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ABSTRACT 

In this paper, the outline of a smart system capable of detecting critical load conditions and consequently 

triggering the interrogation of sensors to verify the occurrence of damage onboard ships is considered. The 

target ship for is a ro-ro fast vessel, which suffers relevant slamming phenomena. The slamming detection can 

be obtained in a robust way by training Machine Learning (ML) algorithms according to physics-based criteria 

on data from a scaled model of the same ship. The on-board sensors measure rigid-body motion, global 

dynamic stress due to transient vibrations and relative wave elevation. If classification of these events is 

properly carried out, information on slamming type drives the identification of damage by using data-driven 

hybrid methods. The type of damage experimentally analysed consists of a local variation of stiffness in hull 

panels. The choice of relevant and robust features for damage assessment is based on modal strain energy 

through the definition of a damage index. They require setting up a reference (intact) configuration which the 

damaged structure is compared with. The process requires preliminary the identification of structural modes, 

which are obtained from the accelerometers installed on the hull panels. Pattern Recognition methods based 

on the use of Machine Learning algorithms are developed and trained on numerical simulations including a 

variety of damage scenarios. The combination of information about slamming and direct damage detection 

shows the idea behind the development of such expert systems to assess the structural integrity of the ship. 

 

Keywords: Structural health monitoring; Machine learning; Pattern Recognition; Slamming identification; 

Damage Detection; Fast ship. 

1. INTRODUCTION 

In ship engineering, safety concerns have required in past decades an increasing level of technology from 

design to production, being compliant with the revised rules issued by international organization and 

classification societies as well as considering potential issues related to climate change. Focusing on structural 

aspects, extensive use of finite element method and computational tools for the prediction of environmental 

loads has allowed for considering with higher confidence the statistical occurrence of extreme loads, due to 

slamming, water-on-deck and sloshing, as well as whipping and springing dynamical responses. More recently, 

attention has also shifted to the possibility of systematically acquiring information on the ship behaviour from 

full-scale on-board measurements. In particular, full-scale measurements are indeed considered important to 

achieve thorough understanding of complex phenomena as those mentioned above, but also cover other aspects 

such as comfort, continuous wave loading and fatigue. The Structural Health Monitoring (SHM) systems come 

into play by providing a robust, resilient, and reliable data-informed foundation. A guideline (DNV-GL, 2018) 

presents the standard components to receive a Hull Monitoring System Notation (HMON) for different vessel 

types. Although developing a hull monitoring system according to the classification guidelines for such vessels 

is broadly acceptable, the data processing requirements can be as sophisticated to implement as the system 

components themselves. Thus, structural integrity is nowadays a goal that is not only a matter of a reliable 
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design, but increasingly depends on intelligent management of the ship asset throughout its life. Reliably 

assessing the vessel design under the actual conditions that operates is an important concern for shipyards. 

Condition based maintenance to properly schedule ship docking as well as targeted inspections on critical 

zones, need to be based on an extended sensor network and automated data processing. Assessing the actual 

structural health status of the vessel after extreme events is a task to be part of decision support systems, 

requiring close to real time analysis. Nonetheless, growing trend for digitalization in the marine sector (ISSC 

2022) offers new perspectives regarding the use of monitoring data and pushes the adoption of new 

technologies such as artificial intelligence (AI) and digital twin in achieving objectives (Shabani et al., 2021).  

Therefore, the SHM system involves a combination of sensing technologies (both active and/or passive) and 

analysis tools (data and/or physics driven) to allow the loading and damage conditions of a structure to be 

identified, recorded, analysed and eventually predicted throughout the whole operational life of the vessel. In 

this paper, the objective is to present a concept design of an expert system for damage identification based on 

a two-stage approach: 

i. Identification of the load event(s) which might have caused possible damage, 

ii. Application of a damage identification procedure to verify if damage exists, and where is located. 

Both tasks are here sequential but independent modules, processing different sets of data from the monitoring 

systems. The module for identification of slamming events processes global information about the ship 

response such as accelerations, relative ship motion, strains. Exploiting Machine Learning (ML) algorithms 

(Decision Trees and Supporting Vector Machine, plus some extensions), it is capable to distinguish between 

different type of slamming events such as bottom slams satisfying or not Ochi’s threshold on vertical impact 

velocity, as well as bow-flare slamming events. The module for damage detection is instead based on local 

measurement of the accelerations on hull panels likely to be exposed to the slamming events highlighted by 

the first module.  It uses different approaches, namely Pattern Recognition methods based on the use of 

Machine Learning algorithms, for the first two levels of Rytter’s paradigm for damage detection, i.e., existence 

and localization of damage (Rytter 1993). A description of the pipeline of such two-stage Decision Supporting 

System for damage detection is shown in Fig. 1. The target ship is a fast vessel built, the MDV3000, built by 

FINCATIERI, which has interesting features because of its V-shaped hull and lightweight aluminium 

construction.  It is worth to underline that it is matter of current research effort not only developing new AI 

methods for dealing with such problems, but also demonstrating that AI predictions are more or at least as 

reliable as physics-based methods. This paper does not intend to propose any crucial achievement in terms of 

accuracy. However, our intention is to settle the fundamental motivation for developing such expert systems. 

