
D2.1 Meshing ”stub” implementation of the
capabilities to be delivered

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: INRIA
Deliverable Type: Report, Other
Dissemination Level: PUblic
Related WP & Task: WP 2 Task 2.1
Status: Final Version

Deliverable 2.1

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Algiane Froehly INRIA
Vicente Mataix CIMNE
Carlos Roig CIMNE
Contributors

Change Log

Versions Modified Page/Sections Comments
V1.0 Created document, filling basic information
V1.1 Added serial mesher API
V1.2 Added parallel mesher API
V1.3 Corrected WP and related Task numbers
V1.4 Added Introduction

Approval

Aproved by:
Name Partner Date OK

Task leader Algiane Froehly INRIA 30.7.18 OK
WP leader Algiane Froehly INRIA 30.7.18 OK
Coordinator Riccardo Rossi CIMNE 30.7.18 OK

Page 2 of 23

Deliverable 2.1

Executive summary

This document presents a description of the MMG interface adapted to Kratos as well
as its parallel counterpart with ParMMG which will be implemented in task 2.1. In the
description are included the following items:

• Description of the requirements of the interfaces;

• Description of the data structures used both in Kratos and MMG;

• Proposal of an initial interface for ParMMG.

• The input needed for the model;

• The definition of the model system matrices;

• The solver and time marching schemes;

• The results obtained, and the link to the 3D detailed model.

Page 3 of 23

Deliverable 2.1

Table of contents

1 Introduction 8

2 Interface Description: existing MMG interface 8
2.1 InitMesh . 8
2.2 InitializeMeshData . 8
2.3 InitializeSolData . 10
2.4 CheckMeshData . 10
2.5 ExecuteRemeshing . 10

3 Interface Proposal: ParMMG interface 12
3.1 InitMesh . 12
3.2 InitializeMeshData . 12
3.3 InitializeSolData . 13
3.4 ExecuteRemeshing . 14

Page 4 of 23

Deliverable 2.1

List of Figures

1 MMGProcess Initialization . 9
2 Submodelpart used in order to set BC . 9
3 Colour submodelpart creation . 10
4 MMGProcess Initialize Mesh Data . 17
5 MMGProcess Initialize Solution Data . 18
6 MMGProcess Check . 18
7 MMGProcess Remesh . 19
8 MMGProcess Finalize . 19
9 ParMMGProcess Initialization . 20
10 ParMMGProcess Initialize Mesh Data . 21
11 ParMMGProcess Initialize Metric Data . 22
12 ParMMGProcess Remesh . 22
13 ParMMGProcess Finalize . 23

Page 5 of 23

Deliverable 2.1

List of Tables

1 Nomenclature / Acronym list . 7

Page 6 of 23

Deliverable 2.1

Nomenclature / Acronym list

Acronym Meaning
API Application Programming Interface
OOP Object Oriented Programming
BC Boundary Condition
MPI Message Pasing Interface
GP Gauss Point

Table 1: Nomenclature / Acronym list

Page 7 of 23

Deliverable 2.1

1 Introduction

This deliverable describes the status of the current implementation of Kratos Mulitphysics
[1] and MMG [2] [3] interface to provide an API which will allow to use its meshing
capabilities as described in the WP2. Also, we define the first iteration of the future
interface for parallel meshing based on ParMMG.

2 Interface Description: existing MMG interface

The way the interface will be exposed to Kratos Multiphysics is via a remeshing process
that will be placed inside Kratos own meshing application (MeshingApplication) called
MMGProcess. This process will prepare the input modelpart data and will convert the
model into MMG format. This conversion will be done using several call to MMG exposed
methods which are directly wrapped inside Kratos.

This Kratos process considers as input the modelpart of the problem we are interested
in remesh and the configuration parameters that has been read from a .json file. This
gives us a lot of flexibilty, because the parameters can be changed dinamically without
refactoring, so adding functionalities to the process is easier than in a coventional input
design.

It is important to notice at this point that MMG public API makes a distinction
between 2D and 3D and offers two sets of different functions which are available to use.
From the point of view of Kratos such distinction does not exist and the interface will be
made in such a way that it remains transparent.

The proposed workflow of the process can be seen in the following workflow where the
specific calls to MMG are displayed.

!4 Note that we abstract MMG2D and MMG3D into MMGXD in order to simplify the
diagram.

