noncarcinogen RAG ^b (mg/kg) Hazard Quotient		Carcinogen RAG ^b (mg/kg)	Carcinogen Risk	
Metals			te de la companya de La companya de la co			
Boron	2.5	16,000	1.6E-04			
Chromium, hexavalent ^c	0.26	240	1.1E-03	2.1	1.2E-07	
Molybdenum	2.5	400	6.3E-03			
Semivolatiles				1,500		
bis(2-Ethylhexyl) phthalate	0.095	1,600	5.9E-05	71.4	1.3E-09	
Di-n-butylphthalate	0.022	8,000	2.8E-06			
Pyrene	0.021	2,400	8.8E-06			
Totals			4.5			
Cumulative Hazard Quotient:			7.6E-03			
Cumulative Excess Cancer Risk:						

CONCLUSION:

This calculation demonstrates that the 100-B-21:2 waste site meets the requirements for hazard quotient and excess carcinogenic risk as identified in the RDR/RAWP (DOE-RL 2005).

Notes:

¹⁸ a = From WCH (2007).

^b = Value obtained from *Washington Administrative Code* (WAC) 173-340-740(3), Method B, 1996, unless otherwise noted.

c = Value for the carcinogen RAG calculated based on the inhalation exposure pathway (WAC) 173-340-750(3), 1996.

^{-- =} not applicable

RAG = remedial action goal