
 
 
 
 
 
 
 
 
 

 
A Three Dimensional Setting for 

Strong Discontinuities Modelling in 
Failure Mechanics 

 
 

E. W.V. Chaves  
X. Oliver 

 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
                
                  
 
 
 
 
 
 
 
 
 
 

Monograph CIMNE Nº-73, April  2003 

INTERNATIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING 

 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A Three Dimensional Setting for 
Strong Discontinuities Modelling in 

Failure Mechanics 
 

 
E. W.V. Chaves 

X. Oliver 
 
 
 
 

 
 
 
 
 
 
 

Monograph CIMNE Nº-73, April  2003 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

INTERNATIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING 
Gran Capitán s/n, 08034 Barcelona, Spain 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERNACIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING 
Edificio C1, Campus Norte UPC 
Gran Capitán s/n 
08034 Barcelona, Spain 
www.cimne.upc.es 
 
First  edition:  April 2003 
 
A Three Dimensional Setting for Strong  
Discontinuities Modelling in Failure Mechanics 
Monograph CIMNE M73 
 The authors 
 
 
ISBN: 84-95999-21-8 
Deposito legal: 24951-2003 
 
 



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 
 

II

 
 
 
 

 

 
 
 
 



 

Contents  
 

 

Contents 

 
Nomenclature .................................................................................................................................. vii 
Abbreviations.................................................................................................................................... xi 
Operators......................................................................................................................................... xiii 
Abstract............................................................................................................................................. xv 
 

1 INTRODUCTION.............................................................................................................................. 1 
1.1 Why failure mechanics?.............................................................................................................. 1 
1.2 How to face the problem........................................................................................................... 4 
1.3 Material behavior (meter-millimeter level) .............................................................................. 5 
1.4 Some approaches to the modeling of failure .......................................................................... 7 

1.4.1 Linear Elastic Fracture Mechanics – LEFM .................................................................. 7 
1.4.2 Discrete crack approach .................................................................................................... 9 
1.4.3 Smeared crack model ....................................................................................................... 10 
1.4.4 Intraelement crack............................................................................................................ 14 
1.4.5 Enhanced continuum approaches ................................................................................. 14 

1.5 Weak/strong discontinuity approach .................................................................................... 15 
1.6 Failure simulation in three dimensions.................................................................................. 16 
1.7 Adopted approach and aim of this work............................................................................... 17 

1.7.1 Contents of this work ...................................................................................................... 18 

 
 
2 STRONG DISCONTINUITY IN SOLIDS MECHANICS .................................................................. 19 
2.1 Introduction............................................................................................................................... 19 
2.2 Governing equation.................................................................................................................. 20 
2.3 Representative continuum damage model ............................................................................ 23 

2.3.1 Isotropic damage model .................................................................................................. 23 
2.3.1.1 Constitutive equation............................................................................................ 24 

2.3.2 Hardening rule .................................................................................................................. 26 
2.3.2.1 Linear hardening law............................................................................................. 26 
2.3.2.2 Exponential hardening law .................................................................................. 27 

2.3.3 Time integration of the evolution laws, Tangent moduli ........................................... 28 
2.3.4 Tension-only damage model........................................................................................... 30 

2.4 Discontinuity kinematics ......................................................................................................... 32 
2.4.1 Weak discontinuity kinematics ....................................................................................... 33 
2.4.2 Strong discontinuity kinematics ..................................................................................... 35 
2.4.3 Representative Weak-Strong discontinuity kinematics ............................................... 37 

2.4.3.1 Regularized Dirac’s delta...................................................................................... 38 
2.4.4 Phases of the stress-strain curve .................................................................................... 38 
2.4.5 Bifurcation time ................................................................................................................ 41 
2.4.6 Strong discontinuity analysis of the isotropic damage model.................................... 42 

2.4.6.1 Discrete constitutive equation............................................................................. 44 



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 
 

IV

2.4.6.2 Strong discontinuity conditions...........................................................................46 
2.4.7 Variable Bandwidth Model - VBM ................................................................................48 

2.4.7.1 VBM by pre-established law ................................................................................48 
2.4.7.2 Automatic VBM.....................................................................................................51 

2.4.8 Fracture Energy.................................................................................................................51 
 
 

3 MATERIAL BIFURCATION ............................................................................................................53 
3.1 Introduction ...............................................................................................................................53 
3.2 Historical aspects on localization............................................................................................54 
3.3 Continuous and discontinuous bifurcation ...........................................................................54 
3.4 Material bifurcation condition.................................................................................................59 
3.5 Critical values .............................................................................................................................61 

3.5.1 General case.......................................................................................................................61 
3.5.1.1 Critical angle ...........................................................................................................61 
3.5.1.2 Calculation of ............................................................................................63 critH

3.5.2 Case of colinearity between n ..................................................................................64 m  ,
3.5.2.1 Non-associated case ..............................................................................................64 

3.5.2.1.1 Critical angle................................................................................................65 
3.5.2.1.2 Calculation of .................................................................................69 critH

3.5.2.2 Associated case (n ) .......................................................................................70 m=
3.5.2.2.1 Geometrical interpretation – localization ellipse ...................................70 
3.5.2.2.2 Critical angle – Associated case (n m= ) ................................................71 
3.5.2.2.3 Calculation of the  – Associated case (critH mn = ) ...........................72 

3.6 Critical values for several constitutive models ......................................................................73 
3.6.1 One-parameter models ....................................................................................................74 

3.6.1.1 Rankine criterion....................................................................................................74 
3.6.1.2 von Mises yield criterion.......................................................................................75 
3.6.1.3 Tresca yield criterion .............................................................................................77 

3.6.2 Two-parameter models ....................................................................................................78 
3.6.2.1 Mohr-Coulomb criterion......................................................................................78 

3.6.2.1.1 Non-associated Mohr criterion – Particular case...................................80 
3.6.2.2 Drucker-Prager criterion – Two-Invariant plasticity formulation..................81 

3.6.2.2.1 Particular case 121 =α=α ......................................................................83 
3.6.3 Three-parameter models..................................................................................................84 

3.6.3.1 Three-invariants plasticity formulation...............................................................84 
3.6.4 Damage models.................................................................................................................86 

3.6.4.1 Isotropic damage model .......................................................................................86 
3.7 Two dimensional case...............................................................................................................87 

3.7.1 Plane stress.........................................................................................................................87 
3.7.1.1 Critical angle ...........................................................................................................87 

3.7.1.1.1 Non-associated case ( mn ≠ )....................................................................87 
3.7.1.1.2 Associated case (n )............................................................................87 m=

3.7.1.2 Critical hardening modulus - ...................................................................89 critH
3.7.1.2.1 Non-associated case ( mn ≠ )....................................................................89 
3.7.1.2.2 Associated case (n )............................................................................90 m=



Contents V

Annex 3A – Specific material bifurcation analysis ..................................................................... 91 
 
 

4 BVP DISCRETIZATION AND IMPLEMENTATION ..................................................................... 97 
4.1 Introduction............................................................................................................................... 97 
4.2 Governing equation.................................................................................................................. 98 

4.2.1 Redefinition of the kinematics .....................................................................................101 
4.3 Variational formulation..........................................................................................................102 

4.3.1 Enhanced assumed strains ............................................................................................102 
4.3.1.1 Discrete version of EAS ....................................................................................104 

4.4 Spatial discretization and solution ........................................................................................106 
4.4.1 Solution of the nonlinear system .................................................................................107 

4.4.1.1 Newton-Raphson scheme..................................................................................107 
4.4.2 Approximation of the regular part of the displacement field ..................................109 

4.4.2.1 Tetrahedral finite element ..................................................................................109 
4.4.2.2 Hexahedral finite element ..................................................................................111 

4.4.3 Approximating displacement field in an enhanced element ....................................111 
4.4.4 Approximation of the enhanced strain field ..............................................................114 

4.4.4.1 Regularization via delta-sequences ...................................................................117 
4.4.5 System of algebraic equations.......................................................................................117 
4.4.6 Numerical integration ....................................................................................................120 

4.5 Static condensation.................................................................................................................122 
4.5.1 Newton-Raphson scheme for the condensed version..............................................123 

4.6 Algorithm of numerical detection of the discontinuity line/surface...............................125 
4.6.1 Element-by-element tracking........................................................................................126 
4.6.2 Level curves and level surfaces of the critical angle ..................................................132 
4.6.3 Flowchart of the coupled problem..............................................................................136 
4.6.4 Some examples of the discontinuity surface ..............................................................137 

4.6.4.1 Anchorage structure............................................................................................137 
4.6.4.2 Double-notched shear beam .............................................................................138 
4.6.4.3 Torsion problem .................................................................................................140 

 

5 REPRESENTATIVE NUMERICAL SIMULATIONS.......................................................................143 
5.1 Introduction.............................................................................................................................143 

5.1.1 Tools.........................................................................................................................143 
5.2 The importance of the exact capture of the bifurcation pseudo-time ............................144 
5.3 Tension test .............................................................................................................................149 

5.3.1 Tension bar..............................................................................................................149 
5.4 Three-point bending test .......................................................................................................151 

5.4.1 Notched bar in tension ..........................................................................................154 
5.5 Direct tension ..........................................................................................................................156 

5.5.1 Results for Case A ..................................................................................................159 
5.5.2 Results for Case B ..................................................................................................160 
5.5.3 Results for Case C ..................................................................................................161 

5.6 Four-point bending test .........................................................................................................163 
5.6.1 Single-notched shear beam ...................................................................................163 

5.6.1.1 Case A..................................................................................................................164 

 



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 
 

VI

5.6.1.2 Case B.................................................................................................................. 167 

 

6 CONCLUSIONS AND RECOMMENDATION FOR FURTHER WORK ........................................ 171 
6.1 Summary and conclusions of the research developed ...................................................... 171 
6.2 Main contributions................................................................................................................. 172 
6.3 Future research lines .............................................................................................................. 173 
 
 
Appendix A  ................................................................................................................................. 175 
Bibliography ................................................................................................................................. 189 
Index  ............................................................................................................................................. 201 
Author index ................................................................................................................................ 205 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

  
Nomenclature 

ea  Nodal displacements;  
B  Body; 

0B  Configuration of the body in 0=t ; 
B∂  Boundary of B ; 
B  Strain interpolation matrix; 

),( txb  Body forces; 
eC  Matrix with the elastic properties; 

C  Elastic matrix (Voigt notation); 
inC  Inelastic constitutive tensor; 
dC , C  ep Damage and Elastoplastic constitutive tensor, respectively; 

c  Cohesion; 
d  Damage parameter; 
d  Differentiate; 
D  Dissipation; 

),( txe  Specific internal energy; 
E  Young’s modulus; 
iê  Cartesian basis; 
F  Yield function; 
extF  Global nodal external forces; 

intF  Vector of nodal internal forces; 
If G=G  Fracture energy correspondent to mode I; 

IIG  Fracture energy correspondent to mode II; 
IIIG  Fracture energy correspondent to mode III; 
G  Plastic potential; 
G  Shear modulus; 
fg  Energy per unit volume; 
pH
d

 Plastic hardening/softening modulus; 
H  Damage hardening/softening modulus; 

dH  Discrete (or intrinsic) hardening/softening parameter; 

critH  Critical hardening/softening parameter; 
)(x

hBH  Ramp function; 
SH
η

 Heaviside function, step function, unit jump function; 
)(h  Bandwidth; 
ijklI,I  Components of the 4th order identity tensor and components, respectively;

321 ,, III  First, third and fourth invariants, respectively; 
[ ]J  Jacobian matrix; 
K  Global stiffness matrix; 
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k  Yield stress in pure shear; 
k  Bandwidth value in the strong discontinuity regime, 1<<k ; 

*l  Characteristic length; 
L  Discontinuity line; 
M  Polarization direction; 
m  Unity vector normal to the plastic potential; 
n  Unity vector normal to yield surface; 
N  Propagation direction ; 

critN  Critical direction of propagation; 
N  Displacement interpolation functions; 
p  Spherical or hydrostatic stress tensor; 
P  Material point; 
q  Heat flux vector; 

( )NeQ  Elastic acoustic tensor; 
( )NQ  Localization tensor; 

)(rq  Stress-like hardening/softening variable; 
0r  Initial threshold value; 

),( txr  Volumetric density of the internal heat production; 
s  Deviatoric stress tensor; 

321 ,, sss  Principal deviatoric stress ; 
R∆  Residual vector; 

),( txs  Specific entropy per unit mass; 
S  Discontinuity surface; 
T  Traction vector; 

),( tT x  Temperature; 
t  Pseudo-time; 

)(xt  Tractions; 
)(* xt  Prescribed surface traction; 

U  Elastic energy; 
u   Displacement filed; 
*u   Prescribed displacement; 
[ ][ ]u  Jump in displacement; 
υ  Outward unit normal to the boundary ; B∂
intW  Work of the internal forces or internal virtual work or strain energy stored; 
extW  External virtual work; 
fW  Work of extenal force; 

 
  

eα  Jump displacement(global coordinates) ; 
εt  Norm of the strain; 
σt  Norm of the stress; 
Sδ  Dirac delta distribution; 
k
Sδ  Regularized Dirac’s delta; 
h
Sδ  Regularized Dirac’s delta by means of a bandwidth parameter h ; 
ijδ  Components of the 2nd order identity tensor (Kronecker Delta) ; 



Nomenclature IX

),( txε , ε  ij Strain tensor and components, respectively; 
{ }ε  Strain vector (Voigt notation) ; 

321 ,, εεε  Principal strain; 
effε  Effective strain; 
ε  Regular part of the strain tensor; 
ε~  Enhanced part of the strain tensor; 
refΦ  Reference temperature; 

φ  Angle of internal friction; 
κ  Bulk (compression) modulus; 
µλ,  Lamé’s elastic constants ; 

λ̂  Lagrange multipliers; 
ν  Poisson’s ratio; 
critθ  Critical angle of propagation; 
ρ  Material density; 

),( txσ , σ  ij Cauchy stress tensor and components, respectively; 
{ }σ  Stress vector (Voigt notation) ; 

321 ,, σσσ  Principal stress; 
σ  Effective stress; 
yσ  Peak stress (or elastic strength) ; 
tσ  Tensile yield stress; 

octτ  Octahedral shear stress; 
maxτ  Maximum shearing stress; 

y  Helmholtz free energy; 
ψ  Dilatant angle; 

HW
Π  Hu-Washizu functional; 
Π  Potential; 
∞Γ  Infinity boundary; 
∞Ω  Infinity domain; 
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Abstract 

 
 
 
CHAVES, E.W.V. (2003). A three dimensional setting for strong discontinuities modelling in failure 

mechanics. Barcelona. Ph.D. – Technical University of Catalonia (UPC) – Spain. 
 
 
 
 This work deals with the simulation of strain localization phenomena through the 
Strong Discontinuity Approach (SDA) for three dimensional (3D) problems. The main 
assumptions of this work are the isothermal quasi-static regime, small deformations and 
rotations, and a material described as homogeneous and isotropic. 

The theory is developed in the ambit of Continuum Mechanics using an Isotropic 
Continuum Damage model and its variations, which serves to simulate materials like 
concrete, ceramics, rocks and ice, for example. The basic ingredients of a 3D finite element 
formulation with an embedded discontinuity are presented. Also the ingredients for the 
transition from a weak discontinuity to a strong discontinuity (a bandwidth variable model) 
are presented. 

An extensive analysis of material bifurcation is performed. It gives us the information 
necessary for the propagation of a discontinuity surface. Two proposals to track this 
discontinuity surface are presented. 

In order to illustrate the effectiveness of the method, several numerical simulations are 
presented. The agreement with experimental data is also shown. In this work new 
possibilities are open by giving the necessary tools for the extension of the method to the 
study of more complex examples which require more complex constitutive models. 

 
 
 
 Keywords: Strong Discontinuity Approach, localization, bifurcation, finite element. 
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“..., nothing that has been discovered ever loses its 
value or has to be discarded;...”  

Love, A.E.H. (1944) 

 

Introduction

 1

1.1 Why failure mechanics?  

Nowadays modeling fracture and failure processes in structures remains as a challenging 
problem in Mechanics. It plays an important role in the development of new materials for 
industry as well as in the understanding of their durability and resistance. Some examples 
that have stimulated this challenge are presented in the remaining of this section. 

Ship failure 

In the beginning of the 1900’s, interest increased in the behavior of steel (the most used 
material of that time) after fatigue and fracture mechanisms were detected in various types 
of structures including in ships; as examples one can mention: the Titanic(1912), the 
Olympic(1911) and several ships during World War One (1914-1918) and World War II 
(see Figure 1.1).  

 

 

 

 

 

 

   
   

Figure 1.1: Ship failure – Callister (1997). 
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Dam collapse 

 Most concrete dams develop cracks, giving a heterogeneous character to the material 
which can affect its integrity. Depending on the stress states, microcracks can develop into 
a macrocrack formation, which can result in inefficient operation or even in a complete 
collapse. 

In 1928 the St. Francis Dam near Los Angeles, California, collapsed killing hundreds of 
people. Figure 1.2 shows the dam before and after collapse. In 1959, the Malpasset Dam 
(France) failed and the resulting flood killed about 450 people. In October 1963 about 2500 
people died as a consequence of the Vajont dam collapsing (Longarone - Italy). 

 

 

 

    

 

 

 

 

  
 

Figure 1.2: The St. Francis Dam, before and after collapse. 

While monitoring displacements in the El Atazar dam in Spain, (a double curvature 
concrete arch buttress dam) it was noticed that the left side was moving more than the 
right side and in 1977 a crack appeared in the left of center part of the dam (see Figure 1.3). 
Water began to leak out through the crack into drains in the dam at a rate of 1.5 m3/min. 
Fortunately, the dam did not collapse. 
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gure 1.3: Atazar Dam-rift position. 
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Oil/gas pipeline rupture 

Thousands of kilometers of gas and oil transmission pipelines are currently in operation 
around the world. A rupture of a pipeline can release diesel fuel, gas, etcetera, which can 
kill or injure people or, sometimes, lead to an ecological disaster. Since 1986 in the United 
States alone there have been 3140 incidents, 1407 injuries, and 322 deaths from ruptures of 
natural gas pipelines. 

 

 

 
  

 

 

 

 

 

Figure 1.4: Pipeline rupture. 

Fracture in the biomedical engineering field  

In the field of biomedical engineering we can quote as a typical problem the disease 
called osteoporosis, a condition involving decreased bone mass which strongly increases 
the risk of bone fracture (as age progresses). Not only can these fractures strongly influence 
the quality of everyday live, they may also result in death. To prevent such fractures it is 
necessary to evaluate with a high degree of accuracy the strength of the bone and the 
propensity to fracture must be reliably estimated. 
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1.2 How to face the problem 

 According to Willam(2000) Material Science has been studied on different scales. From 
the point of view of characterization and design, engineering materials are divided into 
several sub-ranges (see Figure 1.6) as follows: 

• Meter level 

The most common problem in civil, mechanical and aerospace engineering 
structures. 

• Millimeter level 

The laboratory specimen, which serves to yield material properties. 

• Micrometer level  

Micro-structural features, such as micro-defects and the hydration products in 
cement-based materials, are observed in this scale. 

• Nanometer level 

In this level, molecular and atomic processes take place. 

 

  

  

 
 1  m010× Structural Mechanics   

 

 
Macro Mechanics  

 1  m310−×
 

 

 Meso Mechanics
 

 1  m610−× 

 
Micro Mechanics 

 

 

  1  m910−×
Nano Mechanics 

 

Figure 1.6: Multiscale material mechanics, Willam(2000). 

 Several theories have been formulated at different levels to simulate the problem of 
crack initiation/propagation. This work will concentrate on the material behavior at a 
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macroscopic point of view (material failure mechanics), such macro-mechanical model is 
well established in simulating the fracture process. 

1.3 Material behavior (meter-millimeter level) 

In 1911 von Karmán showed that rocks, when compressed under high hydrostatic 
pressure, undergo a transition of plastic deformation characterized by the appearance of 
crossed net shear bands at approximately 45º. Later, the same effect was observed in other 
materials like soil, sand, ceramics, composites, ice, and so on. The morphology of bands in 
rocks is very similar to the one observed in metals (known as Lüders bands) (see Figure 1.7). 

 

 

 

 

 

 

Figure 1.7: Lüders bands. 

In soils, when a set of forces provokes instability, a zone with a concentration of 
deformations is observed. It is called the slip line (see Figure 1.8). The zone where there is 
a concentration of strain is called the zone of localization. 

 

 

 

 

 

 Slip line
 

Figure 1.8: Soil collapse. 

Although localization is a phenomenon that has its origins at a microscopic level, caused 
by the presence of voids, microcracks, and other phenomena, cracks in concrete or rocks, 
slip lines in soils and shear bands in metals are observed at the macroscopic level. 

The zone of localization is characterized by the concentration of inelastic strains in a 
narrow band while the surrounding material undergoes unloading. Figure 1.9 shows strain 
localization as a precursor to faulting and macroscopic fracture of the material. 
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 ε  

σ - stress 

 ε  - strain   

  ε
Outside the fracture zone Fracture zone

 σ  σ

  σ  
 

 

 

 

 

 

 

 

 

Figure 1.9: Localization behavior. 

 

 From the numerical point of view, the initiation of localization (when the material is 
within the softening regime) produce problems of instability. Rudnicki&Rice(1975) 
analyzed localization as instability in macroscopic constitutive descriptions of inelastic 
deformation of the material. These aspects will also be discussed in Chapter 3. 

 

Brittle vs. ductile materials 

Material classifications traditionally fall into two categories: brittle and ductile. The terms 
brittle and ductile relate to the relative values of the elastic limit and failure threshold. If the 
failure threshold nearly coincides with the elastic limit, then the material will experience 
only negligible plastic deformation before fracture. The term brittle refers to such a 
material. In contrast, for a ductile material the failure threshold is significantly larger than 
the elastic limit so that as the material deforms it experiences an elastic regime, followed by 
a plastic regime, and then finally it fractures. Materials fail in different ways depending on 
the temperature and pressure (see Figure 1.10). The following are the most relevant 
features of these two types of materials:  

 Brittle Materials: small deformations, no warning before failure (abrupt). Example: 
concrete, ceramic, glass, ice, rocks, etc. 

 Ductile Materials: large deformations, warning before failure (Not abrupt). 
Example: steel, aluminum, etc. 

 

Remark 1.1: Some kinds of steel have brittle behavior, depending on the process of 
manufacture – e.g.: casting; hot-working; cold-working; heat treatment – and 
depending on the amount of carbon –more carbon implies more strength and more 
brittleness– .  
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Ductile material Brittle material

  
St

re
ss

 

Strain 

 Typical brittle failure 

 Typical ductile failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Brittle vs. Ductile materials. 

1.4 Some approaches to the modeling of failure 

To simulate the material failure mechanisms at a macroscopic level, the most accepted 
frameworks are: Fracture Mechanics and Continuum Mechanics. Basically, the main 
difference between these two general approaches is that in Fracture Mechanics after failure 
initiation a traction-separation relationship ( ) is invoked, whereas continuum 
mechanics assumes a stress-strain relationship (

w−*t
ε−σ ) after strain localization, which is a 

precursor to failure and macroscopic fracture of the material (as the stress vanishes) based 
on this very general classification, here we present a more specific account of the most 
important to failure modeling.  