While general framework, basic concepts and problem-oriented methodology are globally set herein, the 

development of data science approaches arises from the possibility of partially removing the independence of 

these two modules, and commonly picking the same data streams to identify events of interest at different 

levels for structural health monitoring.   

2. SLAMMING IDENTIFICATION: CONDITION BASED APPROACH VS ML APPROACH 

2.1 Detection of Slamming Based on Kinematic and Response Conditions 

When a ship sails in rough sea, the violent impact between the water and the hull, that is, slamming, may 

determine relevant local and global effects on the ship’s structure. Among global effects, the impulsive 

characteristic of the slamming load induces ship’s vibrations at hull girder natural frequencies, commonly 

denoted as whipping. Wave-induced stresses arise as a consequence of both external fluid loading - continuous 

waves and random impacts - and induced, transient loads - hull vibrations excited by slamming impacts. In the 

framework of a fatigue life analysis of the ship’s structure, not only the amplitude, but also the number of 

stress cycles has to be considered. Bow slamming for monohulls has been extensively studied by many authors 

who have further developed and extended the original concepts of von Karman and Wagner relative to a rigid 

body impacting the water. The attention has been devoted to modelling of slamming loads first via analytical 

models and then with numerical approaches dealing with more complex hull forms. For the 
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Figure 1. Outline of the two-stage approach for the damage identification following slamming events. 

monohull under consideration in this paper (see Fig. 2), the wedge-shaped bow allows for pointing out that 

relative velocity and acceleration, which are measurable variables from which sectional loads depend in 2D 

theories (Dessi and Mariani, 2008), are of concern for accurate slamming identification. 

The different criteria developed for slamming identification in last decades are then a consequence of 

descriptive models featuring this violent flow phenomenon. Ochi (1964) stated two clear conditions based on 

kinematics: (i) relative motion must exceed the sectional draft; (ii) relative velocity at the instant of re-entry 

must exceed a certain magnitude. According to Ochi, bow-flare slamming does not fall into the set of identified 

water-entry events because it cannot provide any damage to hull plating in the ship’s bottom, which was 

initially one of the main concerns. However, bow-flare slamming might also produce relevant whipping, if the 

bow dives rapidly into the water. If the focus is on the global response, the existence of sequences of 

consecutive impacts, denoted as ‘clusters’, implies that the analysis of a single slam may not be sufficient in 

establishing its severity. The above consideration motivated a change in the point of view of slamming 

identification, and the introduction of a new criterion to evaluate global effects, more related to the induced 

ship response. Dessi and Ciappi (2013) observed that there exists an imperfect correlation between impact 

velocity and the peak magnitude of high-frequency vibratory response after the slam. The high-frequency 

response is then isolated using two different numerical approaches: wavelet analysis and envelope extraction 

of the filtered Vertical Bending Moment (VBM) response. Particular attention is dedicated to the choice of the 

high frequency VBM threshold value which discriminates the presence or not of a previous slam event. With 

a focus on catamarans, a similar approach was carried out by Thomas et al. (2005), who identified slamming 

on the basis of maximum time derivative of stress at a certain location. The development of alternative methods 

based on ML needs to take into account past approaches to slamming modeling and identification. 

  

Figure 2. MDV3000 fast monohull: full-scale and bow hull sections. 
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2.2 Detection of Slamming Based on Data-Driven Techniques 

Machine Learning models are powerful for their capability to learn from data without being explicitly 

programmed. In this manner, ML techniques facilitate data-driven models aimed at modeling the underlying 

data. To summarize the uses of ML, it is worth noting that, fundamentally, there are two aspects of a given 

problem that may require the use of programs capable of learning and improving on the basis of ‘experience’, 

namely, the problem complexity and the need for adaptation. Regarding complexity, building of descriptive 

models for a physical system sometimes cannot be easily developed on the basis of ‘first principles’; the 

number of features involved in the target process or phenomenon could be very large, and the actual knowledge 

of the underlining relations may not be sufficient for a proper description. Moreover, the continuous changes 

in the system itself and in the environment around it motivate the use of adaptable models. The problem of 

slamming identification, in its generality, is complex, it often evades the fulfillment of prescribed criteria, and 

is strictly dependent on the type of ship and loading conditions. There is a large variety of ML techniques 

suitable to be implemented for the slamming problem. In the present work, considered ML algorithms fall 

