
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

EFFICIENT DISPERSION CURVE COMPUTATIONS FOR
PERIODIC VIBRO-ACOUSTIC STRUCTURES USING THE

(GENERALIZED) BLOCH MODE SYNTHESIS

Vanessa Cool1,2, Frank Naets1,2, Lucas Van Belle1,2, Wim Desmet1,2 and
Elke Deckers2,3

1 KU Leuven, Department of Mechanical Engineering
Celestijnenlaan 300B - box 2420, 3001 Heverlee, Belgium

2 DMMS lab, Flanders Make, Belgium

3 KU Leuven Campus Diepenbeek, Department of Mechanical Engineering
Wetenschapspark 27, 3590 Diepenbeek , Belgium

Key words: periodic structures, vibro-acoustics, unit cell, model order reduction, dispersion
curves

Abstract. Periodic structures such as metamaterials and phononic crystals hold potential as
promising compact and lightweight solutions for noise and/or vibration attenuation in targeted
frequency ranges. The performance of these structures is usually investigated by means of dis-
persion curves. The input for dispersion curve computations is often a finite element model
of the corresponding unit cell. Nowadays, the vibration and noise attenuation of the periodic
structures are generally tackled as separate problems and their performance is investigated with
either structural or acoustic dispersion curves, respectively. Recently, vibro-acoustic unit cell
models have come to the fore which can exhibit simultaneous structural and acoustic stopbands.
However, the vibro-acoustic coupling inside the unit cell is usually not taken into account during
the dispersion curve computations. To consider this coupling during their performance assess-
ment, the computation of vibro-acoustic dispersion curves is required. Although these dispersion
curves provide valuable information, the associated computational cost rapidly increases with
unit cell model size. Model order reduction techniques are important enablers to overcome this
high cost. In this work, the Bloch mode synthesis (BMS) and generalized BMS (GBMS) unit
cell model order reduction techniques are extended to be applicable for 2D and 3D periodic
vibro-acoustic systems. Through a verification case, the methodologies are shown to enable a
strongly reduced dispersion curve calculation time while maintaining accurate predictions.

1 INTRODUCTION

In the search for lightweight and compact designs with favorable noise and vibration prop-
erties, periodic engineered structures have emerged which exhibit extraordinary properties not
found in nature. These structures enable frequency ranges where wave attenuation takes place,
called bandgaps. Two phenomena are commonly encountered: Bragg scattering leads to stop
bands in phononic crystals, while Fano-type interference leads to stop bands in locally resonant
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metamaterials [1]. The performance of these often periodic structures is analyzed with disper-
sion curves which give a relation between the frequency and wave propagation constant and thus
contain information on the wave propagation in the corresponding infinite periodic structure.
Therefore, the infinite periodic structure theory is applied, based on the smallest non-repetitive
part, called the unit cell (UC), while applying the Bloch-Floquet theorem [2] to account for the
periodicity. The UC model is often discretized using the finite element (FE) technique.

Nowadays, the vibration and noise attenuation of the periodic structures are generally tackled
as separate problems resulting in either structural or acoustic phononic crystals or metamate-
rials. Their performance is, therefore, investigated with either purely structural or acoustic
dispersion curves, respectively. Recently, vibro-acoustic UCs have come to the fore which (i) can
obtain a simultaneous structural and acoustic bandgap [3, 4] or (ii) combine the structural and
acoustic resonances [5] to exhibit extraordinary noise and vibration performance. However, in
order to consider the possible vibro-acoustic coupling during the performance assessment, the
computation of vibro-acoustic dispersion curves is required. Although including valuable infor-
mation, the calculation of vibro-acoustic dispersion curves is cumbersome due to the nature of
the vibro-acoustic system. Moreover the cost increases rapidly with the number of degrees-of-
freedom (DOFs) in the UC and the number of required propagation constant evaluations for the
dispersion curve calculation.

Model order reduction (MOR) techniques aim to overcome the high dispersion curve com-
putation cost by constructing a reduced order UC model with less DOFs while preserving the
important dynamic information. Several reduction techniques are available to accelerate the
dispersion curve computation, ranging from wave-based to component mode synthesis-based
techniques [6]. The Bloch mode synthesis (BMS) [7] and the generalized BMS (GBMS) [8] are
the most commonly applied component mode synthesis techniques for the reduction of purely
structural or acoustic UCs. They are Craig-Bampton methods and have as an advantage that
the reduction of the UC happens without dependency on the wave propagation constants. The
extension of the Craig-Bampton method for coupled vibro-acoustic structures was proposed in
a substructuring context [9]. Recently, the applicability of the Craig-Bampton method is shown
for the reduction of the interior and boundary DOFs for the calculation of frequency response
functions of fluid-filled piping systems [10, 11].

In this work, the BMS and GBMS model reduction techniques are extended towards the
reduction of vibro-acoustic 2D and 3D periodic UCs for the accelerated computation of vibro-
acoustic dispersion curves. The efficiency and accuracy of the extended methodologies are in-
vestigated using a 2D vibro-acoustic UC model which contains a large number of DOFs.