1.4.1 Linear Elastic Fracture Mechanics – LEFM 

 Fracture mechanics was stimulated by Inglis (1913). Using elasticity fundamentals he 
studied the stress concentration in a large plate of elastic material with an elliptical hole. 
Later, Griffith (1921) used Inglis’ stress analysis of an elliptical flaw in a linear elastic 
material to predict the critical stress under which a crack irreversibly grows, causing the 
material to fracture. He proposed an energy criterion of failure after considering that the 
stress value cannot be used as a failure criterion since the stress at the tip of a sharp crack 
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in an elastic continuum is infinite. These concepts served as the basis of classical linear 
elastic fracture mechanics (LEFM). 

 To study the propagation of fissures Irwin (1957), introduced the so-called Fracture 
Modes (see Figure 1.11) whose combinations give rise to the mixed-mode cracks.  

Another very important concept in Fracture Mechanics is the strain energy release rate 
(G ), which is defined as the amount of energy required to open a unit of crack area. Irwin 
expressed this energy in terms of the stress intensity factor. Other possible modes of 
deformation at a crack tip are sliding mode II and tearing mode III (see Figure 1.11).  

Mode II Mode III Mode I 
 

 

 

 

 

 
 

 

to
at
m
de
ob

 

 
fr
  
 

In-plane shear mode Antiplane shear mode 

 F  

 F  

 F  

 F  

 F  

 F  

 

Pure opening mode 

Figure 1.11: Fracture Modes. 

The concept of specific fracture energy, If G=G  or simply fracture energy (correspondent 
 the case of Mode-I crack opening) was formulated having as point of departure the inter 
omic energy. Nowadays, this concept is very widespread in the field of continuum 
echanics and is used to simulate the process of failure. When the work, W , necessary to 
velop a fracture surface, , is known in a cylindrical piece, the fracture energy is 
tained as  

f

fA

 

 

 

 

fff AW G=  (1.1) 

 

 

 

Figure 1.12: Fracture area normal to load P. 

With respect to the Fracture Energy correspondent to Mode II, is  a representative 
acture energy? Nowadays this discussion is still open in the ambit of Continuum Media. 

IIG

  

fA

P

P

  

  

  



1 Introduction 9

In 1993, Carpinteri and co authors, in a paper entitled: “Is mode II fracture energy a real material 
property?” concluded that Mode II fracture energy does not seem to be a material property. 

In fracture mechanics the procedure used to determine the crack propagation is indicated 
as follows: 

 Step 1: Determine the stress intensity factor; 

 Step 2: Verify the crack stability based on a criterion which is a function of the 
stress intensity factor, and determine the crack increase and its orientation; 

 Step 3: The crack tip is established in a new point. The whole process is repeated 
until the crack stability is ensured. 

1.4.2 Discrete crack approach 

Hillerborg et al. (1976) introduced the fictitious crack model, based in a Cohesive Crack 
Model where the fictitious crack can transfer stress from one side to another (Figure 1.13). 
This material can be characterized by two couples of constitutive laws: a stress-strain 
relationship ( ε−σ ) in a non damaged zone and a stress-crack opening displacement 
relationship ( w−σ ). In the latter, it is possible to distinguish another two zones: a real 
crack where there is no more stress transfer and a damaged zone, extended in the fracture 
process zone, in which stresses are still transferred. The  coefficient is also equal to the 
area defined by the softening law (descending branch of the (

fG
w−σ ) ). 
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At the first glance, the discrete crack approach –introduced by Ngo & Scordelis(1967)– 
is well matched with the nature of the physical crack (Ingraffea(1977), Blaauwendraad & 
Grootenboer(1981), Hillerborg(1985), Ingraffea & 
Saouma(1985)). However, in these methods there is an 
interelement discontinuity, for this reason an interface element or 
special boundary conditions between adjacent solid elements are 
required to simulate the crack propagation. This avoids the 
spurious stress across the discontinuities. The crack region must 
be pre-defined or remeshed, Ingrafea&Saouma(1985). Accurate 
results for a fixed mesh can only be obtained if the crack pattern 
is known in advance and if elements have been oriented in the 
crack direction. 

Figure 1.14: Discrete crack model. 

1.4.3 Smeared crack model 

In 1958, Kachanov introduced the concept of “effective stress” to describe the behavior 
of a degraded material (isotropic damage) in the context of a continuum medium. This 
paper, Kachanov(1958), starts a new tendency to face up to the problem of fracture in 
materials, following this idea and concepts several researches began to conceive several 
approaches to attack the localization problem. 

In the approach (Smeared crack approach) proposed by Rashid (1968), infinitely many 
parallel cracks of infinitely small opening are imagined to be continuously distributed 
(smeared) over the finite element (see Figure 1.15). This 
finite element exhibits a complete loss of stiffness at the 
onset of failure. This methodology was very well 
welcomed because the Finite Element Method was getting 
powerful with the advance of computer development, and 
principally because this new approach treated the two 
behaviors, continuum and fracture, in the same framework 
of the continuum. This new methodology had been 
followed by several researchers like: Červenka(1970), 
Bažant&Cedolin(1979), Rots et al. (1985).  

Figu

To simulate material behavior up to full fracture implies s
reaches the peak, the postpeak is characterized by stress de
strain). With this, some problems appear  like mesh dependen
Such problems were unknown by the researchers, causing 
This instability will be tackled in more details in Chapter 3 – M

Currently there are two types of models for the post-crack
on the smeared crack model: the fixed-crack model and t
the fixed crack model a crack forms perpendicular to the pr
when the principal stress exceeds the concrete tensile stren
does not change anymore. The rotating-crack model –pro
allows the crack to rotate with the principal strain directio
fixed crack model.  
 

re 1.15: Smeared crack model. 
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incipal tensile stress direction 
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At later stages, the standard rotating crack model leads to stress locking. Some 
researchers have used the combination of the rotating crack model with a scalar damage 
model to reduce spurious stress transfer, Jirásek&Zimmermann(1998). 

The smeared crack shows the presence of the so-called localization instability when the 
material is in softening, and is non-objective. In order to overcome such difficulties the Band 
Smeared Crack Model was developed by Bažant&Oh(1983), Rots et al.(1985). Such ideas 
appeared according to experiments, since the dimensions of the failure regions are 
independent of the structural size and they are assumed as fictitious planes. In the case of 
tensile cracks, this approach is known as “Crack Band Model” Bažant & Oh(1983), which 
they adapted from concept of the Fictitious Crack Model (Discrete Model). In this model 
the fracture energy was smeared out over the width of the area of the crack domain . 
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Figure 1.16: Fictitious vs. crack band model 

 

The concept of constant fracture energy in tension is widely used to regularize mesh-
sensitive smeared cracks, Bažant&Oh(1983). The fracture energy  is defined as the 
amount of energy required to produce one unit of area of a continuous crack and is 
considered a material property. This definition results in the following expression for the 
fracture energy G  

fG

f

∫σ= wnnf d G  (1.2)

where  is the sum of the opening displacements of all microcracks within the fracture 
zone. 

w

In the Band Smeared Crack Model  is represented by a crack opening strain , which is 
equal to the strain normal to the crack direction in the cracked state and which acts over a 
certain width within the finite element, h . Thus: 

w cr
nnε

*
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∫ ε= ld nn
crw  (1.3) 

Assuming that the microcracks are uniformly distributed across the crack bandwidth , 
equation (1.3) reduces to: 

*h

∫ εσ=⇒ε= cr
nnnnf

cr
nn hhw d  ** G  (1.4) 

the area , energy per unit volume, under the curve in Figure 1.17 can be expressed as: fg

*           
h

gg f
f

cr
nnnnf

G
=⇒εσ= ∫ d  (1.5) 

Bažant & Oh (1983) introduced the crack band theory for the analysis of plain concrete 
panels. 

* 

2

hft

f
o

G
=ε  (1.6) 
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The smeared crack approach can however overestimate the shear stiffness of the 
structure, known as stress locking. This method cannot capture the displacement jump. 
The lack of displacement jump in the kinematics can lead to a spurious stress transfer 
across a wide open crack. As a consequence the structure will support more in reality than 
it can, and the force displacement curve has an appearance as shown in Figure 1.18. 
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Figure 1.18: Locking consequence. 

 

 Usually when the smeared crack model is applied, very fine meshes are needed to 
capture the zones of high displacement gradient. When a code includes some automatic 
mechanism for altering the element size ( ) in response to the characteristics of a specific 
problem, it is said to be -adaptive. The act of increasing the number of elements 
(reducing the characteristic size) is called refinement (see Figure 1.19). This technique can 
be computationally expensive and difficult to implement. 
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1.4.4 Intraelement crack 

In this approach, the crack propagates throughout the element (see Figure 1.20). It is 
like the Band Crack Model, which is concentrated in a band within the finite element. In 
this case a lot of hypothesis have been adopted and among them one can quote: Enhanced 
Strain (e.g. Weak discontinuity approach) and Enhanced Displacement (e.g. the Strong 
Discontinuity Approach – Simo et al.(1993)). All these ramifications have one thing in 
common, which is that after localization a softening relation between traction and relative 
displacement can be reproduced by the stress-strain constitutive relation. Belytschko et al. 
(1988) have developed a method by which the localized zone can be embedded using a 
four-node quadrilateral element. The jumps in strain in localized zone are obtained by 
imposing traction continuity. 

 

    

 N  

 

 

 

 

 

 

Figure 1.20: Intraelement crack model. 

1.4.5 Enhanced continuum approaches 

As it is mentioned above, when models equipped with strain softening are used in a 
framework of classical continuum, the corresponding Boundary Value Problem (BVP) 
becomes ill-posed. The governing equations can be regularized to remain elliptic by 
resorting to higher order continuum theories. To make this possible some enhanced 
continua have been proposed.  

This kind of enrichment imposes a minimal width of the zone of localized strain, and 
hence they are called localization limiters.  

Cosserat continua  

The Cosserat continuum was originally developed by the Cosserat brothers in 1909. The 
Cosserat theory of elasticity incorporates a local rotation of material points as an 
independent parameter in addition to the translation assumed in the classical continuum. 
As consequence a nonsymmetrical stress tensor is derived. The elastic Cosserat continuum 
theory has been extended to elastic-plasticity and applied in the analysis of strain 
localization describing the microstructure of the material (micropolar method) with a 
parameter (internal length), Mühlhaus & Vadoulakis(1987); de Borst (1991); Steinmann & 
Willam(1991), Iordache(1996). 
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Non-local models 

In non-local models, the stress at a point depends on the state at this point and on the 
deformation in its neighborhood. The model has become non-local once the constitutive 
model no longer satisfies the principle of local action. This method is proposed to achieve 
a shear band independent of the computational grid size, Bažant et al. (1984), Pijaudier-
Cabot&Bažant(1987), Tvergaard&Needleman(1995). 

Gradient-enhanced models 

This model may be derived as an approximation of the nonlocal damage models. A 
characteristic of one class of gradient-enhanced model is the explicit dependence of the 
yield function on the Laplacian of the effective plastic strain where a material parameter 
(material length) is introduced, Aifantis(1984), Pamin(1994), Peerling (1999). de Borst & 
Mühlhaus(1992).  

In gradient elastoplasticity models the displacement field and effective plastic strains are 
discretized using C  –continuous shape functions. 1

1.5 Weak/strong discontinuity approach  

Strain localization can also be treated as a discontinuity in the strain field by maintaining 
continuity in the displacement field (weak discontinuity) or as a discontinuity in the 
displacements field (strong discontinuity). This is the essential difference between the two 
approaches. 

Ortiz et al. (1987) considered a continuous displacement field (weak discontinuity), 
where the strain localization in narrow bands appears as a possible tool to model the 
discontinuities in the displacement field [ Belytschko et al., (1988) ].  

According to Simo&Rifai(1990), the classical method of incompatible modes –originally 
introduced by Bazely et al. (1965) in the context of a plate bending problem and Wilson et 
al.(1973) in the context of plate elasticity–, consists of low order elements with enhanced 
performance in a coarse mesh. Simo&Rifai(1990), using the three-field variational 
formulation of elasticity, proposed a class of mixed assumed strain method whose central 
idea was that the strain field is compounded of two parts: 

εuε ~+= sym∇  (1.7)

where  is the symmetric gradient of the displacement field and usym∇ ε~  is the enhanced 
part of the strain field. They showed that ε~  is not subjected to any interelement continuity 
requirement.  

From the class of assumed enhanced strain methods (AES), mentioned before, emerges the 
strong discontinuity approach (SDA) in Simo et al. (1993), Simo&Oliver(1994). The SDA refers 
to the capture of jumps in the displacement field across a surface with zero bandwidth 
measure by using standard solid mechanics models with continuum constitutive equations. 
It has been shown that the discrete theoretical model can be interpreted as the limit case of 
the continuum when the localization band goes to zero (discontinuity surface). In this case 
the strain has the sense of a Dirac delta distributions. The interesting point is that the 
whole analysis is done in the Continuum Mechanics framework. The SDA leads to mesh-
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independent finite element discretization without introducing a material length scale (non-
physical property). 

This new proposal has lately been followed by several researchers because it presents 
certain attractive characteristics like: 

 The implementation in a finite element code is very easy; 

 It is mesh-independent with respect to size and orientation; and, as consequence, 
no remeshing is needed to capture the high strain gradients; 

 There is no need to introduce any material length scale. 

 

 

 

 1  1 

 2 

 3 

 

In Oliver(1995a,b) a discontinuous shape 
function (to capture the displacement field) 
into a triangular element has been used 
allowing a precise representation of the 
crack opening (see Figure 1.21).  

 

Figure 1.21: Discontinuous shape function. 

 

 A transition between Weak Discontinuity and Strong discontinuity –a variable 
bandwidth model– was introduced in Oliver et al.(1997) and Manzoli (1998). The material 
behavior will be in a strong discontinuity regime when the so called strong discontinuity 
conditions, Oliver (2000), are fulfilled. In the next Chapter we will tackle this transition in 
more detail. 

This methodology has been used with many constitutive models (damage, Drucker-
Prager, Rankine), Oliver (1995b), (1996a),(1996b), (1998); Armero&Garikipati(1996); 
Larsson et al. (1996); Oliver et al. (1997-1999); Armero(1997). Garikipati(1996) has extended 
the problem to finite deformations in the framework of the Assumed Enhanced Strain 
Finite Element Method. Steinmann (1998), has used SDA, by using a finite element 
discretization where interface element is endowed with these kinematics and, based on 
these developments, a model adaptive strategy was proposed. Extensions to localization 
analyses of saturated soils has been addressed by Armero&Callari(1999) and 
Steinmann(1999). Oliver et al. (2000) using strong discontinuity approach showed the links 
with cohesive models. 

1.6 Failure simulation in three dimensions  

In some cases, only a three-dimensional analysis can provide certain information of 
interest to the designer that 2D analysis cannot provide, thus three-dimensional models 
become necessary to obtain quantitative insight of these mechanical behaviors. In a 3D 
framework, however, the complexity increases significantly even for growth limited to 
Mode I conditions. 
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 With the increasing progress of computing process velocity and with a good pre 
processor mesh generator it has provided an important tool in the extrapolating to three 
dimensions for all the methods described above.  

1.7 Adopted approach and aim of this work 

This work deals with the extension of the two-dimensional Strong Discontinuity 
Approach to the general 3D non-linear problem that presents crack formation in a macro 
level, mainly in Brittle Materials (like concrete, rocks, ice, glass, etc.). 

Numerically these problems will be modeled using the Finite Element method. We will 
extend into 3D the special finite element developed by Oliver (1995a,b), which considers 
that the jump in displacement which is the base of the Strong Discontinuity Approach 
concepts. The type of finite elements used will be the tetrahedral and hexahedral finite 
elements to simulate numerical examples. 

The main assumptions made in this work are the isothermal quasi-static regime and small 
deformation and rotations, assuming a material described as homogeneous and isotropic. 

In this work the material’s behavior associated to the development of a crack in a 
loading process is described as (see Figure 1.22): 

 Diffuse failure zone: The strain and displacement fields are continuous, but there 
is a concentration of the strains in the zone where material begins to soften. 

 Weak discontinuity zone: The strain field becomes discontinuous, but the 
displacement field remains continuous, across the limits of a narrow band (strain 
localization band). 

 Strong discontinuity zone: The strain localization band collapses into a surface 
(the discontinuity interface). The displacement field becomes discontinuous across 
that surface and the strain field becomes unbounded.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22: Fracture evolution. 
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1.7.1 Contents of this work 

 The remaining of this work consists of the following chapters:  

 Chapter 2: The Boundary Value Problem of quasi-static equilibrium for an 
isothermal solid with a discontinuity is presented. Isotropic damage is presented 
as well as the regularization of the model and the strong discontinuity 
conditions. 

 Chapter 3: Once the Elliptic Boundary Value Problem has been posed, in this 
chapter we will tackle the loss of ellipticity, that is, material instability. 

 Chapter 4: After all variables are presented, we will describe the numerical 
approach used to solve the BVP laid out in chapter 3. 

 Chapter 5: This chapter is devoted to presenting the results of classic examples 
and the discussion of them. 

 Chapter 6: The summary, future lines of research and conclusions will be 
presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Strong Discontinuity in 
Solids Mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

“Philosophy is written in this grand book - the universe - which stands continuously open to our 
gaze. But the book cannot be understood unless one first learns to comprehend the language and 
interpret the characters in which it is written. It is written in the language of mathematics, and its 
characters are triangles, circles, and other geometrical figures, without which it is humanly impossible 
to understand a single word of it; without these one is wandering about in a dark labyrinth.” 

Galileo Galilei (1623) 

 2
 

Strong Discontinuities
in Solid Mechanics

 

 

2.1 Introduction 

 This chapter is devoted to studying the theoretical concepts related with the presence 
of discontinuities in a continuum, more specifically, the appearance of discontinuities in the 
displacement field. As a point of departure, we state the Boundary Value Problem (BVP) 
for a continuous medium. Then a representative continuum damage model is described in 
detail. Next, we present the two basic types of discontinuity kinematics: weak and strong 
discontinuity kinematics. The so-called Strong Discontinuity Approach (SDA) already used 
by several researchers (e.g., Simo et al. (1993), Oliver&Simo(1994), Simo&Oliver(1994), 
Oliver(1995), Manzoli(1998), Regueiro&Borja(1999), Armero&Garikipati(1996), Larsson et 
al. (1995)) is adopted as the theoretical framework for this work. 
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 Basically, this chapter lays out all the ingredients that constitute the theoretical basis of 
the numerical analysis of strain localization in structures composed by materials that can be 
described by continuum damage models (e.g., quasi-brittle materials like concrete, ceramics, 
ice, rocks). 

2.2 Governing equations 

 

We start by stating the standard Boundary Value Problem (BVP) of solid mechanics. Let 
us consider a three dimensional body, that takes up an open bounded domain B  with 
density  (see Figure 2.1). Let ∂  be the boundary of  and  the unit outward normal 
to . The body is assumed to be in static equilibrium under the action of body forces 
density, b , and surface tractions, t . The boundary  consists of a portion  
with prescribed displacements, u , and a part , with prescribed traction, t , 
such that  and 

3R∈

*

ρ B

(*

B

B

υ
B∂

)(x

∂ Bu

)(* x

)
B∂ Bu∂

)(xx σ∂

∅=∂∩ Bσ B∂=B∂∪ σB∂u . In addition let )(xσ  denote the Cauchy 
stress tensor and )(xε  the infinitesimal strain tensor. The governing equations of the 
Boundary Value Problem (BVP) for this quasi-static problem are summarized in (2.1) - 
(2.3):  

BOUNDARY VALUE PROBLEM – BVP 

Partial differential equations 

(equilibrium equation) 
0=+⋅ )()( xbxσ∇  B ∈∀ x  (2.1) 

Essential boundary conditions 

(Dirichlet’s boundary  conditions) 
)(* xuu =  Bu∂∈∀ x  (2.2) 

Natural boundary conditions 

(Neumann’s boundary conditions) 
σx ⋅== υtt )(*  Bσx ∂∈∀  (2.3) 
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Figure 2.1: Three dimens nal body. 
io
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 Now consider the body 3R∈B  experiencing a displacement discontinuity across a 
discontinuity surface S  with normal N  (see Figure 2.2). 

 Let us consider the virtual work principle which states: 

4444 34444 2144 344 21
extint

AVVsym

WW

∫∫∫
σ∂

⋅⋅ +=
BBB

ddd ηηbησ *t:∇  
(2.4)

under the assumption of infinitesimal deformation , for all admissible virtual 
displacement 

ηsym∇γ =

V̂∈η , where V  is the space of the kinematically admissible variations 
defined by: 

ˆ

{ }   :ˆ 0 0=∈=
∂ BCV

u
ηη  (2.5)

intW  and W  represent the internal and the external virtual work, respectively. After 
integrating by parts the first integral of equation (2.4), we obtain:  

ext

( )∫∫∫∫ ⋅⋅⋅⋅⋅⋅ −+

∂

−−+−=

σ SBSBB

AAVV dddd ησσησησσ N: υ
\

∇γ  (2.6)

where  and σ  stand for the stress fields in  and B , respectively. Substituting the 
above equation into equation (2.4) we finally obtain: 

+σ − +B −

( ) ( ) ( ) 0*

\

=−−−++− ∫∫∫ ⋅⋅⋅⋅⋅⋅ −+

∂σ SBSB

AAV ddd ησσησηbσ Ntυ∇  (2.7)

so the strong form of equation (2.7) is schematically shown below: 

BOUNDARY VALUE PROBLEM – BVP – With discontinuity 

Equilibrium  equation 0=+⋅ )()( xbxσ∇   SB \ ∈∀ x  (2.8)

Constitutive equation ))(( xεσ Σ=  B∈∀ x  (2.9)

Kinematics equation ( )∇∇∇ ⊗+⊗== uuuε
2
1sym  B∈∀ x  (2.10)

Outer traction continuity +−+− ⋅⋅ =⇔= σσ NN    TT  S∈∀ x  (2.11)

Essential boundary conditions )(* xuu =  Bu∂∈∀ x  (2.12)

Natural boundary conditions σx ⋅== υtt )(*  Bσx ∂∈∀  (2.13)
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Additionally, we postulate the so-called inner traction continuity condition, characteristic of 
problems involving strong discontinuities1: 

Inner traction continuity SS σσ ⋅⋅ =⇔= ++ NN    TT  S∈∀ x  (2.14) 

 

In equation (2.9), Σ stands for the nonlinear constitutive equation returning the stresses 
in terms of the strains. 
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Figure 2.2: Three dimensional body and discontinuous interface. 

 

 

                                                 
1 Although here we postulate this condition, it can be derived from the principle of virtual work if the so-
called kinematics of strong discontinuities are assumed. This res lt was obtained in Simo&Oliver(1994). 
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2.3 Representative continuum damage model 

 The term Damage Mechanics has been used to refer to models that are characterized 
by a loss of stiffness, that is to say, a reduction of the secant constitutive modulus. In 
Kachanov(1958)'s pioneering work, the concept of effective stress was defined. In that 
work, Kachanov treated the damage variable as a scalar (isotropic damage), whose value 
ranged from 0 to 1. Later, several researchers extended this theory by treating the damage 
variable as a tensor (anisotropic damage). Another important work is the one by 
Rabotnov(1969) intended to include the loss of rigidity of the material as a consequence of 
the appearance of fissures, further called Continuum Damage Mechanics. This became a very 
powerful and consistent theory based on the thermodynamics of irreversible processes. 
This thermodynamical formalism was developed by Lemaitre & Chaboche(1985). The 
damage models were used not only to simulate fragile materials, but also to simulate creep, 
plasticity, viscoplaticity and fatigue phenomena.  