under categories of Supervised and Unsupervised learning approaches. In supervised learning techniques, 

algorithms learn from data and associated target responses which may consist of numerical values (regression 

problem) or string labels (classification problem), such as class or tag, in order to later predict the correct 

answer when posed with new examples. In the case of unsupervised learning, algorithms learn from datasets 

with no associated answer, leaving the algorithm ‘free’ to determine the data models alone. This type of ML 

techniques tends to recast given data into something else, adding new characteristics to the data that can 

represent a class or some new values useful for additional analysis. Generally speaking, the key point for 

enabling the use of ML algorithms is to switch from a continuous signal to discrete data. Thus, the approach 

is based on dividing the signals in a meaningful way, and then calculating properties from each time segment. 

This technique is called segmentation in the following. For short, the following main steps of the data 

preparation pipeline can be identified: (i) selection of the signal which will be used to trigger the signal 

‘segmentation’; (ii) extraction of time synchronous portions of each signal (segments); (iii) min/max analysis 

of each segment; (iv) collection of properties from different signal segments to form a vector of features. 

3. MODEL-SCALE TRAINING OF SUPERVISED ML FOR FAST MONOHULL 

3.1 Scaled-Model Experimental Set-Up 

To make available a large set of measurements for ML analysis, data collected in several seakeeping tests at 

CNR-INM on a scaled (1:30) monohull are merged. The physical model is a segmented one, representing the 

fast ferry MDV3000 (Fig. 3), and was designed according to the elastic backbone technique (refer to Dessi 

and Mariani (2008) for more details). Sea states following the JONSWAP spectrum included significant wave 

heights spanning from 2m to 5m in head sea and forward speeds varying from 10kts to 4kts, for total 1734s 

equal to 2.6 hours navigation at full-scale. The vertical bending behavior was reproduced by shaping properly 

the aluminum elastic beam that formed the backbone of the segmented model (see Fig. 3 for a schematic view). 

To shape the beam sections of the backbone, bending stiffness and shear area distributions at full-scale were 

used as reference data. The experimental wet-mode frequency f_(wet,1) at model scale is 7.4Hz, a value that 

will be chosen as reference to extract whipping vibrations. As a rigid-body, the physical model was free to 

heave, to pitch and, partially, to surge. The ‘physical’ sensor layer, including a wave probe, an optical system 

to record motions, and strain-gauges along the beam, provided respectively the following physical quantities: 

(i) absolute wave height, (ii) displacements and rotations at cener of gravity, (iii) vertical bending moment on 

several beam sections. The incoming, absolute wave height was measured by using a Kenek finger probe 

placed at fixed position (FP) with respect to the towing tank. The optical system (Krypton Rodymm DMM) 

consists of cameras placed on the carriage and LEDs glued on a plate carried onboard the model, depicted as 

a triangular frame in Fig. 3. The bending moment acting upon the beam was measured at 12 points by using 

strain gauges glued to the top face of the beam. The acquisition system was based on a National Instruments 

SCXI module at a 500 Hz sampling rate. 
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Figure 3. Scaled elastic segmented model tested in the towing-tank. 

3.2 Supervised ML Techniques 

In supervised learning, the objective is training ML algorithms to be able to recognize and classify data 

according to given examples. Thus, the application of supervised learning techniques is divided into main three 

steps: (i) labeling of a consistent amount of data samples according to chosen classes; (ii) training iteratively 

the classifier to reach acceptable scores in classifying the data of a smaller dataset, known as validation dataset; 

(iii) after training is over, verifying the capability of tuned ML models to correctly classify samples belonging 

to a remaining dataset, known as testing dataset, not employed in the previous steps. For this reason, each time 

segment or its discrete counterparts, i.e., associated features, constitute an event, which needs to be labelled as 

no slamming (NS), Ochi’s slamming (OC), bow-flare slamming (BF), and low-velocity slamming (LV), 

according to conditions defined in Sec. 2. Table 1 shows features extracted for each time segment. In the data 

preparation phase, data cleaning excluded inconsistent data relative to the absence of bow-entry motion in the 

time-segments as well as outliers from the dataset, based on thresholds defined for each variable 𝛼𝑖 as 𝛼�̌� =
𝛼�̅� + 2.5 𝜎𝑖, where 𝛼𝑖 is its arithmetic average and 𝜎𝑖 its standard deviation (all variables are considered in 

absolute value). Features were scaled to have a mean value of zero and a standard deviation of 1. It is worth 

noting that the standardization, using the function �̂�𝑖 = (𝛼𝑖 − �̅�𝑖)/ 𝜎𝑖 , was conducted after the features listed 

in Table 1 were calculated from all the 55 towing-tank runs. Normalization is necessary since data is 

heterogeneous, with different units and scales, and is required to avoid the data analysis being biased towards 

any particular feature. As MATLAB 2020a ML package was used for the calculation, different ML techniques 

were initially chosen from those provided by the software. With a few negative exceptions, the calculated 

accuracy relative to the slamming detection and slamming classification problems was similar for many of 

them. Therefore, it was decided to focus just on some of them that were best suited for the present problem. 