!4 Note also that MMGXD Set iparameter and MMGXD Set dparameter (for integer
and doubles) are also abstracted to MMGXD Set Xparameter for similar reasons.

2.1 InitMesh

As its name indciates it will serve as the init function and directly call the init function
of MMG. This will create and initialize the pointers of the mesh and the solution used bt
used by MMG. This calls MMGXD Init mesh from the MMG API (see Figure 1).

2.2 InitializeMeshData

Auxiliar sub model part creation
We will start with the creation of auxiliar sub model parts for flags. These model

parts are created in order to preserve the flags of the nodes, elements and conditions after
remesh. These auxiliar submodelparts will be removed after remesh.

Colour mapping
After that, we will follow with the creation of a colour map, or model part list. Here

we will compute a map that will serve us in order tor preserve Kratos sub-modelpart
structure. In in our implementations we use a process to set the BC (both Neumann or

Page 8 of 23

Deliverable 2.1

Kratos MMGProcess MMG

InitMesh()

MMGXD_Init_mesh()

InitMesh()

Kratos MMGProcess MMG

Figure 1: MMGProcess Initialization

Figure 2: Submodelpart used in order to set BC

Dirichlet). We identify the parts where to set this BC with the use of submodelparts
(see Figure 2). The same component (node, condition, element) can belong to different
submodelparts, so if we want to have an unique ids for each component we need to
compute the common belonging to each component. We call this colour see Figure 3.

Node preservation
At this stage, if we want to preseve a part of the mesh we have the option to block

individual nodes using the MMGXD Set requiredVertex function of MMG.

Transfer mesh data to MMG
In order to be able of doing that we will compute first the number of total nodes,

elements and conditions in order to allocate the memory necessary to remesh. Also, we
will convert Kratos nodes to MMG vertices and finally gemoetries in Kratos to geometries
in MMG which will be mapped to edges, triangles, prism and tetrahedras depending on
the source geometry (see Figure 4).

• Kratos Line2D2 → MMG Edge (MMG2D Set edge);

• Kratos Line3D2 → MMG Edge (MMG3D Set edge);

Page 9 of 23

Deliverable 2.1

Figure 3: Colour submodelpart creation

• Kratos Triangle3D3 → MMG Triangle (MMG3D Set triangle);

• Kratos Quadrialeteral3D4 → MMG Quadrilateral (MMG3D Set quadrilateral);

• Kratos Tetrahedra3D4 → MMG Tetrahedron (MMG3D Set tetrahedron);

• Kratos Prism3D6 → MMG Prism (MMG3D Set prism);

2.3 InitializeSolData

Here we allocate the metric. We always use tensor metrics by default due to its generality
allthoug scalar wrapper also exists.

This is done in two differents steps, first we allocate the size using MMGXD Set solSize

and then setting its values using MMGXD Set tensorSol, MMG3D Set vectorSol and MMGXD Set solSize

(see Figure 5).

2.4 CheckMeshData

Before proceed with the remeshing we call the routines from MMG designed in order
to check that the information transfered to the API of MMG is consistent, this is the
method MMGXD Chk meshData(). See Figure 6.

2.5 ExecuteRemeshing

We call the remeshing process as well as setting the general configuration values in mmg.
At detail, the list of parameters set in this step are the following1:

• MMGXD DPARAM hausd : The Hausdorff controls the smothness of the boundary;

• MMGXD IPARAM nomove: This parameters sets if we allow to avoid or allow the point
recolocation;

• MMGXD IPARAM nosurf: This parameters sets if we don’t allow the surfaces modifi-
cation;

• MMGXD IPARAM noinsert: This parameters sets if we don’t insert nodes on mesh;

1These parameters are registered as enums

Page 10 of 23

Deliverable 2.1

• MMGXD IPARAM noswap: This parameters sets if we don’t swap the mesh;

• MMGXD IPARAM angle: This parameters is used in order to deactivate/activate the
angle detection;

• MMGXD DPARAM hgrad: This parameter is used in order to set the gradation;

• MMGXD DPARAM hmin: This parameters sets the minimum size of the mesh;

• MMGXD DPARAM hmax: This parameters sets the maximum size of the mesh.

And finally we call the remeshing method MMGXD mmgXdlib() as seen in Figure 7.
After executing the remesh, the new nodes, conditions and elements are created and

transfered to the corresponding submodelparts using the respective colours previously
computed, which correspond with the MMG reference.