 Other important works can also be mentioned. For instance, Mazars(1986) considered 
distinct damage variables for compression ( d ) and tension ( ). Later, Faria and Oliver 
developed this idea in Faria&Oliver(1993). Mazars&Pijaudier-Cabot(1996) have found a 
correlation between Fracture Mechanics and Damage models.  On the other hand, 
Chaboche(1979) has used a damage variable with tensorial character.  Carol et al. (1998) 
have proposed a general unifying framework for degradation and damage using a 
terminology and notation analogous to the well-known theory of elasto-plasticity.  
Additionally, key developments in continuum damage fundamentals and numerical 
applications can be found in Simo&Ju(1987a,b), Oliver et al. (1990), among others.  

− +d

2.3.1 Isotropic damage model 

The so-called Continuum Damage Models have been used thoroughly to simulate the 
behavior of materials that present degradation of the mechanical properties due to small 
fissures that appear during the loading process. To characterize this, the concept of 
effective stress, σ , is introduced (see Figure 2.3). 
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Figure 2.3: Effective stress concept. 
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 In one dimension (see Figure 2.4) we can write: 

σ−=σ )1( d  (2.15) 

where σ
d

 is the effective stress and  is the damage parameter which ranges from 0 to 1, 
i.e., . 

d
10 ≤≤

 The effective stress σ  and the strain are related by the Hooke’s law: 

εE=σ  (2.16) 

where E  is the elastic modulus of the material or Young’s modulus. Thus, substituting 
(2.16) into (2.15) yields 

10)1( ≤≤−=σ dEd ε  (2.17) 

 

 

 

 

 

 

 

 

Figure 2.4: Stress-strain curve. 
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 yσ  - peak stress 

2.3.1.1 Constitutive equation 

 Here, the generalization of the damage model sketched in the previous section to 3D 
cases is made. Only the case of isotropic damage is considered. The Helmholtz density of 
free energy y  function can be written as follows: 

εε :: ee dd C
2
1)1()1( −=−= yy  (2.18) 

In the case of a completely isotropic elastic response, the standard fourth-order isotropic 
elastic modulus tensor  as a function of Lamé’s parameters eC µλ  , , is defined as: 

( )11⊗λ+µ= IC 2e  (2.19) 

where  is the second order unit tensor and  is the fourth order unit tensor, defined in 

components as 

1 I

( jkiljlikijkl δδ+δδ=
2
1I ). The Lamé’s parameters, the Young’s modulus, E , 

and the Poisson’s ratio,  are related by:  ν

( )( )ν−ν+
ν

=λ
211

E    ;     ( )ν+
=µ

12
E  (2.20) 
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From equation (2.18) we obtain the following stress-strain relationship (the constitutive 
equation): 

σ
ε
ε

σ  )1(
),(

d
d

−=
∂

∂
=

y
 (2.21)

where σ  is the effective stress tensor defined as: 

εσ :eC=  (2.22)

The reduced dissipation D  becomes: 

0 ≥=−= + edyy &&& εσ :D  (2.23)

which characterizes an irreversible process (for further details in thermodynamics aspects 
see Lemaitre(1996) ). Since 0≥ey  by definition,  must hold to satisfy the 
thermodynamic requirement (2.23).  

0≥d&

 The following norms in the stress space and in the strain space are defined, 
respectively,  as: 

ε

ε

−=
⇓

=====

σ

−
σ −

t

ytt

t )1(

2; 
1

1

d

eee
ee

44444444444444 344444444444444 21
εε ε σσ σ :::: CC CC

 (2.24)

With these concepts in hand, we can define the elastic region (see Figure 2.5(b)) in the 
strain space as: 

{ } 0),(  : <= εε rtGεE  (2.25)

and in the stress space (see Figure 2.5(a)) as: 

{ } 0),(  : <= σσ qtFσE  (2.26)

where r  is the internal variable whose value defines the elastic limit. Thus we can define 
the damage criterion which defines the elastic limits and reads 

44444444 21
   spacestress

rqq 0)(),(
3
≤−= σσ ttF    or   

444 3444 21
   spaceainstr

rr 0),( ≤−= εε ttG  
(2.27)

  

 From equation (2.24) and Figure 2.4, for the uniaxial case, we can obtain:  

E
r ye σ

=⇒=ε 0         εε ::Ct  (2.28)

where  is an initial threshold value and 0r yσ  is the elastic strength. On the other hand,  is 
the stress-like hardening/softening variable defined as: 

q

rdrq )1()( −=  (2.29)
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where  defines the hardening/softening rule in terms of )(rq r . The relationship between 
 and q r  (linear and exponential softening law) is given in Figure 2.6 and Figure 2.7. Using 

equation (2.29) and equation (2.21) we can obtain the following expression: 

σσ
r
rq )(

=  (2.30) 

 From the damage function ),( qσtF  and equation (2.29) we obtain: 

00),(0)1()1(0),( =−⇔≡⇔=−−−=−⇔= εεεσσ rrrddqq ttttt GF  (2.31) 
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a) Stress space b) Strain space

Figure 2.5: Norm surface - Elastic limit. 

 

2.3.2 Hardening rule 

The hardening rule is characterized by: 

[ ]  ;  ,0;  0)()(;   )( 00 E
rqqrqrrrq y

y
dd σ

==σ∈≤′== HH &&  (2.32) 

where  is the continuum hardening/softening parameter. dH
 

2.3.2.1 Linear hardening law 
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rrr
rq

dH
 (2.33) 

thus based on the previous step the damage variable becomes: 
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Figure 2.6: Linear hardening/softening law. 

 

2.3.2.2 Exponential hardening law 

 

As described in Figure 2.7. 
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Figure 2.7: Exponential hardening/softening law. 

The evolution laws for the damage threshold and the damage variable are: 

r
rq

d

r

∂
∂

γ=

γ=

σ ))(,(tF&

&

 (2.35)

where  is a damage consistency parameter used to define loading/unloading conditions 
(Kuhn-Tucker conditions): 

γ
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0),( ;0),(;0 =γ≤≥γ σσ qq tt FF  (2.36) 

and the persistency condition  

0),( =γ σ qtF&  (2.37) 

 

We can summarize the load/unloading process schematically as: 

 

 

 

 

 

 

 

(2.38) 
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2.3.3 Time integration of the evolution laws, Tangent moduli 

 The incremental constitutive equation in terms of the stress and strain rates reads: 

εσ && :dC=  (2.39) 

 

Consider the constitutive equation: 

( ) ( ) εεσεσ  ::: ee

timetorespectwith

atingdifferentie ddd CCC   1       1
      

&&& −−= →−=  (2.40) 

 

When the material point considered is not in loading, then , and thus: 0=d&

( ) ( ) ede dd CCC  1       1 −=⇒−= εσ && :  (2.41) 

 

The value of the internal variable  is given by the corresponding damage condition 
and evolution laws. After some particularizations, the damage variable evolution can be 
integrated in closed form at time t  (see Figure 2.8) giving: 

d
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 (2.42) 
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Figure 2.8: Variation of εt  and r  in the time t . 

 
 Differentiating εt  with respect to time yields: 

εσεε &&& :::
ε

εε ==→=
t

tt 1         reC  (2.43)

and considering equation (2.29), we can obtain: 

r
r

rrqdr
r

rrqrqd
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&&&&  )( )()(
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 ′−

=
H  (2.44)

thus we can obtain  substituting (2.44) into (2.40): dC
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 ′−

−−= 321321
σσ

εε eeed

r
rrqrqd CCCC :: )()( )1( 3  (2.45)

A general expression of the tangential material stiffness  is the following: dC

(a)

( ) 43421
& 00

  
 

=→=






⊗−ξ
=

K
K

r
unloadingloading

elastic
eee

e
d

CCC

C
C

:: nm
 

(b)
(2.46)

where  is the flow plastic normal to the Yield Function (n F ), defined as: 
σ

n
∂
∂

=
F  and m  

is the flow of the plastic potential which is normal to the Plastic Potential (G ), defined as : 

σ
m

∂
∂

=
G

. 

In the case of equation (2.45) we have εn = , m ε=  and 3

)(
r

rrq dH−
=K  and ( )d−=ξ 1  

Table 2.1: Isotropic damage model summary. 
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ISOTROPIC DAMAGE MODEL 

Helmholtz free energy ( ) [ ] ( )εεε :: eeerdr C
2
1with )(1, =−= yyy  (2.47) 

Damage variable [ ] [ 1,0;0,;1)( 0 ∈∈−= drq
r
qrd ] (2.48) 

Constitutive equation ( ) ε
ε

σ :ed C 1 −=
∂
∂

=
y

 (2.49) 

Evolution law γ=r&      
[ )








σ

==

∞∈

= E
rr

rr

y
t 00

0 ,
 (2.50) 

Damage criterion  ( ) qqq e −=−≡
−

σ σσσ ::
1

, CtF   ;
[ ]







=

∈

= 00

0,0
rq

rq

t

 (2.51) 

Hardening rule ( )0)(; )( ≤′== rqrrq dd HH &&  (2.52) 

Loading-unloading 
condition 0 ;0;0 =γ≥γ< FF  (2.53) 

Consistency condition 0 =γ F&   if   0=F  (2.54) 

 

2.3.4 Tension-only damage model 

This model is based on the isotropic damage model presented in the preceding section. 
The evolution of r   is only activated upon tension in the principal stresses. This is 
achieved by defining the positive stress counterpart of the stress tensor:  

( 0>r& )

iii

i

i

pp ⊗= ∑
=

=

+ σ
3

1

σ  (2.55) 

where 
2

  
•+•

=•
def  is the Macaulay bracket and p  stands for the elements of the principal 

directions base. 
i

The tangential stiffness is given by: 
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( ) 43421
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(2.56) 
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where σσ )1( d−=  is the relation between stress and effective stress, and the damage 
criterion is given by:  

( ) qq e −=
−+++ σσσ ::

1
, CF  (2.57)
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Figure 2.9: Tension-only model: (a) elastic domain in the principal stress space; (b) Stress 
strain relationship in 1D. 

 

 Box 1 shows the very simple algorithm that has been used to evaluate stresses with the 
proposed model (Oliver et al.(1990)). 

 

Box 1: 

INITIAL DATA FOR TIME 1+t  

Material properties: 0  ,  ,  , rGE fy ⇒νσ  

Current values:  ttt rd   ,  ,1+ε

 

1) If 0=t  then initialize r 0r=  
2) Evaluate effective stresses 

11 ++ = tet εσ :C  

3) Evaluate t  1+
ε

t

4) Update internal variables 
{ }

)(

,
11

11

++

+
ε

+ =
tt

ttt

rd

rr tmax
 

5) Update stresses 
111 )1( +++ −= ttt d σσ  
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2.4 Discontinuity kinematics 

For a better understanding of the kinematics we will resort to 2D visualization (see 
Figure 2.10) where we consider an orthogonal system of curvilinear coordinates ξ  and  
such that  corresponds to the coordinate line 

η

L 0=ξ  { }( )0  ; ),(:  =ξ∈ηξ= BL x . Let us 
denote by { }ηξ ee ˆ  ;  ˆ  the physical (orthonormal) base associated to this system of 
coordinates and let ),( ηξξr  and  be the corresponding scale factors such that 

 and 
),( ηξηr

ξ= ξξ dd rs η=ηd rs ηd

ξ

, where  and  are, respectively, differential arc lengths 

along the coordinate lines  and . We shall also consider the lines 

ξsd

η

ηsd

+L  and  which 
coincide with the coordinate lines  and ξ , respectively, enclosing a discontinuity 
band,  

−L
+ξ=ξ −ξ=

[ ]












ξξ∈ξηξ= +− ,  );,(: xhB  (2.58) 

whose representative width , from now on named the bandwidth, is taken as 
. Let us finally define . 

)(ηh
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Figure 2.10: Domain with discontinuity-2D. 

 

 According to the value of the bandwidth , one can distinguish the following types of 
discontinuity kinematics: 

h

• 

• 

Weak discontinuities ( ; )0≠h

Strong discontinuities ( . )0=h
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2.4.1 Weak discontinuity kinematics 

The weak discontinuity is characterized by the presence of a discontinuous strain field 
while the displacement field remains continuous. The displacement field rate can be 
expressed as: 

[ ][ ] ),()(),(),( ttt
h

xxxx uuu &&& BH+=  (2.59)

where u&  is the regular part of the displacement field. And the strain field defined as: 

[ ][ ] [[ ] ),()(),()(),(),( tttt
hh

symsymsymsym xxxxxxε uuuu &&&&& BB HH ∇∇∇∇ ++== ]  (2.60)

where  is the symmetric part of sym)(• )(•  and , the unit ramp function, is also a 
continuous function in B  defined by: 

hBH

( )
( )
( )














ξ≤ξ<ξ∈
ξ−ξ

ξ−ξ
ξ≥ξ∈

ξ≤ξ∈

=
+−

−+

−

++

−−

  

  1

  0

h

h

B
B
B

B

x

x

x

H  (2.61)

Clearly  exhibits a unit jump, the difference from its values at L  and 
hBH + −L  for the 

same coordinate line [ ][ ] ( ) ( )( )η∀=ηξ−ηξ= −+   1,,
hhh BBB HHHξ . From the definition 

of  in equation (2.61), the corresponding gradient can be computed as:  
hBH
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(2.62)

where  is a collocation function defined as  
hBχ





∉

∈
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h
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B
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 (2.63)

Thus 

[ ][ ] [ ][ ]( )symsym

h
t

h
  1),()( N⊗= uu && xxBH∇  (2.64)
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Figure 2.11: Kinematics (a) kinematic state of weak discontinuity; (b) kinematic state of 
strong discontinuity. 

 

 In the case where the jump is constant along  (or along  in 3D case2), equation 
(2.60) can be rewritten as: 

L S

[ ][ ]( )symhsymt N⊗δ+= uu &321
&&

&

)()( xxε
ε

S∇,  (2.65) 

where 





∈∀
∈∀

=χχ=δ SB
S

SSS \0
1)(;)(1)(

x
x

xxx
h

h  (2.66) 

and  stands again for the collocation function.  Function  can be interpreted as 
the impulse function (see Figure 2.12) defined as: 

)(xSχ h
Sδ

                                                 
2 All the equation are expressed in a general 3D case. 
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Figure 2.12: Impulse function. 

 

2.4.2 Strong discontinuity kinematics 

The strong discontinuity is considered as the limit case of a weak discontinuity, when 
the band B  collapses into the discontinuity line  (see Figure 2.11).  In 3D cases, the 
band  collapses into the discontinuity surface 

h L
hB S . In this limit case the unit ramp 

function becomes the step function (Heaviside function H ). So, the impulse function 
(see Figure 2.13) that we obtain as a result of this limiting operation reads: 

S
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1 )( =ξξ∫
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(2.68)
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Figure 2.13: Limit of the impulse function when the bandwidth tends to zero. 

 

Remark 2.1: We define a unit impulse function δ , which imparts an impulse of magnitude 
one at ξ , and an impulse of magnitude zero for all values of 0= ξ  other than zero. 
This “function” is the well known Dirac delta distribution, defined to have the following 
properties: 

1 )(

0,0)(

=ξξδ

≠ξ=ξδ

∫
∞

∞−

d
 

                                                  ;           )( )(),( 00 ξΨ=ξξΨξξδ∫
∞

∞−

d ∞∈ξΨ∀ 0)(  C

(2.69) 

 

So, the kinematics of a body B  exhibiting a discontinuity of value [ ][ ] ),( txu&  in the rate 
of displacement field (see Figure 2.11) across a material surface denoted by , whose 
normal N  points at B , can be described as: 

L
+

Displacement field 
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 (2.71) 

where  is the Dirac delta distribution  Sδ
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2.4.3 Representative Weak-Strong discontinuity kinematics 

Now consider the kinematics described by the following expressions in the rate of 
displacement field and strain field: 

[ ][ ] ),()(),(),( ttt
h

xxxx uuu &&& BH+=  (2.72)
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⊗δ+= Nuu S∇  (2.73)

 

 Equation (2.73) is a regularized version of the kinematics in equation (2.71) which is 
obtained by introducing a regularized Dirac delta distribution by means of a bandwidth 
parameter  and a collocation function h )(xSχ : 
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This allows for the transition from the weak discontinuity to the strong discontinuity.  
Figure 2.14 illustrates the transition of  from an impulse function to the Dirac delta 
distribution δ . 
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Figure 2.14: Dirac delta distribution as the limit of the impulse function. 
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Figure 2.15: Domain with a discontinuity-2D. 

2.4.3.1 Regularized Dirac’s delta 

For the subsequent mathematical treatment, lets us approximate the Dirac delta 
distribution Sδ  by a −k regularized sequence )1( <<k , k

Sδ , defined as follows: instead of 
considering the discontinuity surface S , we shall consider a discontinuity band of 
bandwidth k  (where k  is very small regularization parameter 1<<k ) which gives: 





∉
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S
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)()(1)( with
k

k  (2.75) 

so that, k , which converges to a delta-distribution when k  tends to zero i.e.: 

SS δ=δ
→

k

k
 

0
iml  (2.76) 

For numerical purposes k  can be as small as permitted by the machine precision. 

2.4.4 Phases of the stress-strain curve 

We consider in this work the typical stages of a loading process for a given material 
point graphically represented in Figure 2.16 and described as follows: 

I. Elastic phase: it is limited by the point Y. In this phase the material obeys the 
Hooke’s generalized law: 

εσ :eC=  (2.77) 

II. Inelastic phase: Point Y (yielding) in Figure 2.16 corresponds to the initiation 
of the non-linear behavior. The elastic limit is surpassed and the loading 
process is in the range between Y and B, where B stands for the bifurcation 
point. 

ξ

 +B  

 −B  

η

 ηê  
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III. Weak discontinuity phase: The weak discontinuity regime begins as soon as 
the bifurcation condition [ ] 0Q =)(Ndet  (Q -localization tensor) is satisfied 
(bifurcation point B). This phase is characterized by a discontinuity in the 
strain field while the displacement field remains continuous. 

)(N

[ ][ ]

[ ][ ] 0

0

≠∇−∇=∇=

=−=

−+

−+

uuuε

uuu

&&&

&&&

~
 (2.78)

In this stage the variable bandwidth model starts working, which serves as a 
transition between weak and strong discontinuity through a bandwidth law. 

IV. Strong discontinuity phase: When the strong discontinuity condition is 
satisfied, phase IV begins. It is characterized by the appearance of the second 
order singularity in the displacement field, i.e.: 

[ ][ ]

[ ][ ] 0

0

≠∇−∇=∇=
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Figure 2.16: Characteristic points during the loading process. 

 

 The time at which each point analyzed above ( Y ,  and ) is reached depends on 
the material (i.e., on the constitutive model) as well as on the evolution of the stress state. 
For some circumstances, phases II, III, and IV are coincident, see Figure 2.17(a) and (b). 

B SD

 

 

 

 

 

 

 
    

(a) (b) 
Figure 2.17: Characteristi
c points during the loading process. 
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 In this context, the formation process of a strong discontinuity at a material point P  
of the solid can be modeled as a weak discontinuity that collapses into a strong 
discontinuity at a certain time in the deformation process (see Figure 2.18). At time t , the 
bifurcation time, the stress-strain field bifurcates resulting in a localization band of 
bandwidth  (see Figure 2.18(a)) which characterizes the onset of a weak discontinuity. At 
subsequent times the bandwidth decreases ruled by a certain (material property) bandwidth 
evolution law (see Figure 2.18(d)) until reaching a null value (for computational purposes, a 
very small parameter ) at time , the strong discontinuity time, which characterizes the 
onset of the strong discontinuity, Oliver et al.(2002). 
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Figure 2.18: Idealized model from weak discontinuity to strong discontinuity: a) weak 
discontinuity at the time of bifurcation; b) → c) evolution of the 
bandwidth; d) Bandwidth law, Manzoli (1998). 
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2.4.5 Bifurcation time 

We will now focus on the problem of the bifurcation of the stress-strain fields in the 
neighborhood of a given material point P  in S  (see Figure 2.19), constrained by the rate 
form of the traction vector continuity condition. In the very moment of bifurcation we will 
consider the following scenario: loading in S  and neutral loading in SB , see Figure 
2.16. 
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Figure 2.19: Localization band S . 
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 Consider a material point with its stress state in point B  (the bifurcation point) as 
shown in the Figure 2.16. In this point we have the following stress state outside and inside 
of the localized band, respectively: 

(2.80)
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(2.81)

where Sσ  and SB \σ  stand for the stresses at the interface S  and the neighborhood of , 
respectively and  the inelastic constitutive tensor3. The strain field reads:  

P
inC
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sym
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&&&
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 (2.82)

The inner traction vector continuity yields: 

43421
&&
SSB TT =\  

NN ⋅⋅ = SSB σσ &&
\  

(2.83)

                                                 

3 We denote by  the inelastic constitutive tensor and by  in damage case and  in the 
elastoplasticity case. 

inC dC epC
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Substituting equations (2.80), (2.81) and (2.82) into equation (2.83) after some mathematical 
manipulations we can obtain: 

( ) [ ][ ] ( )[ ] NNN
N

⋅⋅⋅⋅ −= SSSBS εu &&

43421
  \

)(

:ininin

h
CCC

Q

 (2.84) 

where  is the localization tensor. )(NQ

 At the instant of the bifurcation we will consider that C  inside and outside of the 
localization band is the same, i.e.:  

in

inin
SSB CC =\  (2.85) 

 The bifurcation condition is satisfied when the solution of the equation (2.84) is 
different from the trivial solution [ ] , resulting the condition: [ ] 0=u&

[ ] 0)( =NQdet  (2.86) 

 The material bifurcation analysis is presented in the Chapter 3. From the bifurcation 
we get  and N  which are the critical values of  and N , respectively. d

critH crit
dH

 

2.4.6 Strong discontinuity analysis of the isotropic damage 
model 

 The strong discontinuity analysis has the aim of obtaining the conditions that have to 
be imposed in a standard continuum constitutive equation (stress-strain) to be compatible 
with the kinematics of strong discontinuities. The analysis developed here is based on the 
fact that, adopting the inner traction continuity condition as a point of departure, it can be 
shown that the stress as well as its time derivative must be bounded, even when the strain 
is not. This result was obtained in Oliver et al.(2002). 