Decision Tree (DT) is a supervised machine learning technique that can be used for classification problems. A 

decision tree can be ‘learned’ by splitting the source set into subsets based on an attribute test value. Every 

internal node corresponds to a variable and every edge to a child, representing possible values of that variable. 

Each leaf represents a value of the target variable as a consequence of the tree topology and input variables 

from the root to the leaf. The idea behind Support Vector Machine (SVM) is to map data attributes onto a high 

dimensional feature space via a kernel function. The SVM then uses that space to find the hyperplane that 

separates the classes with the lowest error margin. The separating hyperplane is the classifier, attributing data 

samples to a ‘positive’ class if it is on one side of the hyperplane, or to a ‘negative’ class if it is on the other 

side. It can be extended to the resolution of multi-class problems combining different partial classifiers into a 

unique model, using the so-called Error Correcting Output Code (ECOC model). The Adaptive Boosting is a 

technique used as an Ensemble Method, which is in general a machine learning technique that combines several 

base models (in the present case, Decision Tree) to identify the optimal predictive model. The word ‘adaptive’ 

depends on weights that are assigned to each instance, with higher values given to incorrectly classified 

instances, and recursively updated based on a cost function. 
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Table 1. Scaled elastic segmented model tested in the towing-tank. 

No.  Variable  Selected feature 

#1  Relative vertical bow displacement  Minimum value for each segment 

#2  Relative vertical bow velocity  Minimum value for each segment 

#3  RB vertical acceleration  Maximum value for each segment 

#4  Structural acceleration  Maximum value for each segment 

#5  Upper Envelope of pass-band VBM  Maximum value for each segment 

3.3 Results 

The original dataset to which ML is applied has 2921 samples, each one corresponding to a time segment 

characterized by the five features in Table 1, which after data cleaning reduces to 2430 records. According to 

labeling of data, 1875 records are not associated with slamming (77.2%), and the remaining 555 records are 

related to slamming events of different types. Data splitting is the operation by which, in supervised learning, 

the cleaned dataset (CD) is divided into two main groups, named Training & Validation (80% of CD) and Test 

(20% of CD). Using a proper random sampling, slamming statistics can be mirrored into Training & Validation 

and Test groups. However, in this way, there is a poor representation of slamming classes OC and LV, 

especially after further splitting into Validation and Test subsets. For this reason, the Training & Validation 

(TV) dataset can be recast into a statistically balanced dataset. Data sampling balances the class distribution in 

the training data by either adding examples to the minority class (Random Over Sampling, ROS) or removing 

examples from the majority class (Random Under Sampling, RUS). Classification of slamming events requires 

adapting the plain DT and SVM models to address better multi-class problems. For this reason, Adaptive 

Boosting embedding DT and SVM-ECOC, extending SVM capability to multi-class problems, are here 

considered. SVM-ECOC model is first applied to data splitting shown to the ‘cleaned’ dataset, preserving 

original statistics. The confusion matrix (Fig. 4a) shows quite a low accuracy, equal to 45.3%. Classification 

is repeated using balanced datasets via ROS and RUS. Results show an increased accuracy in both cases, 

reaching 62.3% and 71.8%, respectively. The use of AdaBoost-DT (Fig. 4b) is less dependent on better 

balancing of classes in the training phase. Its application to original data gives an accuracy of 75.5%, which 

lowers in the case of RUS-AdaBoost-DT to 71.8%, and for ROS-AdaBoost-DT to 71.6%. In general, it is 

worth noting that there is a decrease in accuracy passing from detection to classification as expected because 

of the higher complexity of the problem. Statistical balance of sampling appears more relevant with SVM-

ECOC than with AdaBoost, where a slight decrease in performance is recorded. 

 
(a) SVM-ECOC. 

 
(b) AdaBoost. 

Figure 4. Confusion matrix for slamming classification. 
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4. DAMAGE IDENTIFICATION ON A HULL PANEL 

4.1 Hybrid Approach and Virtual Test-Bed 

Once the hull portions subjected to higher loads have been identified with the help of the methods described 

in previous sections, it is necessary to assess whether or not damage has occurred in the hull plates exposed to 

impulsive pressure loading. Ideally, the underlying idea for developing an expert system would be to 

interrogate only the sensors where damage is likely to be present. This should reduce the amount of data 

processed by the central unit in order to get answers in real-time, while routinary analysis on all the 

instrumented panels can be performed with prescribed timing. 