This paper is structured as follows. Section 2 gives an overview of the vibro-acoustic FE UC
model, dispersion curve calculation and introduces the extended BMS and GBMS model order
reduction technique. In Section 3, the proposed methods are verified. The main conclusions are
summarized in Section 4.

2 METHODOLOGY

This section first describes the dispersion curve calculation, after which the extended BMS
and GBMS are presented. The theory is given for 2D periodic structures, while an extension
towards 3D periodic structures can be done using [12].
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Figure 1: Schematic visualization of the node groups for a vibro-acoustic UC: a) three-dimensional view,
b) top view.

2.1 Dispersion curve calculation

The input for the dispersion curve calculation is the UC model. In this work, vibro-acoustic
UC designs are under consideration which are discretized using the (u,p) FE-formulation [13]:−ω2
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with u the displacement of the structural domain (subscript s), p the pressure of the acoustic
domain (subscript a), M,K ∈ RN×N the mass and stiffness matrices, C the coupling matrix, ρa
the density of the acoustic medium and ω the radial frequency. The UC DOFs are partitioned
into interior and boundary ones (Fig. 1). Next, the Bloch-Floquet theorem [2] is applied on
this UC to construct the characteristic dispersion eigenvalue problem which governs the wave
propagation characteristics in the 2D infinite periodic structure:

(K̃− ω2M̃)q̃ = 0, K̃ = ΛHKΛ, M̃ = ΛHMΛ, (2)

with H the Hermitian transpose, Λ the periodicity matrix and:

q = Λq̃, q̃ =
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qBL

 , Λ =


I 0 0 0
0 Λx 0 0
0 0 Λy 0
0 0 0 Λx,y

 , Λi =

[
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λiI

]
, Λi,j =


I
λiI
λjI
λiλjI

 , (3)

with q̃ the periodic DOF vector and λx = ejµx , λy = ejµy in whichµµµ = (µx, µy) is the propagation
vector. In this work, the dispersion eigenvalue problem is solved using the ω(µµµ)-approach: a set
of real µµµ values is imposed and the problem is solved towards ω [1]. This results in free wave
propagation solutions. The set of real µµµ-combinations are only selected along the Irreducible
Brillouin Contour (IBC) of the UC [14]. In this work, Eq. (2) is solved in Matlab using the
built-in function eigs.
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2.2 Model order reduction

The computational cost to solve Eq. (2) quickly increases with the number of DOFs and the
number of imposedµµµ-pairs. This section elaborates on the extension of the BMS [7] and GBMS [8]
unit cell reduction techniques towards vibro-acoustic UCs to accelerate this computation. The
reduction techniques construct a projection basis B ∈ CN×NB using modal information and
reduce the system matrices (NB ≪ N):

M = BTMB, K = BTKB. (4)

After the transformation, the Bloch-Floquet boundary conditions (BCs) are imposed to con-
struct the dispersion eigenvalue problem. Following sections discuss the construction of B in
more detail for the BMS and GBMS technique.

2.2.1 Bloch mode synthesis

The BMS method reduces the (structural and acoustic) interior DOFs of the UC with a
Craig-Bampton approach in which the interior DOFs are approximated as a linear combination
of a set of fixed interface normal modes Φt

I and a set of static constraint modes Ψt
IA:[

qI

qA

]
= B

[
ηηηI
qA

]
=

[
Φt

I Ψt
IA

0 I

] [
ηηηI
qA

]
, (5)

in which the subscripts I and A represent the interior and boundary part of the UC, respectively,
qI ∈ RNI and qA ∈ RNA , and ηηηI is the reduced set of interior modal DOFs.

(i) Φt
I is constructed using the coupled vibro-acoustic fixed interface normal modes. First the

nI smallest coupled modes ϕi
I are computed, after which these are partitioned into the structural

and acoustic part:

(
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The partitioned modes are normalized, denoted by Φ̂j,I , to prevent singularity issues, leading
to:

Φt
I =

[
Φ̂s,I 0

0 Φ̂a,I

]
. (7)

The NI DOFs are reduced to 2nI DOFs. In this work, a frequency-based truncation criterion
for nI is used: the modes up to four times the maximum frequency of interest are included.

(ii) The static constraint modes Ψt
IA represent the influence of the boundary motion on the

interior part. To balance accuracy with computation speed, the static constraint modes are
computed without taking into account any coupling [11]:

Ψs,IA = −K−1
s,IIKs,IA, Ψa,IA = −K−1

a,IIKa,IA, Ψt
IA =

[
Ψs,IA 0
0 Ψa,IA

]
. (8)

Since the structural and acoustic boundary DOFs are kept as physical DOFs during the BMS
reduction, the Bloch-Floquet BCs can straightforwardly be applied.
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2.2.2 Generalized Bloch mode synthesis

The GBMS builds further upon the BMS technique and reduces also the boundary DOFs.
An extra boundary transformation matrix L is constructed such that qA = LηηηA, resulting in
the reduction basis: [
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]
= B