 Now, from the constitutive equation (2.49), one can obtain: 

σεεσ ::
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and differentiating with respect to time: 









∂
∂

=
−
σε :

1
  e

q
r

t
C&  (2.88) 

 

 Considering now the expression of strain (in rate) given by equation (2.71), we can 
obtain: 
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Now, multiplying the above equation by , we can obtain, for the strong discontinuity 
regime ( [ ]  and )4: 

k
[ ] 0≠u& 0→k
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since σ  and  are bounded, for the condition q [ ][ ] 0≠u&  to hold, the following expression 
must be satisfied: 
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≠
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k
iml  (2.91)

 

 Now defining the rate of the discrete internal variable α  as: 
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Since for the strong discontinuity regime cttek = ,  we obtain: 
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SD
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rrk
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 (2.93)

where  denotes the value of (SD)(• )•  at the inception of the strong discontinuity regime. 
Substituting equation (2.93) into equation (2.90) yields: 
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sym

qt
CN&  (2.94)

The above equation is known as strong discontinuity equation. Substituting equation (2.92) into 
(2.52) results in: 

α== &&&  1 dd

k
rq HH  (2.95)

Since  is bounded ( ) as well as q [ 0,0 rq ∈ ] α  and α&  the mathematical consistency of (2.95) 
requires that: 

dd k HH =  (2.96)

thus, for the case of a linear hardening/softening law, 

α+=⇒α= d
SD

d qqq HH          &&  (2.97)

                                                 
4 The final bandwidth value is set to kh

SDtt =
=

. 
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where the parameter dH  is termed the discrete (or intrinsic) hardening/softening parameter and 
shall be considered as a material property. 

 The parameter α  from equation (2.92) can be reinterpreted as follows: Considering 
loading regime ( ), equation (2.31) entails that: 0≠r&
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Substituting the kinematics (2.73) and taking the limit when : 0→k
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where  is the traction vector in the normal direction to the discontinuity surface N⋅= σT
S . 

 

2.4.6.1 Discrete constitutive equation 

 Equation (2.94) can manipulated as follows: multiplying the both sides by the tensor 
, we obtain: eC
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once again multiplying both sides by N  results in: 
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(2.101) 

where we have introduced the elastic acoustic tensor ( NN ⋅⋅= ee CQ ), Willam&Sobh(1987), 
which is a positive definite tensor, see Appendix A.5.2. Finally, equation (2.101) can lead to: 

[ ][ ] [ ][ ]uu ⋅⋅
α

=⇒
α

=
− ee q

q
QQ TT         

1  (2.102) 

Observe that the equation (2.102) is a discrete constitutive equation which relates the 
traction over the discontinuity surface with the jump in the displacement field: 

. Now substituting the equation (2.102) into (2.99) yields: [ ][ ]( uTT = )
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[ ][ ] [ ][ ] [ ][ ]uuu ⋅⋅⋅
α

==α e

q
Q&&& 11  T  (2.103)

and defining: 
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and substituting (2.104) into the equation (2.103) we can obtain, for loading ( ): 0≠α&

[ ][ ] [ ][ ]

[ ][ ]

[ ][ ] [ ][ ]( ) [ ][ ] 0 ,
0

 =α−≡α⇒=α⇒








==α

=αα

uu

u

uu

u tt
t

tt
F

SD

&&

 (2.105)

Being now possible to define the traction vector norm: 
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where Equation (2.102) has been considered. From equation (2.102) and (2.105) is trivial to 
show (in loading regime, 0≠α& ) that: 

[ ][ ]( ) ( ) 0   ,    0 ,   =−≡⇔=α−
α

=α qq
q

G
TT

T tt Fu  (2.107)

 Taking into account equations (2.102) to (2.107), we can conclude that the continuum 
constitutive model described in Table 2.1 induce a discrete constitutive damage model by 
means of the strong discontinuity regime in the presence of an unbounded strain field. 
Notice that the initial stiffness of the model is infinite ( ∞=ω−

= SDtt)1( ) and that, 
consequently, the resulting discrete model is a rigid damage model (see Figure 2.20). 
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Figure 2.20: Damage constitutive equation: continuum vs. discrete. 
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 We can conclude that the introduction of the strong discontinuity kinematics 

[ ][ ]
sym

k 







⊗+ Nuε && 1  into a continuum constitutive model induces a discrete constitutive model 

in the interface of discontinuity, with the only requirement of the regularization of the 
continuum hardening parameter ( dd k HH = ). 

 

2.4.6.2 Strong discontinuity conditions  

 Let us consider a material point  in the discontinuity surface S  and a local system 
constituted by the three versors ( ) such that N . Consider also the 
displacement jump [ , the unit normal vector N  as well as the stress tensor  and the 
strain tensor  expressed in that base: 
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 Equation (2.94) can be rewritten as: 
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where we have considered the components of the effective strain tensor ( ): eff
ijε
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εσε  )1(
1

deeff −==
−

:C  (2.111)

The components ( ,  and 11)• 12)(• 13)(•  from equation (2.110) have been used to obtain the 
discrete constitutive equation (2.102). The other components in that equation give us 
conditions which must be satisfied in the inception of the strong discontinuity regime. In 
particular components , 22)(• 23)(•  and 33)(•  have to fulfill the following conditions: 
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 The constants of integration C ,  and C  are obtained in the particular instant  
where , thus 
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It is easy to prove that invoking the strong discontinuity conditions (2.113) into the 
expression of the  yields . This result can be justified as follows:  d

critH 0=d
critH

 equation (2.84) holds at any stage of the problem since it comes from 
equations (2.80) - (2.83) which hold for all the stages of the analysis;  

 the strong discontinuity regime is characterized by the limit case  which 
implies that, for 

0→k
[ ][ ] 0≠u&  in equation (2.84) and loading cases inin

SSBC C=\ , then 
( ) [ ] 0) ==⋅⋅ NNdet in (NQdetSC . 

 

Remark 2.2: Since  is a necessary condition to induce a strong discontinuity, if 
that condition occurs at the bifurcation stage the bifurcation could take place under 
the form of a strong discontinuity. In the general case ( ) bifurcation will take 
place under the form of a weak discontinuity and the strong discontinuity conditions 
(2.113) must be induced in subsequent stage.  

0=d
critH

0≠d
critH
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2.4.7 Variable Bandwidth Model - VBM 

 

2.4.7.1 VBM by pre-established law 

Beyond the bifurcation point a variable bandwidth model governs the transition 
between the Weak Discontinuity and the Strong Discontinuity regimes, Oliver et al.(1998).  

For the damage model the state law for parameter  is: d

r
rqd )(1 −=  (2.114) 

Consider that the  law is given by Figure 2.21, thus we can establish the following 
equation: 
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Figure 2.21: Bandwidth law -  vs. q r . 
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 Now consider a bandwidth variation ( ) in which the evolution criterion is a function 
of  as shown in Figure 2.22. Thus we can say: 

h
)(rq

itydiscontinu strong

transition

qqiffk

qqqiffqq
qq
kh

k
qh

SD

BSDSD
SDB

B









≤

≤<−
−
−

+
=

  

)(
)(  (2.118)

Differentiating : q
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 Solving the differential equation (2.119), we can obtain: 
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Using equation (2.121) when SDSD qqrr →⇔→ , we can obtain the value of the r , 
that is: 
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 In the strong discontinuity regime kdd HH → , thus: 

rkq d && H=  (2.123)

thus 
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( )     11 −− −+= ii
d

ii rrkqq H  (2.124) 

 

Figure 2.23 shows the evolution of  along the analysis. For a given material point in 
yielding begins at point Y of Figure 2.23, in which the hardening/softening parameter takes 
the value H . While  bifurcation is precluded and the behavior is continuous. 

As soon as  the bifurcation point B is detected. At this point 
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which determines the initial value of the bandwidth law shown in Figure 2.22(a). Beyond 
point B the bandwidth decreases from  to , according to the bandwidth evolution law 
of Figure 2.22(a) in terms of . At point SD, when 

Bh k

Bqq − SDqq = , the bandwidth, , equals 
. Beyond point SD a kinematic state of strong discontinuity is induced, the bandwidth is 

kept constant and equal to the regularization parameter  and the corresponding softening 
reads 
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Figure 2.23: Bandwidth law, Oliver et al. (1999). 

 

Remark 2.3: The drawback of this variable bandwidth model (VBM) is that when a 
pre-established law is used, we must establish a priori a variable ℘  described in 
Figure 2.22. This variable indicates the length of the transition between the 
Bifurcation point and the strong discontinuity point. ℘  varies from material to 
material and for different stress states, and sometimes, when this variable has a too 
small value, reloading can be observed.  
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2.4.7.2 Automatic VBM  

Here, an alternative model is proposed, where the bandwidth  is obtained 
automatically without assuming any law, avoiding the necessity of variable 

h
℘ . Once the 

bifurcation point is detected an initial bandwidth h  is obtained: B

d
y

d
crit

Bh
H
H

=  (2.125)

Normal  will be kept fixed from time t  onward. On the other hand, we obtain critN B
d
critH~  as function of N  (frozen at time crit Btt = ) and the current stress states; thus, we can 

define a new bandwidth as: 

d
y

d
crith

H
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=  (2.126)

this process is used in the successive load steps until 0~
≈d

critH  which is the necessary 
condition to induce a strong discontinuity according to Remark 2.2. At this point the 
strong discontinuity regime begins, i.e., the point SD of Figure 2.23, thus h . 1<<→ k

2.4.8 Fracture Energy 

It is illustrative to compute the energy release for the formation of the discontinuity 
during the time interval ( ]∞∈ t,0t , where  stands for the time at which complete 
decohesion of the crack is achieved 

∞t
)0( =σ

∞=tt , for a one-dimensional bar. In virtue of the 
theorem of the expended power, and neglecting the kinetic energy (as corresponds to the 
quasistatic case), the external power input in the bar equals the stress power: 
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Now consider the Dirac’s delta property: 
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Now, by integration along time, the total mechanical work W  can be computed as: )(t
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which identifies the area under the discrete [ ][ ]u−σS  constitutive law of Figure 2.24 as the 
energy release per unit surface to produce the discontinuity. 
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Figure 2.24: Discrete [ ][ ]u−σS  constitutive model. 

 

Now we focus on the continuum constitutive model and the discontinuity interface S . 
For the loading conditions occurring there, it can be readily shown that both couples ( ) 
and ( ) are conjugate variables for the stress power so that we can write: 
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Now, substituting the k -regularized strong discontinuity kinematics [ ][ ]( )uk
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and the regularized hardening softening law from (2.95) α= && d
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therefore the fracture energy in equation (2.129) can be computed as: 
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where, for the sake of simplicity, a constant value for dH  has been considered (linear 
softening). The above equation states the material property character of the discrete 
softening parameter dH  which can be characterized in terms of the fracture mechanics 
properties: , yσ E  and . fG

 

 



3 Material Bifurcation Analysis 
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3.1 Introduction  

In the field of structural engineering, bifurcation theory has been extensively applied to 
geometrical non-linearity problems, e.g., stability problems involving buckling, as well as 
constitutive non-linearity, i.e., material instability phenomena (material bifurcation).  

In this chapter we will tackle the problem of localization as an instability in materials in 
the spirit of Rudnicki&Rice(1975): “ …Localization can be understood as an instability in the 
macroscopic constitutive description of inelastic deformation of the material…”. The main aim here is to 
obtain general explicit expressions for the critical failure direction and the critical hardening 
modulus (Willam(2000)) corresponding to the best-known classical continuum constitutive 
models (namely, continuum damage and plasticity models). Then, specific expressions for 
some constitutive models will be obtained as particular cases of the above mentioned 
general expressions. To reach this aim, the ellipticity condition of the constitutive tangent 
operator will play a determinant role. 
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3.2 Historical aspects on localization 

 The basic principle of localization was first proposed by Hadamard(1903) using  
classical material stability concepts. In 1952 Drucker proposed that a material is stable if 
the second-order work density is positive, resulting in a sufficient condition for the 
uniqueness of the solution: 

0
2
1

2
12 >== εεσε &&&& ::: CWd  (3.1) 

for any arbitrary value of . This criterion was further developed by Hill(1958) and 
Drucker(1959), Maier&Hueckel(1979), Runesson&Mroz(1989), Bigoni&Hueckel(1991), 
and others. Hill(1958) showed that 

0≠ε&

0=σε && :  is a necessary condition for any type of 
bifurcation and loss of uniqueness. 

 For the associated plasticity case, where C  is symmetric, the nullity of equation (3.1) 
only takes place when C  is singular, and the result is that for associated models localization 
cannot occur in hardening regime.  

 Following Hadamard(1903), Thomas(1961) applied this theory to elastoplastic solids 
using wave propagation analyses to associate localization with stationary waves. 
Mandel(1966) was inclined to study the tangent material operator  to establish a 
localization criterion. Mandel(1964) determined the critical value of the hardening modulus 
for a Mohr material assuming the general three-dimensional nonassociated plasticity theory. 

C

Rudnicki&Rice(1975) used Lagrange multipliers to obtain an explicit expression for 
the critical conditions of the hardening modulus for localization in pressure-sensitive 
dilatant materials in the setting of infinitesimal theory and showed that the inclusion of a 
nonassociated flow rule and a vertex-like yield surface into a Drucker-Prager model 
strongly influences its prediction of localization. 

 A critical hardening modulus as well as the direction of the shear planes using plane 
stress and plane strain for a Mohr-Coulomb material was obtained by Runesson et al.(1991). 
In Ottosen&Runesson(1991a) a spectral analysis of the acceleration wave problem in 
general elasto-plastic materials was carried out, and an explicit expression for the 
eigenvalues and eigenvectors of the localization tensor was obtained (see also 
Bigoni&Hueckel(1991), and Runesson et al. (1991)). 

3.3 Continuous and discontinuous bifurcation 

In the work by Rice&Rudnick(1980), conditions for strain localization in a planar band 
were derived (see Figure 3.1). They started by considering a homogeneous solid sustaining 
a uniform stress σ .  B

Restricting the analysis to small deformation settings, the development of a localized 
band, see Figure 3.1, entails the following kinematical condition: 



3 Material Bifurcation 55

( )symNM⊗+= SBS \εε &&  (3.2)

 

where Sε&  and SBε  are the symmetric strain rates inside and outside the band, 
respectively, N  is the unit vector normal to the localized band, and M , which is a function 
of bandwidth , stands for the vector defining the direction of the velocity jump. 
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Figure 3.1: Planar localization band. 

 

Applying the traction vector continuity:  

( ) 0=−⋅ SSB σσ &&
\N  (3.3)

we can obtain the following expression:  

( ) ( ) SBSSBS \\  ε&:CCC −= ⋅⋅⋅⋅ NMNN  (3.4)

where SC  and SB \ C  are the constitutive tensor inside and outside the localization band, 
respectively. 

 

Rice&Rudnicki(1980) distinguished between continuous bifurcation and discontinuous 
bifurcation, depending on whether SBS \ CC =  or SBS \ CC ≠ , respectively; namely: 

 Continuous bifurcation (Plastic-Plastic localization) → SBS \ CC = ; 

 Discontinuous bifurcation (Elastic-Plastic localization) → SBS \ CC ≠ . 
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Continuous bifurcation 

In the case of continuous bifurcation ( SBS \ CC = ), i.e., the material inside and outside 
of the localization band remain in loading, equation (3.4) becomes: 

( ) 0=⋅⋅⋅ MNN SC  (3.5) 

The localization condition is satisfied when the solution of the above equation is different 
from the trivial solution 0=M , which entails: 

( ) 0=⋅⋅ NN SCdet  (3.6) 

For the case of elastoplasticity, the tangential constitutive operator for the plastic loading 
case is given by:  

mn
nm

::
::
ep

cont

ee
e

C
CCCC

+
⊗

−=
.HS  (3.7) 

where  is the elastic tensor, H  is the plastic modulus, and n  and m  are the normal 
to the yield surface and to the plastic potential surface, respectively. Rice(1976) obtained 
the hardening modulus H  corresponding to condition (3.6): 

eC p
cont.

p
cont.

( )( ) ( )( )()(
1

2
2

. nnmmnmnmnm TrTr −−
ν−

ν
−−−= ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ NNNNNNNNNN : )

G

p
contH  (3.8) 

where  denotes the Poisson’s ratio; G  is the elastic shear modulus and  stands for 
the trace of . 

ν )(•Tr
)(•

Discontinuous bifurcation 

A common observation in experiments is that the constitutive response at localization 
is not continuous; that is, the material outside the localized zone apparently does not 
continue loading, but rather unloads elastically. In the case of discontinuous bifurcations 
(C ), provided that  can be inverted, the non trivial solutions will be: SBS \ C≠ ( NN ⋅⋅ SC )

( ) ( )[ ]SBSSBS \\
1  ε&:CCC −= ⋅⋅⋅⋅ − NNNMD  (3.9) 

Rice&Rudnicki(1980) searched the conditions for which the solution of (3.9) 
corresponds to continued plastic loading in the localized band when there is elastic 
unloading outside this zone. The condition obtained (i.e., the condition for discontinuous 
bifurcation) was the following: 

0
.

<
−

+
p
cont

p

ep

HH
H mn ::C

 (3.10) 

They concluded that localization with elastic unloading outside the localized zone of non-
uniform deformation is only possible when . Also, due to the fact that  
decreases in value as the plastic deformations increase, the above inequality means that  
localization with elastic unloading outside the band takes place when the condition for 

p
cont

p
.HH < pH
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continuous bifurcation ( ) is fulfilled for the first time. Consequently, 
continuous bifurcation sets the lower limit to the range of discontinuous bifurcation. 

p
cont

p
.HH =

(Q N

0≠

[det

⊗M

( )⊗MN :

⋅M Q(

MN //

 Based on the above analysis,  the condition for continuous bifurcation, regarded as a 
lower limit of the discontinuous bifurcation scenario, will be adopted for further 
developments in this work, i.e., the case when the system of equations: 

) 0=⋅M  (3.11)

has a nontrivial solution M , Ottosen&Runesson(1991). Equation (3.11) is the so called 
strain localization condition, where  ( )NNN ⋅⋅= SQ , and M  is known as polarization 
direction. Thus, we can say that a necessary condition for the appearance of localization is 

C)(

( )] 0Q =N  (3.12)

which is known as the Rice’s criterion, characterizing the discontinuous failure, Rizzi et al. 
(1995).  

Strong ellipticity condition 

Here we present the definition of strong ellipticity that will be used throughout this work. 

If for all vectors N  and M  with 0≠N , the inequality 

( ) 0>⊗MN:C  (3.13)

holds, then it is said that the tangential operator C  is strongly elliptic. Rearranged, this 
inequality can be written as: 

0>⋅MN)  (3.14)

where NN ⋅⋅= CQ  is a second-order tensor known in literature as the Tangent Acoustic 
Tensor. By analogy with the theory of wave propagation, the eigenvalues of  are the 
wave propagation velocities, N  is the propagation direction and M  is the polarization 
direction. 

)Q(N

 The pair (  indicates the orientation and nature of the discontinuity, i.e., opening 
when  is parallel to , shear when N  is orthogonal to M , or the combination of both 
(see Figure 3.2). 

),MN
N M

 MODE II – N  M⊥MODE I –

 

NM// NM
  

 

 

 

Figure 3.2: Nature of the discontinui

 

ty. 
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 An inequality weaker than (3.14) is: 

( ) ( ) 0≥⊗⊗≡⋅⋅ MNMNMNM ::)Q( C  (3.15) 

known as Hadamard’s conditions (or Legendre-Hadamard), Ogden (1943). 

 

Ellipticity condition 

 If Q(  is symmetric, condition (3.14) will be violated if, for some N , there exists a 
 such that 

)N
0≠M

0=⋅MN)Q(  (3.16) 

that is: 

[ ] 0        0 =⇒=⋅ )Q()Q( NMN det  (3.17) 

 Condition (3.14) means that tensor  is positive definite for all N  implying 
that uniqueness and stability is guaranteed.  

)Q(N 0≠

 When the constitutive tangent operator has major and minor symmetries, the so-called 
ellipticity condition is satisfied if  

[ ] 0≠)Q(Ndet  (3.18) 

Correspondingly, condition (3.16) is satisfied. One can note that strong ellipticity implies 
ellipticity with det , but the reciprocity is not generally true, nevertheless for 
certain constitutive laws ellipticity and strong ellipticity are equivalent. In Table 3.1 there is 
a summary of the concepts presented. 

[ ] 0>)Q(N

Remark 3.1: Uniform point-wise stability implies strong ellipticity, but not conversely. 
In the associated case the strong ellipticity condition reduces to the ellipticity 
condition .  [ ] 0  ;  0 ≠∀> NN)Q(det

 

Table 3.1: 

Summary of bifurcation criteria 

Criterion Condition 

Loss of strong ellipticity  

Loss of ellipticity  
 

(3.19) 0=⋅⋅ MNM )Q(

0=⋅MN)Q(
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3.4 Material bifurcation condition 

Let us consider a material whose behavior is described by a constitutive model 
characterized by 

 An inelastic tangent constitutive tensor,  (or tangent material operator), 
whose expression reads: 

inC

( )eeein CCCC :: nm⊗−ξ= K  (3.20)

where: 

MODELS 

DAMAGE PLASTICITY 

  

 

 

(3.21))1( d
r
q

−==ξ 1=ξ

3

)(
r

rrq dHK −
=

mn :: ep C+
= HK 1

with: 

 n : the flow plastic, normal to the Yield Function (F ), defined as 
σ∂

∂
=n F  

(gradient of the Yield Function); 

 m : the flow of the plastic potential, which is normal to the Plastic Potential 

(G ), defined as  
σ∂

m
∂

=
G

(gradient of the Plastic Potential). 

 

As mentioned above, the following analysis will be performed from a general point of 
view, and, later, it will be particularized for some specific cases. As point of departure we 
will analyze the acoustic tensor, Q( , in order to obtain the value of N  that minimizes 

. Using equation (3.20), the acoustic tensor can be written as: 
)N

[ )Q(Ndet ]

( ) NNNNN ⋅⋅⋅⋅ ⊗−ξ=    eee CCC ::)Q( nmK  (3.22)

Applying the definition of the standard fourth-order isotropic elastic modulus tensor in 
function of Lamé’s parameters (λ , µ ), i.e.: ( )11⊗λ+µ= IC 2e  (see Appendix A.5) 
equation (3.22) can be rewritten in the following way: 

[ ] [














µ+λ⊗µ+λ

ξ
−ξ= ⋅⋅

444 3444 214444 34444 21
bc

nnmm
ˆˆ

 2)(     2)(  NNNNN TrTrKeQ)Q( ]  (3.23)
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where  is the elastic acoustic tensor (see Appendix A.5.2) and eQ )(•Tr  stands for the trace 
of . Thus, )(• 332211)( mmmm ++== iimTr  and 3311)( nnn 22n ++== iinTr . 