Save output mesh and solution
In case we are interested in getting the mesh and solution obtained in the .mesh and

.sol file of MMG it exists the possibility to export the new mesh and solution to external
files with the use of SaveSolutionToFile(). It calls the MMGXD Set outputMeshName

and MMGXD Set outputSolName methods form the MMG API to set the filenames and
the MMGXD saveMesh and MMGXD saveSol methods to write the output files.

FreeMemory
After we have computed all the relative to MMG we can now release the memory

relative to it. We use the MMGXD Free all() method from the API for that pourpose. See
Figure 8 for more details.

ReorderAllIds
During this step the ids of the element, conditions and nodes are reordered. So the

ids will vary from 1 to n, being n the number of each component. This will not affect to
the problem itself, due to the OOP nature of Kratos, if the ids are reordered, it will be
reorder in all the objects depending of it.

This step must be done before and after remesh in order to avoid problematics with
the remeshing process. Some steps of the process, including call to MMG, could do some
assumptions about ordered ids of the different containers of the problem. Then the best
way to avoid these problematics will be to reorder the ids, following the previously exposed
methodology.

Interpolation of mesh information
This step is necessary in order to preserve the information of the old mesh in the new

mesh. We use different processes and utilities in Kratos to interpolate both nodeal values
and integration values from the old mesh to the new mesh. In order to interpolate internal
variables the following procedures are available:

• Closest Point Transfer: It transfer the values from the closest GP;

• Least-Square projection Transfer: It transfers from the closest GP from the
old mesh;

Page 11 of 23

Deliverable 2.1

• Shape Function Transfer: It transfer GP values to the nodes in the old mesh
and then interpolate to the new mesh using the shape functions all the time.

InitializeElementsAndConditions
Finally, the created elements and conditions are initialised in order to be usable in

Kratos.

3 Interface Proposal: ParMMG interface

We propose to update the exiting MMGProcess process of Kratos and to couple Kratos-
Multiphysics and ParMMG in the same way as the KratosMultiphysics-MMG coupling:

• MeshingApplication(Kratos) ← MMGProcess(KratosMultiphys.) ← MMG API.

• The parameters and geometry of the problem are given as input for Kratos in a
.json file.

This section describes the workflow for the Kratos-ParMMG coupling.

3.1 InitMesh

It is the method used to initialize the MMGProcess process. It calls the initialization func-
tion of ParMMG (PMMG Init mesh) that creates the pointer toward the main structure
of ParMMG (a ParMesh) and initializes its fields:

• the mesh dimension (unlike MMG, ParMMG doesn’t make distinction between 2D
and 3D, thus it is needed to know the mesh dimension in order to call the suitable
MMG functions for the MMG structures initialization);

• a pointer toward a MMG mesh;

• a pointer toward a MMG metric;

• a pointer toward an array of MMG solutions (if needed);

• the MPI communicator in which we will work.

See Figure 9 for the diagramm of the MMGProcess initialization.

3.2 InitializeMeshData

Auxiliar sub model part creation
This part is similar to the creation of the sub model part with MMG.

Node preservation
The PMMG Set requiredVertex function of ParMMG allows to block individual nodes

and to preserve a part of the mesh.

Page 12 of 23

Deliverable 2.1

Transfer mesh data to ParMMG
On each processor, we will need to transfer the local mesh to ParMMG.

Again, we will need to compute first the number of nodes, elements and conditions to
be able to allocate the memory for the remesher. We set the mesh size calling the
PMMG Set meshSize function. Then, the Kratos mesh is converted into a ParMMG mesh
using the following map:

• Kratos Line2D2 or Kratos Line3D2 → PMMG Edge (PMMG Set edge);

• Kratos Triangle3D3 → PMMG Triangle (PMMG Set triangle);

• Kratos Quadrialeteral3D4 → PMMG Quadrilateral (PMMG Set quadrilateral);

• Kratos Tetrahedra3D4 → PMMG Tetrahedron (PMMG Set tetrahedron);

• Kratos Prism3D6 → PMMG prism (PMMG Set prism);

Additionnaly, must provide the communication data to ParMMG. Note that ParMMG
uses the partition of the dual graph of the mesh (partition of the mesh elements) while
Kratos uses a partition of the mesh (partition of both the mesh elements and nodes).
It leads to have more communication informations in Kratos than in ParMMG (ghost
nodes). For this preliminary version of the interface specification, we will only deal with
the element partition (the element partition is given to ParMMG that gives back the new
element partition, leaving to Kratos the responsability of the nodes partition).