[
ηηηI
ηηηA

]
=

[
Φt

I Ψt
IAL

0 L
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. (9)

The transformation matrix L is constructed using a truncated set of normal modes. The BMS
reduced system matrices are first partitioned according to ηηηI and qA:([

KII KIA

KAI KAA

]
− ω2

[
MII MIA
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])[
ηηηI
qA

]
= 0. (10)

Next, separate structural and acoustic boundary modes are computed, i.e. i = s and a:(
Ki,AA − ω2

jMi,AA

)
ϕj
i,A = 0, Φi,A =

[
ϕ1
i,A ϕ2

i,A . . . ϕ
ni,A

i,A

]
, ni,A ≪ Ni,A, (11)

ns,A and na,A are determined to balance accuracy with speed [11]. Since the GBMS reduction
is applied before the Bloch-Floquet BCs, the reduced modal boundary DOFs need to express
the same compatibility conditions as the FOM. These conditions are enforced by partitioning
the mode sets Φi,A according to the different boundary parts, cf. Fig. 1. Next, the sets which
require compatibility are combined and orthogonalized using a singular value decomposition to
construct new bases Φp, with p representing the DOFs which are combined, e.g. Φs,lr is the basis
for the left and right structural boundary UC DOFs. All new bases are combined to construct
the transformation matrix L.

3 NUMERICAL VERIFICATION

This section verifies the proposed methodologies in terms of efficiency and accuracy on a 2D
vibro-acoustic UC design. All calculations are performed on a laptop with 32 GB RAM and a
2.6 GHz Intel Core i7-9540 processor using Matlab R2019b. A relative frequency error is used
to quantify the accuracy of the computed dispersion curves:

ϵrel =

∣∣∣∣ωROM − ωFOM

ωFOM

∣∣∣∣ . (12)

The vibro-acoustic 2D periodic UC design is taken over from Roca et al. [5] (Fig. 2). It consists
of a hollow plate with a hollow pillar on top. All geometrical details and material properties can
be found in [5]. It is opted to apply the UC with the pillar in the middle since this reduces the
number of boundary DOFs which is favorable for the BMS and GBMS technique [15]. The UC
is discretized using Simcenter NX with the FE method leading to 30238 DOFs of which 25476
structural and 4762 acoustic ones. The frequency range of interest goes from 0 Hz till 4500 Hz,
leading to the calculation of the first 10 dispersion curves. The dispersion curves are computed
along the IBC (Fig. 2b), with a resolution of 0.02π. The FOM dispersion curve calculation, which
contains 27878 DOFs after applying the Bloch-Floquet BCs, requires 1446.1 s. The FOM vibro-
acoustic and purely structural and acoustic dispersion curve are shown in Fig. 2c. The difference
between the coupled and uncoupled dispersion curves indicates the vibro-acoustic coupling has
a non-negligible effect.
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Figure 2: a) FE model of the vibro-acoustic 2D periodic UC with a detail of one fourth of the acoustic
and structural part, b) IBC in reciprocal wave space, c) Coupled vibro-acoustic and uncoupled structural
and acoustic FOM dispersion curves.

a) b)

Figure 3: Results of the vibro-acoustic 2D periodic case. a) Comparison of the different calculation
times for the construction of the ROM and the dispersion curve calculation. b) Dispersion curves of
FOM and ROMs with corresponding relative error.

First of all, the BMS technique is applied with nI = 16 which results in a ROM of 4716 DOFs,
or 2356 DOFs after applying the Bloch-Floquet BCs. The construction of the ROM takes 33.82 s,
while the dispersion curve computation takes 142.6 s (Fig. 3a). In total, this leads to an acceler-
ation with factor 8.1 with respect to the FOM calculation. Fig. 3b shows the dispersion curves
and corresponding relative errors. An accurate dispersion curve prediction is obtained with an
error of 1.7 · 10−2 or smaller.
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Next, the dispersion curve calculation is further accelerated using the GBMS technique with
ns,A = 120 and na,A = 30. The number of considered modes is a trade-off between accuracy
and speed. This results in a ROM with 894 DOFs, or 445 DOFs after applying the Bloch-
Floquet BCs. The construction of the reduced model takes 102.4 s, while the dispersion curve
calculation takes merely 5.6 s. This leads to an acceleration with factor 18.5 with respect to the
FOM calculation. Fig. 3b shows the dispersion curves and corresponding relative errors. The
relative error using the GBMS is slightly larger than the one of the BMS since an additional
approximation is made. Overall, still an accurate prediction of the dispersion curves is obtained
with a relative error smaller than 6.5 · 10−2.

4 CONCLUSIONS

In this work, the BMS and GBMS unit cell model reduction techniques are extended towards
2D and 3D vibro-acoustic unit cell designs. A verification case shows that the methodologies are
able to accelerate the vibro-acoustic dispersion curve calculation while maintaining an accurate
prediction with respect to the full order model. Due to the accelerated performance assessment,
the presented techniques are of particular interest during the design and tuning of periodic
vibro-acoustic structures.
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