As stated in the Introduction, one of the main differences between the slamming identification and the damage 

detection with ML algorithms is due to the need of performing learning and validation on numerical data in 

the latter.  Indeed, it is not conceivable to generate experimentally enough damage scenarios (position and 

severity) for training. Moreover, to validate the present approach, also data for testing will be generated 

numerically. The geometry and properties of the ship structural component under monitoring must then be 

known in advance. As a preliminary study, the structure considered in this paper is an aluminum plate described 

in Table 2 and schematically shown in Fig. 5a. The plate is supposed clamped at its shortest edges and free at 

the other two. For this panel, experimental data was also available from previous experimental campaigns 

(Dessi and Passacantilli, 2022). Though not specifically suited for the present application, they will be used 

for testing as well.  

Table 2. Plate properties. 

Quantity Symbol Unit of measure Value 

Young Modulus Y [Pa] 74.98 ∙ 109 

Poisson Ratio ν - 0.33 

Plate length l [m] 1 

Plate width b [m] 0.5 

Plate height h [m] 0.005 

Damage length ldmg [m] 0.06 

Damage width bdmg [m] 0.06 

Damage height reduction hdmg [m] 0.002 

Damage X coordinate xdmg [m] - 

Damage Y coordinate ydmg [m] - 

Clamp stiffness x=0 k1 [N/m2] 363 ∙ 109 

Clamp stiffness x=l k2 [N/m2] 107 ∙ 109 

Clamp width bcl [m] 0.05 
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(a) 

 
(b) 

Figure 5. Plate geometry (a) and measurement grid with subdivision of the plate into cells/panels (an 

example damage is set on panel 14). 

In view of the preliminary application to experimental data, it is necessary to have a reliable numerical model 

of the reference (intact) structure. The model updating was done enhancing the numerical and experimental 

correspondence on a modal basis using an optimization approach, that is, resonance frequencies and the mode 

shapes. The optimization was carried out assuming as design variables the stiffness of the clamps and the actual 

Young modulus of the aluminium plate. The objective function 𝐽 was defined as the product of the relative 

frequency variation and the MAC value between the set of numerical and experimental modes, respectively: 

𝐽 = ∑ (
𝑓𝑘 − 𝑓𝑒𝑥𝑝,𝑘

𝑓𝑒𝑥𝑝,𝑘
)

2

⋅ (1 − 𝑀𝐴𝐶𝑘,𝑘)
2

𝑀

𝑘

, (1) 

where M is the total number of modes considered, 𝑓𝑘 and 𝑓𝑒𝑥𝑝,𝑘 are the resonance frequency of the k-th mode 

obtained respectively from simulation and experiments, and 𝑀𝐴𝐶𝑘,𝑘 is the value of the Modal Assurance 

Criterion (MAC) on the mode shape of the k-th mode between the simulation and the experiment. Only the 

first four experimental modes (Fig. 6) were considered for the updating procedure (and later for the damage 

analysis) because their frequencies were sufficiently separated. 

 

Figure 6. Experimental mean mode shapes (𝑘 = 1, … 4). 

For the purpose of this paper, damage is supposed to manifest as a localized reduction of the panel stiffness, 

as it may occur in case of corrosion or advanced fatigue damage.  

In Data Driven approaches, physical world data obtained from sensors must be preliminary processed to obtain 

a set of meaningful features. A possible family of approaches is provided by Statistical Pattern Recognition 

methods, which analyse these features to highlight the phenomena of concern. Therefore, the choice of the 

features is fundamental because they must contain the information about the phenomena involved and, at the 

same time, they should be as insensible as possible to other effects. In damage assessment problems from 

ambient vibration measurements, the modal parameters that are most used in literature are natural frequencies. 

Nonetheless, resonance frequencies suffer a strong dependency to any external factor, such as temperature and 

even loading conditions, and they become less reliable with the increase of structural complexity. Other 

methods consider the variation of mode shapes due to damage presence. These approaches require a rather 
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dense sensor network and a sensitivity only to macroscopic damage (Dessi and Camerlengo, 2015). Thus, in 

order to have features insensible to the variation of external factors and robust to the presence of damage, 

Damage Indices based on modal strain energy were chosen. Between all the possible indices, the Cornwell 

index 𝛽𝑖𝑗 was chosen because of it relates directly to the damage as (Cornwell et al., 1999):  

𝛽𝑖,𝑗 =
�̅�𝑖𝑗

∗

�̅�𝑖𝑗

 , (2) 

where 𝑖, 𝑗 indicate a particular rectangular panel into which the plate has been divided, �̅�𝑖𝑗 is the average and 

uniform stiffness of the intact panel and �̅�𝑖𝑗
∗  is the average stiffness of the same panel after potential damage 

has occurred. It follows that 𝛽𝑖𝑗 is less than unity if there is damage on the panel, because of stiffness reduction.  