To set the communication data from Kratos to ParMMG we need:

• the local to global mapping of the nodes and elements using the PMMG Set loc2GlobVertices

and PMMG Set loc2GlobTetrahedra;

• for each couple of adjacent processors, the processors IDs and the list of the nodes
at their interface (PMMG Set interfaceNodes).

3.3 InitializeSolData

As ParMMG modifies both the mesh and its distribution among the processors, it must
performs the solutions interpolation over the new mesh. It implies to give the solutions
to ParMMG.

Thus, the InitializeSolData process allocates now the metric and the solutions
structure (Figure 11).

Metric allocation
We allocate the metric structure given its size (PMMG Set metSize), then we set the

metric values using PMMG Set tensorMet.

Solutions array allocation
We allocate the array of solution structure given the number of solutions per entity and

the type of each solution (scalar, vectorial or tensorial) using the PMMG Set allSolsSizes

function. Then we set each solution value using the PMMG Set ithSol inAllSols function

Page 13 of 23

Deliverable 2.1

3.4 ExecuteRemeshing

The ExecuteRemeshing process sets the ParMMG parameters and run the ParMMG
library. The list of parameters setted in this step are the following2. Lot of them are
similar to the MMG arguments:

• PMMG DPARAM hausd : The Hausdorff controls the smothness of the boundary;

• PMMG IPARAM nomove: This parameters sets if we allow to avoid or allow the point
recolocation;

• PMMG IPARAM nosurf: This parameters sets if we don’t allow the surfaces modifica-
tion;

• PMMG IPARAM noinsert: This parameters sets if we don’t insert nodes on mesh;

• PMMG IPARAM noswap: This parameters sets if we don’t swap the mesh;

• PMMG IPARAM angle: This parameters is used in order to deactivate/activate the
angle detection;

• PMMG DPARAM hgrad: This parameter is used in order to set the gradation;

• PMMG DPARAM hmin: This parameters sets the minimum size of the mesh;

• PMMG DPARAM hmax: This parameters sets the maximum size of the mesh.

Because of the mesh repartitionning, the interpolation of the solutions from the old
mesh into the new one must be done in ParMMG.
The interpolation method is choosen depending on the PMMG IPARAM interp argument
and the wanted method:

• PMMG INTERP linear: linear interpolation of the solution from the old mesh in the
new one;

• PMMG INTERP closestPoint: transfer of the solution from the closest GP.

Last we call the remeshing method PMMG parmmglib distributed() as seen in Figure
12.

After the remeshing step, the new nodes, conditions and elements are created and
transfered to the corresponding submodelparts using the respective colours previously
computed, which correspond with the PMMG reference.

Save output mesh, metric and solutions
We can save the mesh, metric and solutions at .mesh and .sol format (PMMG for-

mat) using the SaveSolutionToFile() process. It calls the PMMG Set outputMeshName,
PMMG Set outputMetName and PMMG Set outputSolsName methods form the PMMG API
to set the filenames and the PMMG saveMesh, PMMG saveMet and PMMG saveAllSols meth-
ods to write the output files.

Page 14 of 23

Deliverable 2.1

FreeMemory
We release the ParMMG memory calling the PMMG Free all() method. See Figure 13

for more details.

ReorderAllIds The only reordering needed from Kratos is before remeshing in order to
avoid potential problematics. After remesh Kratos will take the ids provided by ParMMG
which already computes an internal reordering.

InitializeElementsAndConditions
Finally, the created elements and conditions are initialised in order to be usable in

Kratos.

2These parameters are registered as enums

Page 15 of 23

Deliverable 2.1

References

[1] P. Dadvand, J. Mora, C. González, A. Arráez, P. Ubach, and E. Oñate. Kratos: an
object-oriented environment for development of multi-physics analysis software. In
World Congress on Computational Mechanics, pages 485–485, Jul 2002.

[2] C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive domain remesh-
ing, implicit domain meshing, and applications to free and moving boundary prob-
lems. Technical report, Mar. 2013. URL https://hal.sorbonne-universite.fr/

hal-00804636.