Making use of a change of variables, we can write equation (3.23) as: 









⊗
ξ

−ξ=∴








⊗
ξ

−ξ= babc ˆˆ        ˆˆ KK 1ee QQQQ  (3.24) 

where  and assuming that  is positive definite we can say that: 1ˆˆ −⋅= eQca eQ









⊗
ξ

−ξ= ba ˆˆ  )( )( K1detdetdet eQQ  (3.25) 

Using the property: 

( ) baba ˆˆ1ˆˆ ⋅+=⊗+1det  (3.26) 

we obtain: 

bcbaba ˆˆ1ˆˆ1ˆˆ 
1 ⋅⋅⋅ −

ξ
−=

ξ
−=









⊗
ξ

− eQKKK1det  (3.27) 

Taking into account the fact that  and equation (3.27), the bifurcation 
condition det  is reduced to solving the following problem: 

0Q >ξ )( edet
[ ] 0)Q( =N

0Q =
ξ

− ⋅⋅ −
bc ˆˆ1

1eK  (3.28) 

Using the expressions of c  and  laid out in equation (3.23), the above equation can be 
rewritten as: 

ˆ b̂

[ ] [ 0

)(

 2)(   2)(  )(1
1

=µ+λµ+λ
ξ

− ⋅⋅ −

444444444 3444444444 21
N

NNNN
Z

e nnmm TrTr QHK ]  (3.29) 

From equation (3.29) we can say: 

)(
)(

NZ=ξ
HK  (3.30) 

Expanding the value of  in equation (3.29), it yields: )(NZ

( )
( ) ( )

( )( )NNNN
NNNN

NNN

⋅⋅⋅⋅
⋅⋅⋅⋅⋅

⋅⋅

µ+

+µ++λµ+
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mnnm
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 4

   4)( )(2

)( )(2))(()()(

2

2

2

b

aba

babaZ

Tr
TrTrTr

 (3.31) 

where: 
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( )
( ) µµ+λ

µ+λ
−=

µ
=

1
2

;1 ba  (3.32)

The problem to be solved here is to find the critical normal vector N , which can be 
done by maximizing function (3.31). Once we have obtained the critical values N , we 
can obtain  by replacing N  in equation (3.30). The expressions of  for damage 
and plasticity models are: 

crit

crit

critH crit H

 Damage: 









−−=

)(
1)1(

2

NZ
rddH  (3.33)

 Plasticity: 

mn :: ep Z C−= )(NH  (3.34)

 Thus, the problem of finding the critical normal  N  can be stated as the following 
minimization problem: 

crit

[ ]








=
=

)(  
1

NN
N

Qdetminargcrit  (3.35)

3.5 Critical values 

In this section, we will explain how to obtain the critical values of the normal vector 
 and the hardening parameter , for the following cases:  critN critH

 The general case, where the principal directions of  do not coincide with the 
principal directions of , (  and  are not colinear); 

n
m n m

 The colinear case, where  and  are coaxials (the principal directions of  n  
and m  are coincident);  

n m

 The associated case, a particular coaxial case where n m= . 

3.5.1 General case 

3.5.1.1 Critical angle 

Consider the tensor n  expressed in its principal directions components1: 

                                                 
1 For simplicity we use the same notation for the tensor (n ) and for its matrix representation. 
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Tensor  is also expressed in the base formed by the principal directions of  for the 
non coaxial case: 

m n
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332313
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131211

mmm
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m  (3.37) 

Developing expression (3.31) and using the restriction 1=N , we can obtain the 
following expression for : )(NZ
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 (3.38) 

where  

( )111mnβ=A  ; 222mnβ=B  ; 333mnβ=C  ; 

[ ]1122 nmβ=D  ; [ ]1132 nmβ=F  ; [ ]211122 nmnm +β=G  ; 

[ ]133311 nmnm +β=H  ; [ ]233322 nmnm +β=I  ; [ ]1232 nmβ=J  ; 

[ ]2132 nmβ=K  ; [ ]3122 nmβ=L  ; [ ]2232 nmβ=O  ; 

[ ]2122 nmβ=P  ; [ ]3132 nmβ=Q  ; [ ]3232 nmβ=R  ; 

[ ] 111111 4)()(
)2(

2
mnnm µ++

µ+λ
λµ

= mn TrTrS [ ] ; 

[ ] 222222 4)()(
)2(

2
mnnm µ++

µ+λ
λµ

= mn TrTrT [ ]  ; 

[ ] 3333333 4)()(
)2(

2
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= mn TrTrU [ ] ; 

[ ] [ 12212112 4)(
)2(

2
mnmnm +µ+

µ+λ
λµ

= nTrV ]  ; 

[ ] [ 23323223 4)(
)2(

2
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µ+λ
λµ

= nTrX ] ; 

[ ] [ 13313113 4)(
)2(

2
mnmnm +µ+

µ+λ
λµ

= nTrY ]  ; 
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)2(
)()(2

µ+λ
λ

=
nm TrTrW  ;   

)2(
)(4

µ+λ
µ+λµ

−=β  ; 

 The maximum and minimum values of  can be obtained from (3.38) using the 
Lagrange multiplier method . The procedure consists of constructing the following function: 

)(NZ

( )1ˆ)( −λ−=Φ iiZ NNN  (3.39)

where  is the Lagrange multiplier. The solution for the critical direction will correspond to 
finding the values ,  and N  which maximize , with the restriction 

λ̂

1N 2N 3 )(NZ 1=N . One 
way to achieve this would be solving the following set of equations: 
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 (3.40)

   

A numerical alternative would be to express  in terms of α  and  (see Figure 
3.3), discretizing then α  and  in order to check when  reaches a maximum by 
sweeping the corresponding range of variations of 

)(NZ φ̂

φ̂ )(NZ
α  and . This has to be subsequently 

refined using one of the iterative gradient schemes, Ortiz(1987). The methodology has to 
be repeated  at each step during the integration process at each quadrature point. 

φ̂

 

 

 

 

 

 

 

Figure 3.3: Normal N  in the principal direction of n . 

3.5.1.2 Calculation of H  crit

  

 n  
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ˆcoscos
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1

N

N

N

  1=N  

Once the value of the critical direction (N ) is obtained, the calculation of the critical 
value of  consists of replacing N  into equation (3.30), that is:  

crit

H crit
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HK  (3.41) 

Resulting in: 
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Plasticity 
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with 

)( )( 2 mnmnmn TrTrλ+µ= ::: eC  (3.44) 

3.5.2 Case of colinearity between n  m ,

3.5.2.1 Non-associated case 

For the coaxial non-associated case the principal directions of n  coincide with the 
principal directions of , but . m mn ≠
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3.5.2.1.1 Critical angle 

In this case we assume the follwing format for the tensors n  and m : 
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Since entries  are null, then the expression of  can be rewritten as: 231312 mmm == )(NZ
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The relative maximums and minimums of function (3.46) are presented in Table 3.2, where 
the values of the direction )(θN  are expressed in terms of the angle , which is defined 
with respect to the principal directions, see Figure 3.4. For instance, row 1 , in Table 3.2, 
indicates that the solution coincides with the first principal direction, i.e., , and row 

 means that the solution lies in the plane generated by the second and the third 
principal directions and the angle with respect to the latter is equal to . 
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Table 3.2: Relative maximums and minimums of . )(NZ

11−

 PLANE 

0.1± 0.0 0.0 0tan 1
2 =θ WSA ++

22 − 0.0 0.1± 0.0 0tan 2
2 =θ WTB ++

33 − 0.0 0.0 0.1± 0tan 3
2 =θ WUC ++

32 − 0.0
F
I

2
−

±
F
I

2
1+±

I
IF +

−=θ
2tan 32

2

F
ITZ
4

2

323 −=

31−
A
G

2

ˆ−
± 0.0

A
G
2

ˆ
1+±

G
GA

ˆ
ˆ2tan 31

2 +
−=θ

A
GTZ
4

ˆ 2

313 −=

21−
B
H
2

ˆ
1+±

B
H

2

ˆ−
± 0.0

H
HB

ˆ
ˆ2tan 12

2 +
−=θ

B
HTZ
4

ˆ 2

112 −=

where 

( )([ ]3131)2(
)(4

mmnn −−
µ+λ

)µ+λµ
−=A  

( )([ ]2121)2(
)(4

mmnn −−
µ+λ

)µ+λµ
−=B  



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 66 
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Thus we can explicitly express the corresponding angles as: 
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(3.49)

It is interesting to observe that the critical angle does not depend on the Young’s modulus 
( E ). 
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Figure 3.5: Surface - Case )(NZ mn ≠  (Drucker-Prager non-associated). 
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3.5.2.1.2 Calculation of H  crit

Damage 

For the isotropic damage case  is given by: d
critH









−ξ=

)(
1 

max

2

NZ
rd

critH  (3.50)

where  is the maximum value from Table 3.2. Once  is obtained, it is 
possible to obtain N . 

)(max NZ )(max NZ

crit

 

Plasticity 

The values of  corresponding to the values of  laying on the planes pH )(NZ 32 − , 
, and 1  according to the Table 3.2 are, respectively: 31− 2−

( ) 3

2

3

2

23 44
PH +−=−+−=

F
IT

F
I ep mn ::C  (3.51)
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ˆ
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A
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A
G ep mn ::C  (3.52)

( ) 1
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1
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B
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B
H ep mn ::C  (3.53)

where 
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( ) ( )[ ]2233233221 )1(
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[ ]
))((

))(())((
)1(44

ˆ

2121

2
23212321

2

2

nnmm
mmnnnnmm

−−
+ν−++ν−

ν−
−

=
E

B
H  (3.59) 

The variables: , A B , F , G , ˆ Ĥ , I , , T  are the same as defined in the Table 3.2. 1T 3

3.5.2.2 Associated case ( ) mn =

3.5.2.2.1 Geometrical interpretation – localization ellipse 

Using equations (3.31) and (3.30) and after some mathematical manipulations we can 
obtain the following equation: 

( )
1ˆˆ 2

2

2

2
0 =

Σ
+

+Φ

BA
NN m

 (3.60) 

which defines the localization ellipse in the ),( NN ΣΦ  space, where: 

NN ⋅⋅=Φ mN ;  )(
)21(

)(
20 mm TrTr

ν−
ν

=
µ
λ

=m  (a) 

( ) 22
NN Φ−=Σ ⋅⋅⋅ mm NN  (b) 

2
2

2 ˆ
)21(
)1(2

4
)2(ˆ BA

ν−
ν−

=
µ

ξµ+λ
= K  (c) 

Kµ
ξ

=
4

ˆ 2B  (d) 

(3.61) 

0m  determines the ellipse center, while  and Â B̂  determine the half axes of the ellipse in 
the normal and tangential directions, respectively, Willam(2000). And ξ  and K  are given 
by expression (3.21). The geometrical properties of the localization ellipse are illustrated in 
Figure 3.7 together with the three Mohr’s circles in the ),( ΣΦ  space in terms of the 
eigenvalues of m , Oliver (2002). Note that the center and the shape of the ellipse are not 
influenced by the plastic hardening modulus . The hardening modulus only 
influences the size of the ellipse, Willam(2000). 

)(NH

 As mentioned above, for a given stress state,  corresponds to a maximum value 
of , i.e.:  

critH
H

( )[ ]NHH max=crit  (3.62) 
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Figure 3.7: Localization ellipse and Mohr’s circle. 

 

 With this interpretation we can conclude that the solution that furnishes the maximum 
ellipse will be the solution laying on the plane 1 3−  of the Table 3.2, i.e.: when 02 =N . 
Thus the value of  is:  )( critZ N
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or, in terms of E  and ν : 

[ ] (
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ν−ν+

=  )1()(2 
)21)(1(

)( 2
3

2
23213211 mmmmmmmmm

EZ critN ) (3.64)

 

3.5.2.2.2 Critical angle – Associated case ( mn = ) 

The critical angle (see Figure 3.8) could be obtained by directly using equation (3.48) 
with : mn =

21

232tan
mm
mm

ν+
ν+

−=θcrit  (3.65)
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Figure 3.8: Normal  in principal direction of m  - associated case. N
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3.5.2.2.3 Calculation of the  – Associated case (ncritH m= ) 

Damage 
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31
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Plasticity 

For the associated case n , one can obtain from equations (3.51) to (3.59) that: m=

( )
( )

2
1

2
13

2

23   23
4

mm E
F
Ip −=

µ+λ
µµ+λ

−=+−= PH  (3.67) 
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23
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Gpp
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−=+−== PHH  (3.68) 

( )
( )

2
3

2
31

2

12   23
4

ˆ
mm E

B
Hp −=

µ+λ
µµ+λ

−=+−= PH  (3.69) 

 Notice that the maximum value among (3.67), (3.68) and (3.69) is given by (3.68). 
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 It can be shown that the solution 32 − , 1 3−  and 1 2−  from Table 3.2 correspond to 
the localization ellipse which intercepts the Mohr’s circle 32 σ−σ ,  and 31 σ−σ 31 σ−σ , 
respectively. 
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Figure 3.9: Localization ellipse. 

 

3.6 Critical values for several constitutive 
models 

In solid mechanics there are several families of constitutive equations.  Some typical 
examples are elasticity, plasticity, viscoelasticity, continuum damage, and viscoplasticity.  In 
this section, critical values for the localization direction and the hardening modulus for 
some of these models will be derived. Several classic models of plasticity and damage are 
employed with this purpose. A detailed study of their features is out of the scope of this 
work. For further details on the constitutive models presented here, the reader is referred 
to: Chen&Han(1988), Chen(1982), Potts&Zdravković (1999), Desai&Siriwardane(1984), 
Oller(2001), Willam(2000).  
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3.6.1 One-parameter models 

3.6.1.1 Rankine criterion 

This is a model defined by a maximum-tensile-stress criterion (see Figure 3.10) and was 
formulated by Rankine in 1876. It is characterized by only depending on a parameter. This 
can be sketched as:  
















==⇒=σ−σ==

000
000
001

01 mntGF  (3.70) 

where  (positive stress) are the principal stresses and 321 σ>σ>σ tσ is the tensile yield 
stress satisfying . 0>σ t

 Using the above yield criterion and substituting it into equation (3.65) and considering 
(3.68), we readily obtain the critical angle and H : p

crit

 

 Critical values  for RANKINE Criterion 
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Figure 3.10: Rankine yield surface. 
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3.6.1.2 von Mises yield criterion 

In this criterion the elastic limit is reached when the octahedral shear stress  reaches a 

critical value k (yield stress in pure shear), i.e.: 
octτ

k 
3
2

23
2 ==τ Joct . We can write the yield 

criterion as: 

( ) 02
22 =−= kF JJ  (3.72)

We will consider the   plasticity model, associated von Mises, where: 2J

1 
2
3

2
3

===== ηηηη
s
smn :  (3.73)

and  is the deviatoric stress tensor2, which is given by: s
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Its norm reads: ( )  2
3

2
2

2
1 σ+σ+σ=s . 
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Figure 3.11: von Mises yield
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According to equation (3.65) the critical angle is determined by: 

( ) ( ) ( )
( ) ( )312312
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crit  (3.75) 

To obtain  , equation (3.68) is used, resulting in: p
critH
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Using the condition 321 σ>σ>σ  we can conclude that: 
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 (3.77) 

It can be shown that the maximum value of  between (3.67), (3.68) and (3.69) is . 
Thus, we can summarize the following for the von Mises criterion: 

pH p
13H

  CRITICAL VALUES  FOR VON MISES CRITERION 
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−=θcritcritical angle 
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Localization ellipse 

Considering, smn 1α== , with 
s
1

2
3

1 =α , we can obtain the equation of the 

localization ellipse: 
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2
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2
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τ
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N  (3.79) 

with 

p=σ0 ; 22 ˆ
)21(
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4
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p

+
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=
H  

 
 (3.80) 

where p  is the spherical or hydrostatic stress tensor, and ( )2
3

2
2

2
122 sss ++=J . 
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3.6.1.3 Tresca yield criterion 

This model is also known as the maximum shearing stress criterion, which has the 
following yield criterion: 

0
2
1),( =τ−



 σ−σ=τσ maxmax max jiF  (3.81)

from the condition 321 σ>σ>σ  (positive stress), equation (3.81) results in 

3σ−12
1

2
1

σ=



 σ−σ jimax , thus: 
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2
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00
000
00

mn  (3.82)

The critical angle and the critical hardening modulus are summarized as follows: 

 CRITICAL VALUES  FOR TRESCA CRITERION 
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3.6.2 Two-parameter models 

3.6.2.1 Mohr-Coulomb criterion 

 The simplest form of Mohr envelope is the straight line (see Figure 3.13). The 
equation of this line is: 

φσ−=τ tan  c  (3.84) 

where  is the cohesion and  is the angle of internal friction, and both are material constants 
determined by experiments. 

c φ
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Figure 3.13: Relationship between principal stresses for the Mohr-Coulomb criterion. 

 

Considering Figure 3.13 and equation (3.84), and taking into account that 
, we can write the Mohr-Coulomb criterion as: 321 σ≥σ≥σ

0
tan
2sin

tansin
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)(
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2
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2
)(

3131

31
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31
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φ−σ−σ⇒

φ







φ

σ−σ
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c
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 (3.85) 

Mohr-Coulomb criterion 

Solid Mechanics 

Next, in order to deduce the critical values we will consider the sign convention adopted 
by soil mechanics: compression (positive) and traction (negative) 1331 ; σ−≡σσ−≡σ . In 
this case, the Mohr-Coulomb surface equation is described as: 









φ

+σ+σφ−σ−σ=σσ
tan
2sin),( 313131
cF  (3.86) 

 

Mohr-Coulomb Criterion 

Soil Mechanics 
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 Considering that: 
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where  and  are functions of 1N ′ 3N ′ φ  (angle of internal friction) and  and  are 
function of  (dilatancy angle) with: 

1M ′ 3M ′
ψ
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The critical values  and  are respectively given by: critθ p
critH
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Substituting the values of  and N ′ M ′  we can obtain that: 
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Thus we can summarize: 

 

  CRITICAL VALUES FOR THE MOHR-COULOMB CRITERION 
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3.6.2.1.1 Non-associated Mohr criterion – Particular case 

In this particular case we have: 
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MN 00
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where 
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sin1
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(3.94) 

 

Substituting the values of  and m , given by the expressions (3.93), into equation 
(3.48) for non-associated problems, we can obtain the critical angle: 

n
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 (3.95) 

and the critical value of the hardening modulus: 
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Thus, we can summarize: 

  CRITICAL VALUES FOR THE MOHR CRITERION (ASSOCIATED CASE) 

ψ+φ+
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=θ
sinsin2
sinsin2tan 2

critcritical angle 

( )
( )( )NM

MNEp
crit ′+′+

′−′

ν−
=

11)1(4

2

2
H

 

The results (3.97) are consistent with the results presented by Ottosen & Runesson 
(1991b). 

The above values, (3.95) and (3.96), can be directly obtained from equations (3.88) and 
(3.89) just by setting , , 11 =′N 33 NN =′ 11 =′M  and 33 MM =′ . 
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3.6.2.2 Drucker-Prager criterion – Two-Invariant plasticity formulation  

In this special case, we can express  and , which are coaxials, as: n m

1s

1s

42

31

α+α=
∂
∂

=

α+α=
∂
∂

=

σ
m

σ
n

G

F

 (3.98)

 The parameters α  and 1 3α  describe the pressure sensitive, and α  and 2 4α  are 
frictional material parameters. 

Using equation (3.48) with n  and m  given by equation (3.98), we can obtain the critical 
angle: 

 In terms of the principal deviatoric stress: 

( )( ) ( )
( )( ) ( ) 21213241

212332412

 21
 21

tan
ααν++αα+ααν+
ααν+−αα+ααν+−

=θ
ss
ss

crit  (3.99)

 In terms of the principal stress: 

( )( ) ( ) ( )[ ]
( )( ) ( ) ([ ])31231214123
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tan
σ−σλ+σ−σ−σµαα+αα+ααλ+µ
σ−σλ+σ+σ+σ−µαα+αα+ααλ−µ−

=θcrit  (3.100)

The above equation can be rewritten in terms of ν  and E  as: 

( )( ) ( )[ ]
( )( ) ( )[ ] 211321323241

2132132132412

 4222213
 4222213

tan
αασ+σ−σ−σ−σ−σν+αα+αα+ν
αασ−σ+σ+σ+σ−σν+αα+αα+ν−

=θcrit  (3.101)

The critical hardening parameter  is given by the following table: p
critH

  CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE) 
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Figure 3.14: Drucker-Prager yield surface. 

 

Localization ellipse 

 Using equations (3.30) and (3.31) we can obtain the localization ellipse: 
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where  and  are given by equation (3.21) in the plasticity case and ξ K
3
1Ip = , where  is 

the first invariant (
1I

3211 σ+σ+σ=I ) and  the second invariant for the deviatoric stress 
(see appendix A.7). 

2J

 

3.6.2.2.1 Particular case 121 =α=α  

 In the case of the Drucker-Prager model with two invariants, the normal to the yield 
surface n  and the normal to the plastic potential m  are given by equations (3.98), with the 
following values . In this case the model only depends on the friction parameter  
of the Drucker-Prager parabolic model.  

121 =α=α
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4

3

m
n

 (3.105)

The value for the critical angle can be obtained directly from equation (3.101), resulting in: 

( )( ) ( )[ ]
( )( ) ( )[ ]13213234

321321342

4222213
4222213

tan
σ+σ−σ−σ−σ−σν+α+α+ν

σ−σ+σ+σ+σ−σν+α+α+ν−
=θcrit  (3.106)

The above equation can be written as: 
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where: 
2

31 σ+σ
=cσ ; 

2
31 σ−σ

=r  

Expression (3.107) is the same as the one obtained by Willam (2000). 

 

 The explicit expression for  is given by: p
critH
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Summarizing: 

CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE) 

PARTICULAR CASE (α1=α2=1) 

critical angle  

critical hardening 
modulus 

 

 

(3.109) 
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3.6.3 Three-parameter models 

3.6.3.1 Three-invariants plasticity formulation 

Consider that in this plasticity formulation we include the effects of the three invariants 
in the yield function and in the plastic potential. The three invariants )~,, θρξ(  are 
schematically sketched in Figure 3.15. For further details on this model see Willam (2000). 

As a result the gradients n  and m  depend on the three invariants, which can be written 
as: 
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 (3.110) 

Using equation (3.48), with the values given in (3.110), one can obtain the critical angle: 

( )( ) ( ) ( )[ ] ( )[ ]
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 (3.111) 

and the critical hardening modulus: 
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Figure 3.15: Gradients of generic three-invariants yield surface, Willam(2000). 
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3.6.4 Damage models 

In this section we will obtain the explicit critical values for the Isotropic Damage Model 
described in chapter 2. 

3.6.4.1 Isotropic damage model 

This associated model has the following flow rule: 

















ε
ε

ε
===

3

2

1

00
00
00

εmn  (3.113) 

with ε  321 ε≥ε≥

Using equation (3.65) we can obtain the critical angle: 
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Equation (3.114) is the same as obtained by Rizzi et al.(1995) and through equation (3.66) 
we obtain the value of : d

critH
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Localization ellipse 

 We can then obtain the localization ellipse (see Figure 3.16) in the Mohr circle space, 
according to equation (3.60):  

( )
1ˆˆ 2

2

2

2
0 =

ε
+

ε+ε

BA
SN  (3.116) 

where 

)(
)21(2

)(
321

321
0 ε+ε+ε

ν−
ν

=
µ

ε+ε+ελ
=ε ;  22 ˆ

)21(
)1(2ˆ BA
ν−
ν−

= ; Kµ
ξ

=
4

ˆ 2B  

 

 

 

 



3 Material Bifurcation 87

 

 
 

1ε23ε  ε  ε  

2
γ  

θ2 crit

 )( crit
d
crit NN =H

  )( crit
d NN ≠H

 

 

 

 

 

 

 

 

 

 

Figure 3.1

 

3.7 Two dimensional 

In the two dimensional (2D) settings
case, (see Appendix A.5). 

For the Plane Strain case the solution 
previously derived.  