The actual evaluation of 𝛽𝑖𝑗 involves the calculation of integrals on the panels and on the entire plate which 

are functions of the square of modal curvatures in the coordinate and mixed directions, which in turn are 

obtained from second-order finite differences on the (virtual) sensor positions for both intact and damaged 

panels. In this way, the index depends in principle on the considered mode, and should be indicated with 𝛽𝑖,𝑗
(𝑘)

. 

This dependence is not present in the Cornwell’s definition because summation over all the modes is 

performed, but it is kept in the present formulation.  An additional change was introduced in this paper. Defined 

𝛽𝑖,𝑗
(𝑘)

 as the index value in the panel 𝑖, 𝑗 for the 𝑘-th mode, as said before, the theory states that its value should 

be 1 if the panel is undamaged, and less than 1 if the panel is damaged. Since measurement noise are involved, 

𝛽𝑖,𝑗
(𝑘)

 may assume values much greater than 1, especially in nodal points for each mode shape. Since there is in 

principle no upper bound for non-damaged panels, to limit the value of 𝛽𝑖,𝑗
(𝑘)

 in the range [0,1], the modified 

index �̃�𝑖,𝑗
(𝑘)

 is defined as: 

�̃�𝑖,𝑗
(𝑘)

= {

𝛽𝑖,𝑗
(𝑘)

                𝑖𝑓 𝛽𝑖,𝑗
(𝑘)

≤ 1

2 −
1

𝛽𝑖,𝑗
(𝑘)

       𝑖𝑓 𝛽𝑖,𝑗
(𝑘)

> 1
 (3) 

To obtain the curvature measurements for the evaluation of such modes, a sensor array based on a grid of 

accelerometers was placed in the virtual model. From the acceleration measurement it is possible to calculate 

approximately the value of the modal curvatures that, for thin plates, are directly related to modal strains. With 

respect to strain gages, the accelerometers offer the advantage of being more robust and less affected by noise, 

though introducing numerical errors due to finite differencing. The measurement point grid is shown in  

Fig. 5b. In any case, the presence of noise must be taken into account in the training phase to enhance a correct 

correlation between simulations (numerically computed modes) and target real case, otherwise any real data 

would not be recognized as anything seen in the training phase. Particular attention was then given to describe 

the nature of random measurement noise. Based on the results of the experimental campaign conducted in the 

Structural Dynamics and Diagnostics Laboratory (LabSDD) of CNR-INM, the authors were able to reconstruct 

the measurement noise probability distribution assuming that in each measurement point i,j for the k-th mode, 

The noise contribution to the mode shape value 𝜙𝑖,𝑗
(𝑘)

 is assumed to be given by the sum of a stochastic 

parameter 𝜂1 and a term proportional to the mode value through the stochastic parameter 𝜂2: 

�̃�𝑖,𝑗
(𝑘)

= 𝜂1
(𝑘)

+ (1 + 𝜂2
(𝑘)

) 𝜙𝑖,𝑗
(𝑘)

, (4) 

The statistical distribution relative to the parameters 𝜂𝑟
(𝑘)

 is Gaussian with zero mean. By calculating the 

variances of each term in Eq. 4, the following linear set of equations is obtained, 

𝜎2
𝑖,𝑗,𝑒𝑥𝑝
(𝑘)

= 𝜎1
2(𝑘)

+ 𝜎2
2(𝑘)

�̅�2
𝑖,𝑗

(𝑘)
, (5) 
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which is solved in the unknowns 𝜎1
2(𝑘)

 and 𝜎2
2(𝑘)

  through a Least Square method and the l.h.s. 𝜎2
𝑖,𝑗,𝑒𝑥𝑝
(𝑘)

 and  

�̅�2
𝑖,𝑗

(𝑘)
 are input parameters experimentally obtained. The results are shown in Table 3. 

Table 3. Noise variance parameters reconstructed. 

Mode 𝜎1 𝜎2 

1 0.0011 0.0088 

2 0.0023 0.0069 

3 0.0015 0.0024 

4 0.0068 0.0722 

With this information, a population of sample displacement modes is obtained through a Monte Carlo approach 

for each damage considered damage scenario, including also the undamaged case. More in detail, for each 

configuration (damaged or intact, for a total of 151), numerical noiseless modes are obtained from the FEM 

model. These modes are then contaminated with noise, obtaining N noisy samples for each 𝒌-th mode, 

according to the probability distribution described before. As a compromise between computational cost and 

generality to the trained ML algorithms, a sensitivity analysis suggested as best value 𝑵=1000. For the index 

evaluation, for both numerical and experimental cases, an undamaged noiseless simulated configuration is 

used. 