[3] C. Dobrzynski and P. Frey. Anisotropic delaunay mesh adaptation for unsteady simu-
lations. In Proceedings of the 17th international Meshing Roundtable, pages 177–194.
Springer, 2008.

Page 16 of 23

https://hal.sorbonne-universite.fr/hal-00804636
https://hal.sorbonne-universite.fr/hal-00804636

Deliverable 2.1

Kratos MMGProcess MMG

InitializeMeshData()

MMGXD_Set_meshSize()

MMGXD_Set_vertex()

MMG2D_Set_edge()

MMG2D_Set_requiredEdge()

MMG2D_Set_triangle()

MMG2D_Set_requiredTriangle()

MMG3D_Set_quadrilateral()

MMG3D_Set_tetrahedron()

MMG3D_Set_prism()

alt [Line2D3]

[Triangle3D3]

[Quadrilateral3D4]

[Tetrahedra3D4]

[Prism3D6]

InitializeMeshData()

Kratos MMGProcess MMG

Figure 4: MMGProcess Initialize Mesh Data

Page 17 of 23

Deliverable 2.1

Kratos MMGProcess MMG

InitializeSolData()

MMGXD_Set_solSize()

MMGXD_Set_tensorSol()

InitializeSolData()

Kratos MMGProcess MMG

Figure 5: MMGProcess Initialize Solution Data

Kratos MMGProcess MMG

CheckMeshData()

MMGXD_Chk_meshData()

CheckMeshData()

Kratos MMGProcess MMG

Figure 6: MMGProcess Check

Page 18 of 23

Deliverable 2.1

Kratos MMGProcess MMG

ExecuteRemeshing()

MMGXD_Set_Xparameter()

MMGXD_mmg2dlib()

ExecuteRemeshing()

Kratos MMGProcess MMG

Figure 7: MMGProcess Remesh

Kratos MMGProcess MMG

FreeMemory()

MMGXD_Free_all()

FreeMemory()

Kratos MMGProcess MMG

Figure 8: MMGProcess Finalize

Page 19 of 23

Deliverable 2.1

Kratos MMGProcess ParMMG

PMMG_Init_parMesh()

InitMesh()

Kratos MMGProcess ParMMG

InitMesh()

Figure 9: ParMMGProcess Initialization

Page 20 of 23

Deliverable 2.1

Kratos MMGProcess

InitializeMeshData()

PMMG_Set_meshSize()

PMMG_Set_vertex()

PMMG_Set_edge()

PMMG_Set_requiredEdge()

PMMG_Set_triangle()

PMMG_Set_requiredTriangle()

PMMG_Set_quadrilateral()

PMMG_Set_tetrahedron()

PMMG_Set_prism()

[Line2D3]

[Triangle3D3]

[Quadrilateral3D4]

[Tetrahedra3D4]

[Prism3D6]

Kratos MMGProcess ParMMG

PMMG_Set_loc2GlobTetrahedra()

[Communicators]

PMMG_Set_loc2GlobVertices()

PMMG_Set_interfaceNodes()

ParMMG

Figure 10: ParMMGProcess Initialize Mesh Data

Page 21 of 23

Deliverable 2.1

Kratos MMGProcess

PMMG_Set_metSize()

PMMG_Set_tensorMet()

InitializeSolData()

Kratos MMGProcess ParMMG

ParMMG

PMMG_Set_allSolsSizes()

PMMG_Set_ithSol_inAllSols()

Figure 11: ParMMGProcess Initialize Metric Data

Kratos MMGProcess

ExecuteRemeshing()

PMMG_Set_XParameter()

PMMG_parmmglib_distributed()

ExecuteRemeshing()

Kratos MMGProcess ParMMG

ParMMG

Figure 12: ParMMGProcess Remesh

Page 22 of 23

Deliverable 2.1

Kratos MMGProcess

FreeMemory()

PMMG_Free_all()

FreeMemory()

Kratos MMGProcess ParMMGParMMG

ParMMGParMMG

Figure 13: ParMMGProcess Finalize

Page 23 of 23

	Introduction
	Interface Description: existing MMG interface
	InitMesh
	InitializeMeshData
	InitializeSolData
	CheckMeshData
	ExecuteRemeshing

	Interface Proposal: ParMMG interface
	InitMesh
	InitializeMeshData
	InitializeSolData
	ExecuteRemeshing