3.7.1 Plane stress 

3.7.1.1 Critical angle 

3.7.1.1.1 Non-associated case 
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)(
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=θ=N  (3.119) 

Using the property cos( , we obtain: 1cos2)2 2 −= AA
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21

ε−ε
ε+ε−

=θ  (3.120) 

Notice that  is the angle where the Mohr’s circle intercept the axis of the shear 
deformation (see Figure 3.17). Figure 3.18 shows how to obtain the critical angles 
schematically. 
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Figure 3.17: Mohr’s circle – 2D isotropic damage model (associated case). 
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Figure 3.18: Critical angle – 2D Damage case. 

 

3.7.1.2 Critical hardening modulus -   critH

3.7.1.2.1 Non-associated case (n m≠ ) 
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Plasticity 
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In this section, we present some examples of the critical angle computation as well as 
the critical hardening modulus. Visualizations of functions  and Q(  are presented 
too.  

)(NZ )N

A.1.1 Simple traction  

Consider one finite element, as shown in Figure A.1, constituted by a material whose 
behavior obeys the isotropic damage model described in chapter 2 and has the following 
material properties: , 0.0=λ 00.10000=µ . Displacement control is applied until a certain 
pseudo-time at which the strain state is the one described in Figure A.1. 
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Figure A.1: Simple traction-strain state. 

 In this particular case, which can be regarded as a 2D case, the critical angle is 
, which was obtained by using equation (3.118). For the stress state considered, we 

have the following values for the variables involved in the damage model: 
º0=θcrit

0.0=d , , 
 and . 
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31060710678118 −×.7=r 0138889.0−=dH

 Sweeping the range of variations 0 º180≤α≤  and 0 , as defined in Figure 

3.3, we can plot the function 
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, see Figure A.2. One can verify that Q(  reaches a 

minimum for  or 

)N

º0=θcrit θcrit . 

 

  0N  
2 = º0=

180=

 
eQ

Q( )N  

 

 N  01 =

 θ  

 ºθ  

 13 =N   03 =N  

 2D representation 

 N  03 =

 

 

 

 

 

 

 

 

 

Figure A.2: Simple traction – surface 
eQ

Q( )N  



3 Material Bifurcation 93

A.1.2 Triaxial case  

 Consider the finite element used in the preceding example with the following material 
properties: 20000=E  and 2.0=ν . In this case, the load is applied in two stages in order to 
simulate a triaxial state, see Figure A.3. 
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A.1.3 Drucker-Prager – Non-associated case  

This is a example intended to simulate a Drucker-Prager model as described in section 
3.6.2.2.1. The following data are assumed: 

 Material properties: 10000=E , 2.0=ν ; 

 Stress state: ; 
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 standardize and Figure 
A.8 the localization ellipses corresponding to the solutions 1− ,  and 1  which 
intercept the Mohr’s circles defined by 

32 − 2−

31 σ−σ , 32 σ−σ  and 21 σ−σ , respectively. 

 

 

 

80  º

N  02 =
 N  1=

N  03 =

N  03 =

 01 =N  
180  º

 0  º

 α  
φ̂  

eQ
 Q( )N  

 

 

 

 

 

 

 0

 

 

 

 

ˆ

º

º

º

0=

3 =

13 =
02 =

= N  
1

 N  N  

 N  0

 
3

 180  

180  

0  

α  
 φ  

  )(NZ

 Surface Q(NSurface  )(NZ
 

 

Figure A.7: Surfaces  and )(NZ eQQ( )N - Drucker-Prager Case

 

 

 

3

eQ)  

. 
 
 1
 

 

 

 

 

 

 N
 



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 96 

 

 

4.5 .10 4 4 .10 4 3.5 .10 4 3 .10 4 2.5 .10 4 2 .10 4 1.5 .10 4 1 .10 4 5 .10 5 0 5 .10 5 1 .10 4 1.5 .10 4

2 .10 4

1.5 .10 4

1 .10 4

5 .10 5

5 .10 5

1 .10 4

1.5 .10 4

2 .10 4

 

2σ3σ

13

23

12

1σ

 
2
γ  

 H  Mohr’s circle 

 H  

 H  

      
  ε  N

Figure A.8: Mohr’s circle and localization ellipse – Drucker-Prager Case. 

 

 

 

 

 



4 BVP Discretization and Implementation Element 
Method 

 

BVP Discretization
and Implementation

 4
 

 

 

 

 

 

 

 

 

 

 

Courant, R. (1943)  

 

 

 

 

4.1 Introduction  

 In this chapter we present a 3D Finite Element formulation devised to solve BVP’s of 
continua undergoing discontinuities. Such problems involve localization phenomena. To 
use the FEM for solving localization problems, some techniques of enriching the standard 
finite element formulation are required. When discontinuities are embedded into a standard 
finite element, this can be done in the strain or in the displacement field. Jirásek(1998) 
presented a table summarizing the use of these techniques (see Table 4.1). 

 

 

Table 4.1: Selected approaches dealing with embedded discontinuities (Jirásek,1998). 
Ortiz, Leroy and Needleman 1987 finite element for localization failure 
Belytschko, Fish and Engelmann 1988 embedded localization zone 
Dvorkin, Cuitiño and Gioia 1990 embedded localization line 
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Klisinki, Runesson and Sture 1991 inner softening band 

Lotfi and Shing 1992 embedded crack 
Simo, Oliver and Armero 1993 element with strong discontinuity 
Simo and Oliver 1994 element with strong discontinuity 
Armero and Garikipati 1995 element with strong discontinuity 
Oliver 1996 element with strong discontinuity 
Larsson and Runesson 1993 discontinuous displacement approximation 

Larsson, Runesson and Åkesson 1995 embedded cohesive crack 

Larsson and Runesson 1996 embedded localization band 

Berends 1996 EAS element for fracture 
Berends, Sluys and de Borst 1997 discontinuous modeling of mode-I failure 
Sluys 1997 discontinuous modeling of shear banding 
Sluys and Berends 1998 embedded discontinuity element 

 

4.2 Governing equations 

 Consider a nonlinear solid (see Figure 4.1) that occupies a domain B  in   with 
boundary . In this body B  with volume V  the following forces are acting: - body 
forces; - traction forces. 

3R
bB∂

*t

 We can summarize the governing equations of a BVP for the quasi-static problem with 
a discontinuity as (see Chapter 2): 

 

BOUNDARY VALUE PROBLEM – BVP – With discontinuity 

Equilibrium  equation 0=+⋅ )()( xbxσ∇   SB \ ∈∀ x  (4.1) 

Constitutive equation ))(( xεσ Σ=  B∈∀ x  (4.2) 

Kinematic equation ( )∇∇∇ ⊗+⊗== uuuε
2
1sym  B∈∀ x  (4.3) 

Outer traction continuity +−+− ⋅⋅ =⇔= σσ NN    TT  S∈∀ x  (4.4) 

Essential boundary conditions )(* xuu =  Bu∂∈∀ x  (4.5) 

Natural boundary conditions σx ⋅== υtt )(*  Bσx ∂∈∀  (4.6) 

Inner traction continuity SS σσ ⋅⋅ =⇔= ++ NN    TT  S∈∀ x  (4.7) 
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Figure 4.1: Domain of the body . B
 

4.2.1 Redefinition of the kinematics 

 In order to devise a convenient format for the fields that are going to be discretized, a 
redefinition of the kinematics presented in Chapter 3 will be performed. 

 The new expression of the discontinuous displacement field reads: 

[ ][ ] ),()(),(),( ttt xxxx uuu &&& SM+=  (4.8)

Function SM  satisfies the following conditions (see Figure 4.2): 

i. The jump across S  is 1]][[ =SM ; 

ii. The support of  is B . SM h

The function M  is defined as: S

)()()( xxx ϕ−= SS HM  (4.9)

where S  is the Heaviside function and H ϕ  is a continuous function which is completely 
arbitrary except for the following two conditions: 
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 The corresponding enhanced strain field reads: 
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where  is defined as: h
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and )(xSχ  stands for the collocation function defined as: 
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4.3 Variational formulation 

 In light of the governing equations above, we consider the following variational 
problem: 

Given: 

[ ] [ ]{ }

[ ]{ }0=∈=
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∂
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u
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V
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LH uM

(4.14)

Find: 

[ ][ ]uuuu SV M+=∈ η  (4.15)

Such that: 

0* 0   )( ηηηbηηεσ V
BBB

∈∀=−− ∫∫∫
σ∂

⋅⋅ AVVsym ddd t: ∇  (4.16)

 

 By using standard arguments it can be shown that the strong form of Equation (4.16) 
are the equations (4.1), (4.4), and (4.6). Equations (4.2) and (4.3) are assumed to be 
imposed in strong form. 

 On the other hand, the inner traction continuity (4.7) has to be imposed independently 
of the variational statement (4.16). This can be done in weak form through: 

( ) )(0   2\ SSBS L∈∀=− ⋅⋅∫ ησση VdN  (4.17)
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4.4 Spatial discretization and solution 

 We begin by discretizing the domain  into elemental subdomains B eB  (see Figure 
4.3) such that: 

U
eln

e
e

1=

≈ BB  (4.18) 

where eB  is the closure of an individual element. 

 

 

 

 

 

 

 

 

Figure 4.3: Discretization of the domain B  by a finite element mesh. 
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After discretization, the independent variable  (displacement) is interpolated by 
functions of compatible order within each element, in terms of values to be determined at a 
set of nodal points. With the objective of developing the equations for these nodal point 
unknowns, an individual element may be separated from the assembled system. Inside each 
finite element, a scalar or a vector function is approximated by a linear combination of 
shape functions associated with its nodes. Within an element 

u

eB  with  nodes, we 
define the reference geometry 

noden
ex  and displacement field u  over a typical element as: e

∑∑
==

==
nodenode n

i
ii

e
n

i
ii

e ;
11

ˆ aNN uxx  (4.19) 

where  is the matrix containing the shape functions and  is the nodal displacement.  
In general 

iN ia

ii NN = . The strain field1 is given by: 

{ } eeeeee
sym aa Buuε ==== NL ∇∇  (4.20) 

                                                 
1 Here we are using the Voigt notation, see Appendix A. 
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where the operator  and the strain interpolation matrix B  are given by: L
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being  the node number. i

4.4.1 Approximation of the regular part of the displacement 
field 

 In this section we deal with two types of finite elements: the tetrahedron (4 nodes 
element with linear interpolation of the displacement field) and the hexahedron (8 nodes 
element). 

4.4.1.1 Tetrahedral finite element  

The first-order tetrahedral finite element in the global ( ) and local (321 ,, xxx ζηξ ,, ) 
coordinate systems are shown in Figure 4.4. 
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Figure 4.4: First-order tetrahedral finite element in global and local coordinates. 
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 The displacement field in the finite element can be expressed by its nodal 
displacements: 
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Hence, the shape function of node i  of the tetrahedron e  is defined as follows: 
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4.4.1.2 Hexahedral finite element 

The generalization of a 3D quadrilateral is a hexahedron, commonly known in finite 
element literature as “brick”, Felippa (2002) (see Figure 4.5).  

 

 

 

 

 

 
 
 

 
 

Figure 4.5: First-order hexahedral nodal finite element in global and local coordinates. 
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The displacement field is given by: 

∑∑∑
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8

1

8

1

8

1

;;
i

ii
i

ii
i

ii wwvvuu NNN  (4.25)

The nodal shape function in local coordinates ( ζηξ ,, ) for the hexahedral element in 
Figure 4.5 can be written as: 

( )( )( iiii ζζ+ηη+ξξ+= 1 1 1
8
1N )  (4.26)

where ( iii ζηξ ,, ) are the local coordinates of node . i

 

4.4.2 Approximating displacement field in an enhanced 
element 

To capture the displacement jump [ ][ ]u  an additional node to the standard finite 
element is necessary (see Figure 4.6 and Figure 4.7).  
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Figure 4.6: Discontinuity in displacement - Jump.  
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Figure 4.7: Enhanced element - Nodal displacement with additional node.

 

Motivated by the kinematics of equation (4.11) the following discrete displacem
is proposed:  
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where  contains the shape functions corresponding to the regular underlying
and  is the unit jump function (Heaviside function) s
Figure 4.8 for the two-dimensional (2D) case and  represents the elemental disp
jump in global coordinates. In Figure 4.8 the discontinuity line  divides the elem
two subdomains:  and . Observe that the normal N  always points towards 
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In equation (4.27),  is given by the combination of the shape function of th
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4.4.3 Approximation of the enhanced strain field 

 From the displacement field in equation (4.27) the corresponding (rate of) strain field 
reads: 

{ e
Enhanced

ee

Regular

tttt αax &&
321

&&& GxBxεεxε +=+= ),(),(~),(),( }{}{}{  (4.29) 

where the first term corresponds to the strains provided by the regular underlying element 
with nodal degrees of freedom  and deformation matrix B . The second term 
corresponds to a strain enhancement in terms of the elemental displacement jump α  and 
the deformation matrix  that contains the unbounded (regularized) Dirac delta 
distribution , see equation (4.12), emerging from the spatial derivation of the step 
function H  in equation  (4.27) namely,  
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Now, attention must be paid to the inner traction continuity condition stated in 
equation (4.7). The traction vector  in Voigt notation is defined as follows: T
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{ }σσ TVoigt NTT = →= ⋅N  
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thus 
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Figure 4.10: Traction vector continuity – CST finite element.  

 

 On an element by element basis the inner traction continuity equation (4.34) is 
imposed in weak form from equation (4.17) resulting in the additional set of equations: 
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and  being the area of  (see Figure 4.6). Substitution of equation (4.36) into equation 
(4.35), leads to: 
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which can be rewritten as:  

{ } { }
444 3444 21444 3444 21

ee

ee

e

e

onaverage

hT

e

onaverage

hT

e
V

V
A

A

SB

SB

S

S

\    

\
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(4.38) 

In 2D cases the area  becomes the length l  of L  and the volume becomes the area 
of the finite element (see Figure 4.11). 

eA e e

Observe that the matrix  appearing in equation (4.36) fulfills the following condition: *
eG

0=∫ V
e

e d
B

*G  (4.39) 

It is possible to check that the spaces generated by the regular strain ε  and the enhanced 
strains ε~ , denoted by V  and V  respectively, are such that: hˆ h~

{ }  ~ˆ 0=∩ hh VV  (4.40) 

Conditions (4.39) and (4.40) are sufficient to guarantee the consistency and stability 
requirements for the proposed assumed strain approximation, Simo&Rifai(1990). 
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Figure 4.11: Discontinuity CST finite element.  
 

4.4.4 System of algebraic equations 

The problem to be discretized has as enhanced weak form, equations (4.16) and (4.17): 
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 Introducing the finite element interpolation in the weak equation (4.41) yields: 
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where  is the jump in the local coordinates (see Figure 4.12).  [ ][ ] [ ][ ] [ ][ ] [ ][ ]
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Figure 4.12: Displacement jump in local coordinates.  
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with  being the transformation matrix from global to local coordinates, see 

Appendix A.4. 
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Thus we can rewrite equation (4.49) as: 
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(4.50)

with  as defined in the expression (4.28) and  eϕ
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4.4.5 Numerical integration 

The numerical integral is carried out by the use of a numerical quadrature procedure. 
Expressing a generalized definite integral by 
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the numerical quadrature formula is given by, 
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where the weighting coefficients W  and the abscissas (rqp WW ˆ,ˆ,ˆ
rqp ζηξ ,, ) depend on the 

particular quadrature used. For more details about numerical integration see 
Zienkiewics&Taylor (1996a and 1996b). 

 Consideration of the regularized elemental discontinuity band  suggests a specific 
numerical integration rule for the described elements. Inspection of the resulting 
formulation in sections 4.4.3 and 4.4.4, and in view of regularization parameter k , equation 
(4.12) and regularized softening parameter , we have that strain is piecewise constant in 
both the domain B  and domain  (see Figure 4.13). Thus, after examining the set 
of equations to solve, we conclude that only one integration point is needed in each of 
those domains, whose weights are equal to the corresponding area according to the 
following table: 

k
eB

H
k
e

k
ee BB \

 

Point Domain Weight 

1 k
ee BB \  measure [ ] ee kl−B  

2 k
eB  ekl  

where measure [  stands for the area of . No specific location for the integration  ]eB eB

points, at the corresponding domain, needs to be specified. 
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Figure 4.13: Discontinuity surface and tetrahedron intersection.  

           

 

 

 

 

 

 

 

 

 

 

 

 
                 

(a) Gauss Point in the Tetrahedron (b) Gauss Point in the Hexahedron  

Figure 4.14: Additional Gauss Point-3D. 
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4.5 Stability of the global solution 

 In order to circumvent the possibility of a loss of uniqueness due to arrest and 
activation of a discontinuity at some elements, the following modification to equation 
(4.44) is proposed (Samaniego 2003) 

VA
ee

T
ee d d ∫∫ +η=η

BS

σG*
eee  ),,( αααar &&&  (4.55) 

where η  is the damping-like parameter. 

 Equation (4.55) can be interpreted as the residual forces vector of (4.43) plus a 
damping-like term intended to regularize the discrete BVP. 

 Applying a backward-Euler scheme for integration in time, equation (4.55) can be 
approximated by: 

VA
t

e

T
e

t
e

tt
ett d d ∫∫ +

∆
−

η=
∆+

∆+
η

BS

σG* 
αα

r&  (4.56) 

 The corresponding tangent stiffness matrix can be shown to have the following form: 

A
t

e

ee d ˆ 1
∆
η

+= ∫αααα

S

KK  (4.57) 

Thus, only sub matrix  has to be modified by the damping term. e
ααK

 

 

Remark 4.1: The additional damping acts exclusively within the elements which 
contain the discontinuity surface.  
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4.6 Static condensation  

The static condensation is employed to reduce the number of degrees of freedom per 
element and perform part of the solution of the total finite element system equilibrium 
equations prior to assembling the elemental matrices. 

Consider a finite element with 4 nodes (see Figure 4.15) where  are the forces in the 
nodes 1, 2, 3;  are the forces in the internal node 4; δ  are the displacements in the 
nodes 1, 2, 3 and δ  are the displacements in the internal node 4.  
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Figure 4.15: Static condensation. 

ment level we can write: 

{ } [ ]{ }eee δ K=f  (4.58)

 can split (4.58) in the form: 
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 (4.59)

em above can be rewritten as: 
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δδδδ

δδ

KKKK

KK

ff

f
1  (4.60)

ting the second equation from (4.60) into the first equation we can obtain the 
g system of equations: 
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 (4.61) 

 

4.6.1 Newton-Raphson scheme for the statically condensed 
version  

In this section we describe the Newton-Raphson method with static condensation, 
Armero(1999b). Within the framework of the finite element method, equations (4.42), 
(4.43) can be transformed into a (global) force equilibrium equation that has to be fulfilled 
at every time step, [ (see Figure 4.16), of the discretized time domain. To attain this 
objective we have to define a residual forces vector, which has to be cancelled by means of 
an iterative procedure at each time step: 

]ttt ∆+,

0F =−
−∆+∆+ )1(* it

int
tt

ext
tt F  (4.62) 

where the vector t  stores the externally applied nodal loads and t
ext

t F∆+ )1(* −∆+ it
int

tF  is the 
vector of nodal point forces that are equivalent to the element stresses in the iteration 

. Knowing the following database: )1( −it

Global database: δ  )()1()( it
pe
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pe
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pe δδ ∆+= −

Element database: ; ; ;  )1( −it
ieδ

)1( −it
ie
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eK ip
it

e
)1( −K

we can obtain )(* it
intF  through the following steps: 

1. From the displacement in the node of the element, (element level) we can 

obtain the displacement in the internal node, δ : 
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2. From the vector of nodal point displacement we can obtain the vector of nodal 
internal forces: 
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B
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σε
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δ GGB C*,,  (4.64) 

where  are the matrices defined in the previous section and  is the matrix with 
elastic properties. 

*,, GGB C
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3. Once we have obtained the vector of nodal internal forces  in the current 

iteration , we can obtain the vector of condensed forces  as: 

f
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ef
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epi
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e
it )(1)()()()(

fff *e
−−= KK  (4.65)

thus, 

 

)()(*            
it

e
ttit

int
*f∆+=F  (4.66)
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 Then, we calculate the residue )(* it
R∆  as: 
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nt assembly operator and n  is the number of finite 

s. 

el

ent increment: 

)(*)1( itit
pe R∆=+δ  (4.68)

ment : 
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pe δδ  

nvergence is reached  

1+  go to step 1. 
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Figure 4.16: Illustration of Newton-Raphson iteration. 
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4.7 Algorithm for tracking the discontinuity 
path 

 In Chapter 3, we saw how to determine the direction of the critical direction which can 
be regarded as the discontinuity path (failure surface) at a local level (Gauss point). 
However, it is necessary to determine the discontinuity path for the whole body based on 
the information of the Gauss points. In the following sections we describe two algorithms 
to obtain the discontinuity line L  (failure line) for the 2D case and the discontinuity 
surface S  (failure surface) for the 3D case. 

 It is necessary to determine the discontinuity path because we need to know a priori the 
domains  and  (see Figure 4.17) to guarantee an appropriate kinematics, since the 
numerical counterpart of the SDA requires a special function to approximate the 
displacement field, as we outlined in section 4.4.2. 
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Figure 4.17: Discontinuity lines L  and L  in 2D case and discontinuity surface 
 in a 3D case. 

)1( )2(

S

 

In the following sections we present two techniques used in this work to track the 
discontinuity evolution:  

 

 Element-by-Element Tracking;  

 Overall Tracking.  
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4.7.1 Element-by-element tracking 

2D Case 

In this case the discontinuity line  (which must be continuous) is composed of 
segments  defined in each finite element by the bifurcation analysis, thus we can define 

 as:  

L
eL

L

e

N

e

LL
J

U
1=

=  (4.69) 

where JN  is the number of elements which are intersected by the discontinuity line  at 
time t .  Thus we can define a sub set J  as: 

L

{ }heNe BBJ J ⊂∈=    ,...3,2,1  :  (4.70) 

 

By “continuous failure line” we mean a discontinuity path which is continuous across 
element boundaries (see Figure 4.18(a)) and by “discontinuous failure line” we are referring to 
the case illustrated in Figure 4.18(b), the same nomenclature will be used for the 
discontinuity surface in the 3D case. 
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 (a) Continuous failure line (b) Discontinuous failure line  

 

Figure 4.18: Continuous/discontinuous failure line. 
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Algorithm for determining the discontinuity line L  

Before we apply this technique we need to know a priori the following data (see Figure 
4.19):  

 N  for all the finite elements of the domain;  crit

 An element must be chosen as a seed. This element ( SE ) can be chosen to be 
the first one that bifurcates. Starting from this element the discontinuity line, 

, will spread in one of the critical directions N ; 1L S
crit

 d S

t
- one of critical directions in the seed element SE ; 

 P - point of departure of the track on a side of the seed element I
S

SE ; 

 elements which have already bifurcated. 
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Figure 4.19: Element-by-element tracking – Initial data. 

 

The algorithm is as follows: 

1. Compute the point  for element  and identify the adjacent element 
on the side where the point  is placed. In Figure 4.19 we have an 
example where  for the seed element 

O
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O
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e
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eP
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eP SE ; 

2. Choose, based on some criterion, which direction will be taken for the 
next element , e )(

1
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 or )(

2
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t
. This criterion, for instance, could be the 

smaller angle between )1( −ed
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. For example in Figure 
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d Ee d

tt
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3. Repeat the same process for the next element )1( +e  until no more 
adjacent elements are found, i.e. when the boundary of the domain is 
reached (Figure 4.21). 
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Figure 4.20: Element-by-element tracking – propagating. 
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bifurcation is reached for some element then the direction will not change anymore for that 
element. 