4.2 Employed Algorithm(s) 

One may argue that built features are themselves able to allow for damage detection and location. However, it 

is known in literature that experimental noise on measurements may propagate to the damage indexes making 

the identification of weak damage a rather difficult task, with possible false positives and negatives. According 

to the well-known Rytter’s paradigm of damage assessment, the present methodology aims at separately (i) 

identifying and (ii) locating the damage. This distinction corresponds to the adoption of different techniques 

for each level: 

• For the Identification problem, a Novelty Detection (ND) approach was implemented, exploiting its 

one-class classifier capabilities. In this way, the algorithm is trained only on the undamaged case data, 

and any damaged case is considered something “distant” in some sense from the training class. 

• For the Location problem, a Regression approach was implemented. Since the data is simulated, the 

approach was implemented using a Supervised Machine Learning algorithm. 

It is worth to underline that this separation reflects the fact that it is easier to distinguish between two different 

damaged cases than between an undamaged and a damaged one, based on data distributions. In the next 

subsections a brief description of the methods adopted is provided. 

4.2.1 Novelty Detection for Damage Assessment 

Novelty Detection (ND) strategies aim to identify if the provided data is deviating from its normal condition. 

These approaches are extremely interesting in SHM problems because they require training the algorithm only 

on reference data (i.e., undamaged). The problem is extremely challenging, and the performance of a ND 

method depends both on the type of method used and the statistical properties of the data (Markou and Singh, 

2003). In their paper Markou and Singh identified several fundamental principles that must be satisfied in order 

to build a precise ND method. 
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Since the data in the feature space is extremely clustered around the value of 1 both for damaged and 

undamaged scenarios, only Probabilistic-based, and Reconstruction-based methods were implemented for this 

paper among the five categories identified by Pimentel et al (2014) for ND approaches. In particular, the 

following approaches have been investigated: 

1. Histogram Scores (HS). 

2. Autoencoders, also known as Auto-Associative Neural Networks (AANN), with score based on 

Mahalanobis distance between input and output. 

All these methods are accompanied by the definition of a threshold value that distinguishes between normal 

(intact) and novel (damaged) cases. Usually, the definition of this parameter is arbitrary, therefore an 

optimization based on some performance descriptor needs to be implemented. One of the most used 

performance representations for these algorithms are the ROC (Relative Operating Characteristics) curves, that 

illustrate, for different values of the threshold value, which True Positive rate (TP) and False Positive (FP) rate 

one obtains, where positive stands for damaged. On these curves the cut-off for high performing model is 

represented by the point farther from the no-discrimination line (the straight line corresponding to TP = FP 

and accuracy 50%, which represents the case where the algorithm is randomly assigning normal or novel tag 

to any data). 

4.2.2 Supervised Regression for Damage Location 

Another way to search for the damage location in an automated way is through regression. Since the structure 

is 2D, a Multivariate Multiple Regression approach was implemented on a single NN trained to obtain X and 

Y coordinates of the damage. 

For the training purposes, damages positions were randomly chosen following a Design of Experiments 

approach: a uniform distribution is assumed for the generation of X and Y coordinates, with the attention of 

not having two equal coordinates among different simulations. This was granted by the use of a Sobol 

distribution for the generation of damage (position) coordinates. Sobol sequences are categorized as a quasi-

random sequence, in which the test sequences generated are randomly planned in the design boundary utilizing 

the primitive polynomials over a Galois Field and gray code encoding. Sobol sequences generate test sequences 

in a high degree of scattering while avoiding overlapping of previous test sequences (Katsidimas 2023). The 

so generated random positions are shown in Fig. 7. 

Damage dimensions instead, for this preliminary case, were kept fixed. A 70%-15%-15% division was used 

for training-validation-testing with NNs, granting that each folder contained the same amount of samples for 

each possible damage position. 

 

Figure 7. Random generated positions for the damage centers with the Sobol sequence. 
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4.3 Results 

Novelty detection was performed on the same numerically obtained database as for the regression approach. 

Figs. 8a and 8b show respectively the ROC curves of the Histogram Score (HS) approach and the Autoencoder 

(AANN) approach. For both curves the maximum accuracy point is indicated, namely 66% for the HS and 

65% for the AANN. 

 
(a) 

 
(b) 

Figure 8. ROC curves for a) Histogram Score approach, b) AANN approach. 

Though preliminary results are shown, it seems that the presence of noise prevents from obtaining a sufficiently 

clear damage identification in both approaches. A further analysis over the features by which the algorithms 

are trained will be considered in the future Once the experimental data is presented to the trained algorithms, 

however, all 20 cases are properly recognised as damaged by both ML algorithms. 