The tracking can start from any element inside of the body. It is not necessary for it to 
be on the boundary as shown in the example above.  

 

3D Case 

The same strategy described above was implemented for the 3D case where a seed 
element SE  serves as point of departure. Thus, we can define a plane iS  and find the 
intersections in the faces of the finite element. Figure 4.22 shows the possible intersections 
between a plane and a regular hexahedron, these intersections serve as points to propagate 
the track for the adjacent elements. Thus, the discontinuity surface S  is compounded of 
discontinuity segments eS , i.e.: 

e

N

e

SS
J

U
1=

=  (4.71)

 

 

 

 

 

 

 

 

 

 

Plane-Tetrahedron 

Plane-Hexahedron 

 

Figure 4.22: Possibilities of intersection between planes and regular hexahedron and 
tetrahedrons. 

 
 In the 3D propagation of the discontinuity surface we have a front of planes which are 
spreading in the domain. Starting from a parent element (seed element) we will form a 
ramification of elements which contains the segments of the discontinuity surface eS . A 
scheme of the methodology employed to define the discontinuity surface is shown in 
Figure 4.23. 
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Figure 4.23: 3D propagation algorithm of the element-by-element tracking. 

 
To define a plane we need a point and a normal to this plane or two lines in this plane. 

But we have as input a line which was previously defined from the adjacent element and 
the normal (from bifurcation analysis), thus we have a lot of choices to establish a new 
plane. If we adopt the line  (see Figure 4.24) we cannot use the normal obtained by 
bifurcation analysis, we are limited to a set of normals as shown in Figure 4.24.  
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Figure 4.24: Propagating of the discontinuity surface. 

 

Another criterion could be to choose the normal obtained by bifurcation analysis and a 
point in the line l  to define a new plane. In this case in Figure 4.25 it is illustrated how 1
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difficult is to obtain a continuous failure surface using as an example two finite elements, 
where the finite element e  has connectivities 1-2-4-5 and the finite element 1= 2=e  has 
connectivities 2-3-4-5. Once the plane 1S  and the intersections in the faces of the finite 
element  are defined, we can build up a new plane in the adjacent element 1=e 2=e  
having as input the normal N  (from bifurcation analysis) to the plane 2S

2S  and the point 
(Figure 4.25), then we could arrive to the following situation: C
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We see that there exists an incompatibility with node number 2 which for element  
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Figure 4.25: Propagating of the discontinuity surface. 

 

 

Remark 4.2: The element-by-element tracking strategy is quite simple, robust and 
reliable when dealing with 2D problems with a single discontinuity line and it has 
been successfully used in the past by Manzoli(1998), Oliver(1995a,b). Unfortunately, 
for the three dimensional case, this methodology is not efficient. Using the Element-
by-Element Tracking the continuity of the discontinuity surface S  (3D case) is too 
difficult to achieve.  
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4.7.2 Overall tracking 

A continuous failure surface is needed to establish a well conditioned problem. For this 
purpose a new method has been proposed by Oliver et al. (2002) to obtain a continuous 
failure surface. This idea starts from the principle that from the normal (N ) obtained from 
the bifurcation analysis a family of curves (Level curves) in the 2D case or a family of 
surfaces (Level Surfaces) in 3D enveloping the propagation direction case can be 
constructed. The following analogy with the heat conduction problem (heat conduction-like 
problems) to obtain that family of surfaces Φ  was presented in Oliver et al. (2002). This 
methodology consists of the following steps: 

 

 Trace at once all the possible discontinuity paths in the time . Since, by 
construction, at every point 

t
x  of the discontinuity paths S , such path has the 

property that there exits a family of critical direction . Therefore, the 
construction of the envelops implicitly supplies all the possible discontinuity 
surfaces at time t . In 2D case we can illustrate as shown in Figure 4.26 where 
three discontinuities lines, L ,  and  (

j

critN

1 2L 3L { }3,2,1∈j ) can be seen. These 
envelops can be described by a function )(xΦ  whose level contours 
( )(xΦ =constant) define all the possible discontinuity surfaces as : 

 

{ }ref
jj Φ=Φ∈= )(;  : xx BS  (4.73) 

 

for all the meaningful values of  and for all the material points, ref
jΦ x , fulfilling 

the propagation condition. In the following section a methodology for the 
construction of such a family is provided were )(xΦ  stands for the temperature 
field that is the solution of the stationary heat conduction problem and 
therefore,  are segments of the isothermal surfaces. In the context of a finite 

element analysis, this algorithm returns the nodal temperature values Φ .  
jS

i

 

 Identify the active discontinuity surfaces and their corresponding temperature 
level. For every seed element it is considered a reference discontinuity path in a 
seed point which belongs to the seed element. Consequently, the corresponding 
temperature level is the temperature for this seed point: 

∑
=

Φ=Φ
nodesn

i
ii

ref
j

1

N  (4.74) 

where  stands for all the number of nodes of the element (i.e.: in 3D case 
 for linear tetrahedrons and 

nodesn
4=n 8=n  for hexahedrons. Then, temperatures 

 identify the corresponding discontinuity surface through 
equations (4.73). 

d
ref
j    Φ nj ,..1=
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Notice that no information from the neighbour element is required in the 
preceding algorithm. This fact confers to the algorithm some interesting locality 
character that can be exploited for implementation purposes. 

 

4.7.2.1 Heat conduction-like problem 

Let ),( txN  be a family of unit vectors, defined at every point in the domain  at a 
given time t , determining the direction normal to the plane of propagation of the 
discontinuity. Then let S  and 

B

),( tx ),( txT  be any couple of unit vector orthogonal to N , 
so that: 

 

0== ⋅⋅ NTNS  (4.76) 

thus defining the plane (tangent to them) of propagation of the discontinuity. The family of 
surfaces, enveloping both vectors,  and , can be described by a scalar (temperature like) 
function 

S T
)(xΦ  such that the isothermal surfaces: 
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for all meaningful values of Φ  are tangent at each point ref
j B∈x  to vectors  and T . 
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Solutions of problem (4.78) are also solutions of the following heat conduction problem: 
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where  is the outward normal to the boundary  and ∂  and  υ B∂ Bq BΦ∂

)( BBB ∂=∂ Φ∪q ∂ , stand, respectively, for the parts of the boundary ∂  where the 

Neumann and Dirichlet conditions are prescribed.  is an anisotropic conductivity 
tensor and given by: 
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4.7.2.2 Finite element formulation 

 The finite element discretization of problem (4.79) is as follows: 

Given a domain B  discretized in  finite elements and  nodes for each finite 
element where the function 

eln nodesn
)(xΦ  can be approximated by standard shape functions , as:  N
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The stiffness matrix reads 
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and the solution consists in solving the problem: 
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 (4.84)

The temperature has to be prescribed, at least, at two points in order to obtain a 
meaningful solution of equations (4.84). The values of the prescribed temperatures are 
irrelevant for the goal of the model, Oliver et al.(2002). 
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Now the algorithm is applied to the case of a normal field ),( txN  oriented in the radial 
direction of a cube (see Figure 4.27) with the origin at the vertex O . That normal field is 
then: 

{ }
T

321 ,, )(

)(

NNN=

=

x

x
x

x

N

N
 (4.85) 

from which a couple of tangent vectors,  and , can be immediately extracted as: S T

 

{ }
{ }

T

T

13
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x

x

T
S  (4.86) 

 

In Figure 4.27(a) the finite element mesh considered, consisting of 1489 tetrahedra, is 
presented. In Figure 4.27(b) the isothermal surfaces are plotted together with the 
prescribed temperatures. Notice that, as expected, the envelopes are spherical surfaces 
centered at vertex O . 
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Figure 4.27: Level surfaces (3D case). 

 

 Once the value of the function Φ  is obtained in the nodes and the value of the 
reference temperature  known, we are able to determine which nodes are in domain 

 and which in domain B . Thus the node  will be in  if: 
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Figure 4.28: Isothermal surface in a tetrahedral finite element. 
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4.7.3 Flowchart of the coupled problem 

 Figure 4.29 shows the strategy for the entire analysis of the mechanical problem. The 
first phase of the process requires mechanical analysis and the second requires thermal-like 
analysis. 

Input database 
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Figure 4.29: Flowchart of coupled problem. 
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4.7.4 Some examples of the failure surface 

In this section we show some examples to describe the efficiency of the method used in 
this work to obtain a continuous failure surface.  

4.7.4.1 Anchorage structure 

This example was simulated numerically by Rots(1998) and de Borst (1986) using 2D 
axi-symmetric finite elements. The geometry used is shown in Figure 4.30 and Figure 4.31. 
The structure consists of a steel plate embedded in a massive concrete block. The plate is 
pulled on of the concrete by a vertical load F  which is applied via a anchor bolt. 

 The material parameters taken were , Poisson’s ratio , tensile 
strength  and fracture energy 

2/ 30000 mmNE =
Nf / 1.0

2.0=ν
2/ 5.2 mmNfct = mm=G . An exponential softening 

law was used. The 3D discretized mesh has 12029 tetrahedrons and 2980 nodes. Figure 
4.32 shows the continuous failure surface which was obtained using the Overall Tracking 
strategy. 
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Figure 4.30: Detail of the anchorage structure. 
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Figure 4.31: Detail of the anchorage structure – dimensions in . mm

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Continuous failure surface for the anchorage structure. 
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4.7.4.2 Double-notched shear beam  

This test was performed by Bocca et al. (1990). The geometrical features and boundary 
conditions are shown in Figure 4.33. The mechanical properties are: , 
Poisson’s ratio ν , tensile strength  and fracture energy 

. Figure 4.34 shows the normal vector field, and so does the Figure 4.35 but 
only the elements intersected by the discontinuity surfaces are considered. One must notice 
that for the elements intersected by the surface  the normal points toward  and 
for the elements intersected by surface S  the normal points toward . In Figure 
4.36(b) we show part of the beam without the elements intersected by the discontinuity 
surfaces so that it can compared with the crack pattern obtained by Bocca et al. (1990) (see 
Figure 4.36(a)).  
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Figure 4.33: Four point shear specimen (dimensions in cm ). 
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Figure 4.34: Normal vector field. 
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Figure 4.35: Elements intersected by failure surfaces. 
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Figure 4.36: Four point shear specimen – initial failure surface. 
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4.7.4.3 Torsion problem 

This example consist of the propagation of the crack in a hollow cylindrical pipe which 
is loaded by torsional moments at its ends. The pipe has a length of 63 mm and inner and 
outer radii of 8 and 12mm, respectively. In this example the material properties considered 
are: , ,  and  and the 3D discretized mesh has 
5670 tetrahedrons. Figure 4.38 shows the continuous failure surface. 

71088.2 ×=E 18.0=ν 0.1=fG 6108.2 ×=ctf
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Figure 4.37: Crack pattern for a hollow cylindrical pipe loaded by torsional moment. 

 

 

 

 

 

 

 

 

 

 
  

  

 

 

Figure 4.38: Torsion problem – failure surface. 
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4.7.4.4 Brazilian test 

Tensile strength of a material is a measure of its ability to resist uniaxial tensile loads 
without yielding or fracture. A direct-pull test is difficult to apply to rocks and in many 
cases some type of indirect test is employed to determine tensile strength. 

A concrete cylinder of length mmL 300=  with diameter mmD 150= , as shown in Figure 
4.39, subjected to a line spread load. Material properties are specified as: compressive 
strength , Young’s modulus MPafc 32=′ GPaE 4.32= , and Poisson’s ratio 2.0=ν , 
Fracture energy G . The Brazilian Test is often used to predict the direct tensile 
strength of concrete as given by 

mN /115f =

LDPf ultct π= /2 .  

Figure 4.40(a) shows the family of surfaces normal to the principal direction and Figure 
4.40(a) shows the plane formed by one of the elements of this family of surfaces. 
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Figure 4.39: Brazilian test – Geometry (dimensions in millimeters). 
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Figure 4.40: Brazilian test. 
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5 Numerical Simulation 

 

 

 

 

 

 

 

 

Representative 
Numerical Simulations

 5

 

“You do ill if you praise, but worse if you censure, 
what you do not understand.” 

 Leonardo da Vinci 
 (1452-1519)  

 

 

 

5.1 Introduction 

 In this chapter some examples to illustrate the effectiveness of the method described 
in the previous chapters are presented. All the examples described here were simulated 
using the Strong Discontinuity Approach together with a damage model to represent the 
non-linear behavior of the material. 

5.1.1 Tools 

 An ordinary FEM analysis tool consists of three parts (a): pre-process (e.g. mesh 
generator), main-process (i.e. FEM-code), and post-process (e.g. visualizer, etc). The pre-
process and post-process were performed in the program GID, which was developed in 
CIMNE-UPC. 

 All the implementations in this work were done in COMET (Coupled Mechanical and 
Thermal Analysis) [Cervera et al.(2001)] developed in CIMNE-UPC. It is a non-linear finite 
element program which offers the following tools: 

 Initial stiffness, full Newton-Raphson and modified Newton-Raphson methods for 
solving the nonlinear problem; 

 Line search; 
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 Convergence accelerators: Secant-Newton (1 or 2 parameters), and BFGS; 

 Arc-length and displacement control; 

 Automatic load incrementation. 

Other particular features are: 

 The integration may be performed by Gauss, Lobatto or Irons rules; 

 The system of linear equations can be solved by a Direct solver (using a Skyline, 
Banded or Sparse storage scheme), by Preconditioned conjugated gradient 
iterative solver, or by GMRES iterative solver. 

5.2 The importance of the exact capture of the 
bifurcation pseudo-time 

As seen in Chapter 3, for a given stress state, the critical values of the normal N  and 
of the hardening modulus  can be obtained through bifurcation analysis. The 
bifurcation analysis, within the context of the finite element method, is performed at the 
gauss point level and has a local character, i.e., the bifurcation analysis does not give us 
information about the propagation of the fissure on a global level.  

crit

critH

With regard to propagation, the methodology employed in the numerical model 
considered in this work is such that, when the bifurcation condition is reached, the critical 
angle is frozen at the element level. Thus, the importance of an accurate determination of 
the critical angle is clear. A significantly biased critical angle can be computed if the steps 
used in the loading process are too big (see Figure 5.1).  
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Figure 5.1: stress-strain – load steps. 
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To illustrate this problem, consider a two-dimensional example (a biaxial test), which 
has two loading stages (see Figure 5.2). In this example the isotropic damage model 
described in Chapter 2 was adopted, where n εm == . 
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Figure 5.2: Biaxial test. 

 

In the second loading stage, when the bifurcation condition is reached, the strain state 
is schematically shown in Figure 5.3 and the state of the variables of the damage model is 

 and . Using equation (3.118), one can obtain the 
value of the critical angle: 

0466785267.0=d 823660074172508.0=r
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Figure 5.3: Strain state of the biaxial case. 

 

 

 



A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 146 

We can sketch this specific strain state in the Mohr’s circle (see Figure 5.4). In the 
same figure we have plotted the localization ellipse for different values of N  to show 
that, for this specific strain state,  corresponds to the most external localization ellipse. 

)(θ
d
critH

Consider now the same example but with a different discretization of the loading 
process (pseudo-time discretization), which is more refined than the previous one. For this 
case, the first point when the bifurcation condition is reached, is characterized by the 
following strain state: , , with the damage model 
variables being , . At this strain state we can 
obtain the critical angle as: 

5
1 10583090909.4 −×=ε

51044523 −× .0=r

5
2 100.2 −×−=ε

220752.4=d 0070713821

º4486.33           tan
1

22 =θ⇒
ε
ε

−=θ critcrit  (5.2) 

In Figure 5.5 the standardized acoustic tensor eQQ  is shown in terms of the normal 
direction . In Figure 5.6 the strain Morh’s circle and its correspondent localization 
ellipses are constructed for the two discretizations of the loading process just considered. 
One can notice that there exists a difference of more than  for the critical angle between 
them. 
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Figure 5.4: Mohr’s circle and ellips
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Figure 5.5: Localization properties of isotropic damage model. 
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Figure 5.6: Mohr’s circle and localization ellipse. 

 

 Now consider the following example whose geometry and finit
shown in Figure 5.7. Force F  is applied as indicated in the same figure
material data because this example is only illustrative. We used the 
finite element mesh with different strategies for simulating the loadin
5.7(a) and (b) we are applying displacement control. 

 

 

 

 

 º45.33=crit

e element mesh are 
. We do not provide 
same geometry and 
g process. In Figure 
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(a) big steps 

 
(b) small steps 

 L  1
  2L

 F   F   F   F  

Figure 5.7: Discontinuity lines with distinct strategies. 

As described in Chapter 4, on the basis of the Gauss points information we can 
“track” the discontinuity line L . This “tracking” of the discontinuity line can change from 
step to step in the loading process. However, once the bifurcation criterion is satisfied in 
some element, this line does not change anymore for that element. Using the different 
loading strategies, described before, one can obtain distinct discontinuity lines as shown in 
Figure 5.7. The corresponding force vs. displacement curves are shown in Figure 5.8. Based 
on those figures, we can conclude that the resulting tracked line may be very sensitive to 
the discretization of the loading process adopted, due to the fact that an inaccurate 
capturing of the bifurcation pseudo-time can lead to non negligible errors in the global 
response. 
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Figure 5.8: Force vs. displacement curve. 
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5.3 Tension test 

5.3.1 Tension bar 

In this example the bar of Figure 5.9, in a uniaxial tension process, is analyzed to 
assess the mesh dependence of the results. A linear softening law was used. The geometry, 
the boundary conditions and the material properties of the tension bar are given in Figure 
5.9, where E  stands for the Young’s modulus, ν  stands for the Poisson’s ratio,  stands 
for the elastic strength and G  represents the fracture energy. The two meshes of 
tetrahedral finite elements, shown in Figure 5.10, were considered: a mesh of 267 elements 
(mesh 1) and a much finer mesh of 1137 elements (mesh 2). A mesh of hexahedral finite 
element (brick) with 132 elements (mesh 3) was also used (see Figure 5.11). 

ctf

f

In Figure 5.12 the load-displacement curves obtained for both meshes are presented. 
It can be checked that the results are the same (indistinguishable in the plots), this showing 
the mesh size objectivity of the results. 

 

18.0
0.1

0.0
20000

=
=

=ν
=

f

ctf

E

G

 100 

  

 δ  
 10 

 50 

 

 

 

 

 

 

Figure 5.9: Tension bar. 
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Figure 5.10: Meshes and localization bands (displacement contours) for the tension bar 
problem. 
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Figure 5.11: Meshes and localization bands for the tension bar problem with hexahedrons. 
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Figure 5.12: Load-displacement diagram for tension bar problem. 

 

 

 

  

 

 

 

 

 

Figure 5.13: The propagation of vector fields. 
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5.4 Three-point bending test 

 The classical three-point bending test reported by Petersson (1981) is now simulated. 
This test was employed in 1985 to determine the fracture energy of concrete. It is now 
accepted as RILEM recommendation. It deals with mode I fracture of non-reinforced 
concrete. The size of the specimens and the testing method are described in Figure 5.14 as 
well as the characterization of the concrete by the following parameters: fracture energy -

, tensile strength - , Young’s modulus -fG ctf E , Poisson’s ratio - . The density of the 

concrete was assumed to be . 

ν
3/ 2300 mkgconc =ρ

 The experiments data were taken from Rots et al. (1985). The numerical solution was 
obtained by displacement control. Two different meshes were used to obtain the load-
displacement response, details of the two meshes can be seen in Figure 5.15. Mesh 1 with 
1373 elements can be seen in Figure 5.16, where its deformation is shown, and mesh 2, 
with 2247 elements, in Figure 5.17. Figure 5.18 shows the load-displacement curves for 
both meshes.  

 For each mesh the linear and the exponential softening law (see Figure 5.18) were 
used, the latter showing a better agreement with the experimental curve in the softening 
branch. One can note that the peak load is very sensitive to the softening law used.  Thus, 
it seems clear that a better agreement would be obtained with an alternative type of 
softening law. 
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Figure 5.14: Three point notched beam. 
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Figure 5.18: Load-displacement diagram for three point notched beam. 
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5.4.1 Notched bar in tension 

In this test, the mode I fracture simulation of a notched specimen is undertaken by 
using a continuum damage model considering a tension-only damage criterion and 
exponential softening. Figure 5.19 shows the geometry and the considered finite element 
mesh. The following material parameters are adopted: fracture energy -G , 

tensile strength - , Young’s modulus - , Poisson’s ratio 
- . The mesh is completely unstructured, non symmetric and slightly refined in the 
zone where the discontinuity is expected to appear. For comparison purposes, we also used 
a more structured mesh, as shown in Figure 5.20. On the other hand, Figure 5.21 shows 
the force vs. displacement curve for both meshes, whereas Figure 5.22 shows the deformed 
mesh at the end of the analysis, where the localization of the strain field along the band of 
elements capturing the discontinuity can be observed. 
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Figure 5.19: Geometry and mesh 1 (dimensions in millimeters-  ). mm

 

 

 

 

 

 

 

 

 

Figure 5.20: Mesh 2 and localization zone. 
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Figure 5.21: Load-displacement diagram for tension bar problem. 
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Figure 5.22: Deformation (amplified 5000 times). 
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5.5 Direct tension 

This series of experiments, double-edge notched, were considered in Reinhardt et al. 
(1986), Hordijk et al. (1987) and Rots (1988). Hordijk(1991), using a different value for , 
has also analyzed it for lightweight concrete. 

L

 The geometry and used mesh can be seen in Figure 5.23. The discretization consists of 
8421 tetrahedral finite elements. 

 

 The material data adopted for concrete are: Young’s modulus, ; 
Poisson’s ratio, ; tensile strength, , and fracture energy 

. These data are in accordance with Reinhardt et al. (1986), Hordijk et al. 
(1987) and Rots (1988). 

2/ 18000 mmNE =
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 Figure 5.23: Double-notched specimen (dimensions in millimeters-  ). mm

 

 This example can lead to two solutions: in one of them the crack propagations is 
symmetric and in the other the crack propagates from one side of the specimen to the 
other side. 

 In Figure 5.24 we can observe that anti symmetric possible crack paths are tracked 
based on the information obtained from the material bifurcation analysis and using an 
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overall tracking strategy. As loading progresses, the two crack paths tend to become one 
single crack path. This example is very sensitive to the boundary conditions and, thus, in 
practice this symmetry can be broken by material imperfections and the loading velocity.  
As a consequence, a global bifurcation analysis of the structure might be necessary. 

For the sake of simplicity, we consider that the critical direction coincides with the 
stresses principal direction. Figure 5.25 shows the family of envelopes of the vector field 
corresponding to the normal to the first principal direction, which is used to track the crack 
surfaces in the remaining of this section. 

 

  
  

 

 

 

 

 

 

Figure 5.24: Continuous failure surfaces. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Family of envelopes of the principal direction. 