Results relative to damage location based on supervised regression are illustrated in Figs. 9a and 9b, where the 

distribution of the predicted coordinate over the true coordinate in the testing phase is shown in terms of panel 

on which the damage is supposed to be. The panel or cell numbers range from 2 to 9 in the 𝑥 direction, and 

from 1 to 6 in the 𝑦 direction, whereas the color bar indicates the probability distribution value. Correct 

predictions lie on the diagonal line shown in white. As can be seen, predictions fall mostly very near to the 

diagonal line of exact correspondence between predict and true panels. Less accurate predictions occur for 

external, and to a less extent, for mid panels. This result is related to the fact that these panels are close to nodal 

points for the modes considered, and measurement noise error becomes predominant over the actual modal 

displacement. Regression performances are usually measured with the Root Mean Square Error (RMSE) of 

the overall predictions. RMSEs were separately evaluated for the 𝑥 and 𝑦 coordinates of the predicted damage 

position center: 

𝑅𝑀𝑆𝐸𝑥 = √
∑ (�̃�𝑗 − 𝑥𝑗)

2𝑁𝑡𝑒𝑠𝑡
𝑗=1

𝑁𝑡𝑒𝑠𝑡
,

𝑅𝑀𝑆𝐸𝑦 = √
∑ (�̃�𝑗 − 𝑦𝑗)

2𝑁𝑡𝑒𝑠𝑡
𝑗=1

𝑁𝑡𝑒𝑠𝑡
,

(6) 

obtaining respectively a value of 1.23 and 0.86. In Eq. 6 terms with and without the tilde represent the predicted 

and exact values, 𝑁𝑡𝑒𝑠𝑡 is the number of test cases considered. Finally, in Fig. 10 two examples of damage 
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identification relative at damage positions (centroid of the panels) not considered in the training phase (Sobol 

sequence) are shown. The blue and red circles represent the true position, identified by panel indexes (4,2) and 

(8,5), while the purple and yellow stars are the respectively predictions. Their distribution follows exactly the 

trends plotted in Figs. 9a and 9b: for example, the first scenario (blue circle) is characterized by a slight 

overestimation of the 𝑥 coordinate for the blue damage (True Coordinate equal to 4 in Fig. 9a) and an 

uncertainty on the 𝑦 direction of ±1 panel (True Coordinate equal to 2 in Fig. 9b). 

 
(a) (b) 

Figure 9. Testing error distribution for a) 𝑥 coordinate regression and b) 𝑦 coordinate regression. 

 

Figure 10. Predicted locations for 2 numerical examples. The actual damage center is shown by a full 

circle, the predicted positions are shown by stars. 

The results on simulated data appear to be sufficiently satisfactory. If the experimental data is provided to the 

trained algorithms, the predictions are promising as well; the 𝑥 damage coordinate is identified with acceptable 

precision, while a strong indeterminacy in the 𝑦 direction is present, as one can see in Fig. 11. 
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Figure 11. Predicted locations for experimental cases. The actual damage center is shown by a blue circle, 

its shape is represented in the figure. The predicted positions are shown by red stars. 

5. CONCLUSIONS 

This paper outlines an analysis pipeline of a smart SHM system focused on damage assessment on ship hull 

panels subjected to impulsive loading due to slamming. The techniques and applications reported herein allows 

for an explanatory and preliminary introduction to the design of a real expert system.  The test case should 

include portions of the real structure, with stiffened and not uniform panels. At the present stage, slamming 

identification only discriminates between bottom and bow-flare slamming, providing only vertical indication 

of the most loaded panels; in a future upgrade, also the longitudinal position of the impact area will be 

considered. Moreover, algorithm performances in the different identification and detection levels should be 

further explored to provide reliable and useful indications. 

Nevertheless, Machine Learning algorithms seem promising in doing the job in place of approaches based on 

physical interpretation of the different phenomena. There are several advantages in using a ML approach to 

slamming identification with respect to condition-based or physics-based approaches. The extraction of 

features from the analyzed dataset is provided by a minmax analysis of time series, separately carried out, 

which is a much more robust procedure than setting a sequence of linked conditions on several signals, 

implying strict synchronization. In case of degradation of sensor performances, due to poor Signal-to-Noise 

Ratio or hardware failure, or even in case of new sensor insertion, classical algorithms for slamming 

identification must be reformulated to address the new layout, that is not the case of the present ML approaches.  

Regarding damage assessment, Novelty Detection strategies allow for training only on undamaged data, which 

can be obtained also experimentally instead of damage cases. This advantage could lead to more “instructive” 

hybrid datasets based on both simulated and measured data. Regression approach for Damage Localization 

shows promising results as well. Moreover, regression approaches allow to localize the damage even if it is 

situated between panels, something that simple physics-based approaches based on the same indices have a 

problem obtaining. 

One of the main aspects is the inclusion of measurement noise to improve the learning phase and be prepared 

to deal with damage identification in real cases. Even if less accurate than identification on numerically 

generated data, the present application to measured data on the uniform panel seems promising. 
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