 

 In this example three different cases have been analyzed: A, B and C (see Figure 5.26). 
All cases were run under load control first.  Then, an arc-length scheme was used to 
compute the response beyond the peak load. The controlled point is the center point, see 
Figure 5.26. 
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In case A we have restricted the displacement in the  direction for three points as shown 
in Figure 5.26. In this case the damping-like parameter considered was 

z
3/005.0 cmNs=η .  
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Figure 5.26: Fail
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5.5.1 Results for Case A 

For this case the force vs. displacement curve is shown in Figure 5.27. In Figure 5.28 
we can see the deformation corresponding to points A1, A2, A3 and A4 signaled in Figure 
5.27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: Force vs. displacement – Case A. 
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Figure 5.28: Deformation (scalar factor: 900) – Case A. 
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5.5.2 Results for Case B 

For this case the force vs. displacement curve is shown in Figure 5.29. In Figure 5.30 
we can see the deformations corresponding to points B1, B2, B3, B4, B5 and B6 signaled 
in Figure 5.29. 
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5.5.3 Results for Case C 

For this case the force vs. displacement curve is shown in Figure 5.31. In Figure 5.32 
we can see the deformations corresponding to points B1, B2, B3, B4, B5 and B6 indicated 
in Figure 5.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: Force vs. displacement – Case C. 
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Figure 5.32: Deformation (scalar factor: 400) – Case C. 
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 In Figure 5.33 we have the force vs. displacement curves for the three cases analyzed 
before. 
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Figure 5.33: Force vs. displacement – Case C. 
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5.6 Four-point bending test 

5.6.1 Single-notched shear beam  

The specimen used is made of plain concrete. The testing apparatus is shown in Figure 
5.34. Originally it was proposed by Arrea & Ingraffea(1982). Among the authors that have 
analyzed this test we can mention: Bhattacharjee&Léger (1994), Bocca et al. (1991), Rots et 
al.(1985), Wells(2001), Carpinteri (1993), who was trying to extend the cohesive crack 
model to a mixed mode propagation. 

 The constraints and the loading conditions are non-symmetric with respect to the 
notch. The experimental failure surface is shown in Figure 5.35. 

 

 

Figure 5.34: Testing apparatus, Bocca et al. (1990). 

 

 

 

 

 

 

 

 

Figure 5.3
5: Crack pattern, Bocca et al. (1990). 
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 The mesh and geometry is shown in Figure 5.36.  
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Figure 5.36: Single-notched shear beam – geometry (centimeter- ) . cm

 

5.6.1.1 Case A 

In this case the mesh is non-structured as shown in Figure 5.36. We have used 
3/5.0 cmNs=η  as damping-like parameter. Figure 5.37 shows the family of envelopes of 

the propagation directions. In Figure 5.38 we can see the part of the beam where the 
continuous failure surface is shown, as well as the localized finite elements and in Figure 
5.39 we have detail of the mesh without fractured elements with discontinuity surface. In 
Figure 5.40 we can see the deformation of the beam. Figure 5.41 shows the force vs. 
displacement curve. 
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Figure 5.37: Family of envelopes of the critical direction. 

 

 

 

 

 

 

 

 

 

                
 a) continuous failure surface  a) fractured elements 

Figure 5.38: Geometry. 
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Figure 5.39: Mesh without fractured elements with discontinuity surface S . 

 

 

  

 

 

 

 

 

 

 

Figure 5.40: Deformation – Case A. 
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Figure 5.41: Force vs. displacement – Case A. 
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5.6.1.2 Case B 

 In this case, based on the a priori knowledge of the possible discontinuity surface 
obtained by the material bifurcation analysis plus an overall tracking algorithm, we have 
adopted a more structured mesh in the localization domain as show in Figure 5.42 and 
Figure 5.43. 
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Figure 5.44: Deformation. 
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Figure 5.45: Deformation. 
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Figure 5.46: Force vs. displacement case A and Case B3. 
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Taking the case B3 as example, Figure 5.47 shows the evolution of the deformation and the 
evolution of the bifurcated elements (the blue color means bifurcated in failure elements). 
In Figure 5.48 the corresponding points in the force vs. displacement curve are shown. 
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Figure 5.47: Evolution of the bifurcated elements - Case B3. 
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Figure 5.48: Force vs. displacement - Case B3. 
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6.1 Summary and conclusions of the research 
developed 

In this work an analytical and a numerical model to simulate the phenomenon of strain 
localization have been developed in the ambit of Continuum Mechanics using the Strong 
Discontinuity Approach. This has been done in the context of an elastic-degradable 
medium (viz. Continuum Damage Model), assuming the isothermal quasi-static regime and 
small deformations and rotations. Furthermore, a material described as homogeneous and 
isotropic has been considered. We can add the following considerations: 

 The behavior of the material is described throughout continuum constitutive 
equations in rates. Localization starts when strong ellipticity is lost, signaled by 
the singularity of the acoustic tensor (weak discontinuity). In this point, a 
variable bandwidth model begins. It is responsible for the transition from weak 
discontinuity to strong discontinuity. 

 This theory is based on the Assumed Enhanced Strain Method (Simo&Rifai 
1990) since an enriched term appears in the strain field. 
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 A material bifurcation analysis was required to obtain the critical values, viz. the 
critical hardening/softening parameter and the critical angle. This information is 
needed for the constitutive model and for the tracking algorithms. 

 Two types of tracking algorithms were implemented: Element-element tracking 
and the Level curves/surface of the critical angle. The latter has shown to be 
very efficient. As mentioned above, the necessary parameters to trace the 
continuous discontinuity line/surface are obtained from a bifurcation analysis.    

 The strong discontinuity approach has proven to be very efficient to simulate 
brittle materials with discontinuities. This technique has the advantage of not 
needing the use of any remeshing technique (viz. it is mesh-independent) or of 
other artifices like introducing a material length scale to avoid stress locking. 

 A static condensation was implemented to reduce the number of degrees of 
freedom resulting in a smaller system of equilibrium equations. 

 

6.2 Main contributions 

Based on the above mentioned concepts, the main contributions made in the present 
work are: 

 Extension of the two-dimensional Strong Discontinuity Approach to the general 
three-dimensional nonlinear problem using a Continuum Damage Model. 

 An extensive study of material bifurcation analysis from which an explicit formula 
to obtain critical values is derived.  By using this formula, critical values for several 
constitutive models are obtained too. The graphic representation of the acoustic 
tensor as well as of the representative critical values is presented for those models. 

 Extension of the variable bandwidth model (VBM) with pre-established law to a 
new model named automatic VBM, for which we do not need to know the length 
of the transition from weak discontinuity regime to the strong discontinuity regime 
a priori. 

 An extension of the 2D tracking based on a heat-conduction-like BVP developed 
in Samaniego (2003) to 3D settings. This technology is essential to obtain 
consistent numerical results in the 3D case. 
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6.3 Future research lines  

Starting from the studies carried out in this work, we propose the following future 
developments aiming at the extension and deepening of some aspects that still remain 
open: 

 Extension to finite deformation to attain a material response more realistic in 
cases where the infinitesimal theory is not appropriated. 

 Application of the 3D formulation to reinforced concrete, because, although 
simplified analyses that use either beam elements or two-dimensional finite 
elements are quite useful, only three-dimensional analyses can fully represent all 
the aspects of the response of the concrete structure when a realistic constitutive 
model is used. 

 Extension to other constitutive equations able to describe more complex 
material behavior and dependent of the velocity of load. 

 Extension of the 3D model implemented in this work for managing several 
cracks simultaneously. 

 Experimental and theoretical study of the instabilities appearing in certain 
examples. 

 Introduce the study of structural bifurcation in the investigation of the material 
non-linearity.  
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 A
Notation

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1 Symbolic notation of tensors 

Boldface characters are used to denote vectors and tensors. Thus, a vector expressed in 
a Cartesian coordinate system in the three-dimensional Euclidean space (see Figure A.1) is  
denoted by: 

iieP ˆP=  (A.1)

Further, the expression of a second order tensor is the following: 

jiij eeU ˆˆ ⊗=U  (A.2)

where  is the “open product” symbol and ⊗ 3,2,1, =ji . 

 The divergence of vector P  is denoted by P⋅∇  and reads: 

3

3

2

2

1

1

xxxxi
i

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

=⋅ PPPP
P∇  (A.3)

where  is a dummy index (Einstein convention is used). i
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Figure A.1: Vector in Cartesian system. 
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A.2 Identity tensors 

• 2nd order identity tensor  

jiij ee ˆˆ ⊗δ=1  (A.4) 

where  is the so-called Kronecker delta symbol, defined as: ijδ









≠

=
=δ

jiif

jiif

ij

0

1
   (A.5) 

 

• 4th order identity tensor I  

lll eeee ˆˆˆˆ ⊗⊗⊗δδ= kjijikijkI  (A.6) 

 Its symmetric part is defined as 

symI I  =I  (A.7) 

The components of tensor I  are 

( )jkijikijk δδ+δδ= lll 2
1I  (A.8) 

The Kronecker Delta is often called a substitution operator for the following property:  
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jiij VV =δ  (A.9)

Finally, noting that the dot product ji ee ˆˆ ⋅  is 1 if ji =  and 0 if , then matching the 
components of δ , we can write 

ji ≠

ij

ijji δ=⋅ee  (A.10)

 

A.3 Matrix notation 

 We will use the same notation for matrices as for tensors. However, for the former we 
will not use connective symbols to denote products, for example: 

Tensor Notation Matrix Notation 

D
ot

 
pr

od
uc

t 

xx ⋅  xxT  
(A.11)

 

 All first order matrices will be denoted by lower case boldface letters such as , 
where: 

v

{ }321 v, v, v=Tv  (A.12)

 Usually rectangular matrices will be denoted by upper case boldface letters, such as  
or , where : 

A
B









=








=

232221

131211

2221

1211

BBB
BBB

AA
AA

BA  (A.13)

 

 

A.4 Coordinate transformation 

The actual numerical values of the components of a tensor do depend on the coordinate 
system. If one changes the coordinate system, for example, rotates it, then the components 
of a tensor will change. Consider the coordinate system ( )321 ,, xxx  represented by its 
versors ( )321

ˆ,ˆ,ˆ eee , see Figure A.2. In this system an arbitrary vector , can be 
represented by its components: 

v

332211 vvv eee ++=v  (A.14)

 

 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Coordinate system. 

 

 It is common to express a vector by its components, i.e., with the following format: 

  

  

 e  

 e  

  1x′

 ′  

3x

1x

2x

  

 e  2′

2e

3

1

  1e′ e  3′

  1γ

 1β  

 1α  

  3x′

  2x
















=

3

2

1

v
v
v

v  (A.15) 

 

 Consider now a new orthogonal coordinate system ( )321 ,, xxx ′′′ , represented by its 
versors  as shown in Figure A.2. The vectors and tensors represent physical 
properties that do not change with the coordinate system but its components change, thus 
the components of the vector  in this new system is given by: 

( 321 ,, eee ′′′ )

v

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

vv ⋅=′

































′′′
′′′
′′′

=
















′
′
′

A
3

2

1

332313

322212

312111

3

2

1

v
v
v

,cos,cos,cos
,cos,cos,cos
,cos,cos,cos

v
v
v

xxxxxx
xxxxxx
xxxxxx

 (A.16) 

where  is the coordinate transformation matrix, which is, in general, non symmetric 
. It will be represented by its components as: 
A
TAA ≠
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=

333231

232221

131211

aaa
aaa
aaa

A  (A.17)

When we deal with an orthogonal system, we can say that: , and as a 
consequence: 

1=⇒=− TT AAAA 1

vv ′= ⋅TA  (A.18)

 In a general form the coordinate transformation of the tensor components of first, 
second, third and fourth order are given, respectively, by: 

mnpqlqkpjnimijkl

lmnknjmilijk

kljlikij

jijj

SaaaaS

SaaaS

SaaS

SaS

=′

=′

=′

=′

 (A.19)

 

 Consider now that we have a third coordinate system  and that the 
coordinate system transformation from the system 

( 321 ,, xxx ′′′′′′ )
( )321 ,, xxx ′′′  to the system ( )321 ,, xxx ′′′′′′  is 

given by: 

vv ′=′′ ⋅B  (A.20)

Schematically the coordinate system transformation between this three systems is shown in 
Figure A.3. 
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Figure A.3: Coordinate system transformation. 
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A.5 Elasticity 

 For many materials like metals, ceramics, concrete, etc., the hypotheses of isotropy and 
linearity are good enough for many engineering purposes. Then the classical Hooke’s law 
of elasticity applies. A material in the elastic regime does not present dissipative 
mechanisms. 

In the case of completely isotropic elastic responses, the constitutive tensor  depends 
on two parameters characteristic of each material: the Young’s modulus 

eC
E  and the Poisson’s 

ratio ν . C  can be defined in terms of the Lamé’s parameters, e λ , µ , as: 

( )
( ) { }





∈δλδ+δδ+δδµ=

⊗λ+µ=

3,2,1,,,

2

lkjiklijjkiljlik
e
ijkl

e

C
11IC

 (A.21) 

The inverse reads: 

( ) ( )11⊗
µ+λµ

λ
−

µ
=

−

2322
11
ICe  (A.22) 

or  





 ⊗−µ+⊗κ= 1111

3
12 ICe  (A.23) 

where the Kronecker’s delta and the unity tensor of fourth order are, respectively, given by 
equations (A.4) and (A.8). 

Relations between the Lamé’s parameters ( )µλ  , , the Young’s modulus E , the Poisson’s 
ratio  are given as: ν

( )( )ν−ν+
ν

=λ
211

E    ;     ( )ν+
=µ

12
E  (A.24) 

and their physical interpretation is illustrated in Figure A.4. 

 

 

 

 

   

      

    

 

 

 

 

 
a) b) c) 

Figure A.4: Simple test: a) Tension; b) Shear; c) Hydrostatic compression. 
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 In the case of linear elasticity, with no initial stresses or strains, these relations are 
described as 

εσ :eC=  (A.25)

where  is the elasticity tensor characterizing the material’s properties. eC

 

A.5.1 Elastic acoustic tensor 

Another important tensor in elasticity is the elastic acoustic tensor  defined as: )(NeQ

( )
( )





⊗µ+λ+µ=

µδ+µ+λ==
⇒= ⋅⋅

NN1N

N
NNN

 )(

 )(Q
)(

e

jlljk
e
ijkli

e
jlee

Q
Q

NNNN C
C  (A.26)

And the inverse: 

( )
( )

( )
( )





















⊗

µ+λ
µ+λ

−
µ

=









µ+λ

µ+λ
−δ

µ
=

−

−

NN1
2

1

2
1Q

 
1

1

e

ljjl
e
jl

Q

NN

 (A.27)

or in terms of  ν,E

( ) 







⊗

ν−
−

ν+
=

− NN1
12
1)1(21

E
eQ  (A.28)

 The determinant of the acoustic tensor Q  in three dimensions is: e

( )µ+λµ= 22eQ  (A.29)

and in two dimensions(2D): 

( )µ+λµ= 2eQ  (A.30)

To obtain the eigenvalues of , it is necessary to compute the determinant: eQ

( )[ ] ( ) ( )
( ) ( )[ ] ( )
( ) ( ) ( )[ ]

0
   

   
   

333231

322221

312111

=
ς−µ+µ+λµ+λµ+λ

µ+λς−µ+µ+λµ+λ
µ+λµ+λς−µ+µ+λ

NNNNNN
NNNNNN
NNNNNN

 (A.31)

This gives the characteristic equation – a third grade polynomial in . ς

 Using the property N , one can obtain the following eigenvalues: 12
3

2
2

2
1 =++ NN
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( ) 















µ+λ
µ
µ

2
 (A.32) 

The presence of negative or null roots represent an instability for small perturbations. 
The necessary and sufficient conditions for the strong  ellipticity condition to hold is: 

02,0 >µ+λ>µ  (A.33) 

If the condition of strong ellipticity is violated, the material will exhibit an instability 
associated with the formation of a non homogeneous deformation band. 

The inequality (A.33) can be expressed in the following way: 

















−<ν
<





−>ν
>

⇒>
ν+

=µ

1
0

1
0

0
)1(2 E

E

E  (A.34) 

and 





>ν
<ν

⇒>
ν−

ν−
µ=µ+λ

1
5.0

0
)21(

)1(22  (A.35) 

We can summarize that, in order to satisfy the strong ellipticity conditions, it is necessary to 
satisfy one of the following propositions: 

] [ ] [

] [1 ;  0

 ; 1 5.0 ; 10

−∞−⊂ν⇒<

∞∪−⊂ν⇒>

E

E
 (A.36) 

For physical reasons the bulk modulus ( ) (Truesdell&Noll – 1965) has to be positive. The 
point to point stability condition will be guaranteed by: 

κ







>
ν−

=µ+λ=κ

>µ

0
)21(3

0

3
2 E  (A.37) 

For an isotropic lineal elastic material the condition for the strain energy to be positive 
definite is satisfied when: 

5.01;0 <ν<−>E  (A.38) 

 

Remark A.1:  

  is pointwise stable if and only if: eC

0
3

230 >
µ+λ

>µ and  

  is strongly elliptic if and only if: eC
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02,0 >µ+λ>µ     

 

 

A.5.2 Two-dimensional case 

 When structural calculations are performed under the approximation of plane stress or 
plane strain, it is convenient to write these conditions in the constitutive equation: 

 Plane stress ( )0231333 =σ=σ=σ : 

 Plane strain ( )0231333 =ε=ε=ε : 

We can redefine some important tensors as: 

 The elastic constitutive tensor: 

( )11⊗λ+µ= IC 2e  (A.39)

 The Elastic Acoustic Tensor: 

NN1N ⊗µ+λ+µ=  )()(eQ  (A.40)

where 








→
µ+λ

λµ
•

→λ•
=λ

Stress Plane
)2(

2
Strain Plane

 (A.41)

 

A.6 Voigt-matrix representation 

 For implementation in a Finite element code, we usually use the Voigt notation. Voigt 
notation usually refers to the procedure of writing a symmetric tensor in column matrix 
form(vector). 

 Using the Voigt matrix representation for the stress tensor σ  and the strain tensor ε  the 
stress vector {  and strain vector }σ { }ε  obtained can be written as:  

{ }
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σ
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σ
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=
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σσ  (A.42)
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ε ε  (A.43) 

It is easy to verify that an increment in energy is given by: 

{ } { }σεσε Tdd ≡:  (A.44) 

The stiffness tensor  has 81 elements which, because of the symmetries in the 
stiffness tensor and thermodynamic considerations, reduce to 21 independent elastic 
parameters. The stiffness tensor then is written as a second-order symmetric Voigt matrix: 

e
ijklC

ee
mn

matrixVoigte
ijkl C≡ → C  C  (A.45) 

 These 21 independent parameters can be further reduced. In the case of isotropy, for 
example, there are only two independent elastic parameters. 

Thus we can represent the generalized Hook’s law as: 

{ } { }εσεσ ematrixVoigte C= →=   :C  (A.46) 

 

 The traction vector in the Voigt notation is defined as follows: 

{ }σσ TVoigt NTT = →= ⋅N  
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where 
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Unit tensor of second order 
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Unit tensor of fourth order 
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Thus we can rewritten equation (A.21) as: 
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or explicitly in terms of E  and ν : 
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A.6.1  Transformation of the stress, strain and constitutive 
tensors components 

A.6.1.1 Stress and strain tensor 

The stress and strain tensors components change of base according to the following 
transformation: 
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where  is the coordinate transformation matrix, which is, in general, non symmetric 
. It will be represented by its components as: 
A
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 Thus, the transformation of the components of the stress and strain tensor are, 
respectively: 

{ } { }
{ } { } 166616

166616

 

  

×××

×××

=′
=′

ε

σ

ε

σ

N
M

 (A.55) 

where  
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and 
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A.6.1.2 Constitutive tensor 

 In the case that C  is not isotropic, the transformation law of a fourth order tensor is: 

mnpqlqkpjnimijkl aaaa CC =′  (A.58) 

 When σ  and are expressed in Voigt notation,  is a second order tensor, thus: ε C

jiji ε=σ C  

{ } { }εσ  C=  
(A.59) 
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Using the equations (A.55) and (A.59), we can say that: 
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where: 1−=′ NMCC . 

It can be demonstrated that 1−= NMT . Resulting that the coordinate transformation of 
the constitutive tensor components is given by: 

T
66666666 ×××× =′ MM CC  (A.61)

A.7 Stress deviator tensor and its invariants 

Sometimes, it is convenient in material modeling to decompose the stress tensor into 
two parts, one called spherical or hydrostatic stress tensor and other called the stress 
deviatoric tensor. The hydrostatic stress tensor is that whose elements are , where ijpδ p  is 
the mean stress and is given by 
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where  is the first invariant of the stress tensor; that is, its value would be the same 
regardless of rotation of the coordinate axes. Other important invariants are: 
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 From equation (A.62), it is apparent that p  is the same for all possible orientations of 
the axes. The stress deviator tensor s  is derived by subtracting the spherical state of stress 
from the actual state of stress. Thus, we have 
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The components of this tensor are given by: 
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The invariants of the stress deviator tensor s , are: ij

 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 188 

3322113

2

1

    
3
1

 
2
1

0

ssssss

ss

s

==

=

==

kijkij

jiij

ij

J

J

J

 (A.66) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 

 

 

 

 

 

 

Bibliography
 

AIFANTIS, E.C. (1984). On the microstructural origin of certain inelastic models. J. Eng. 
Mater. Tech., vol. 106, pp.326-330. 

ARMERO, F. & CALLARI, C.(1999). An analysis of strong discontinuities in saturated 
poroplasticity solid. Int. J. Numer. Anal. Meth. Geomech., 46, pp. 1673-1698. 

ARMERO, F. & GARIKIPATI, K. (1995). Recent advances in the analysis and numerical 
simulation of strain localization in inelastic solids. In D. Owen, E. Oñate and H.E., 
(Eds.), Proc. International Conference on Computational Plasticity V, pp. 547-561, Barcelona, 
CIMNE. 

ARMERO, F. & GARIKIPATI, K. (1996). An analysis of strong discontinuities in 
multiplicative finite strain plasticity and their relation with the numerical simulation of 
strain localization in solids. Int. J. Solids Struct., 33 (20-22), 2863-2885. 

ARMERO, F. (1997). Localized anisotropic damage of brittle materials. In. D. Owen, E. 
Oñate, and H.E., (Eds.), Proc. International Conference on Computational Plasticity V, 
Barcelona, CIMNE. 

ARMERO, F. (2001). On the Characterization of Localized Solutions in Inelastic Solids: An 
Analysis of Wave Propagation in a Softening Bar. Comput. Method Appl. Mech. Eng., 191, 
181-213. 

ARMERO, F. (2000). On the Locking and Stability of Finite Elements in Finite Deformation 
Plane Strain Problems, Comput. & Struct., 75, 261-290. 

ARMERO, F. & GLASER, S. (1996). Enhanced Strain Finite Element Methods for Finite 
Deformation Problems, Proc. of III Congress of SEMMI, Zaragoza, Spain. 

ARREA, M. & INGRAFFEA, A.R. (1982). Mixed-mode crack propagation in mortar and concrete. 
Report Nº81-13, Department of Structural Engineering, Cornell University, Ithaca, 
New York. 

BARDET, J.P. (1991). Orientation of shear bands in frictional soils. J. Eng. Mech.- ASCE, 
Vol. 117, Nº. 7, pp. 1466-1484. 

BAŽANT, Z. & BELYTSCHKO, T.B. (1985). Wave propagation in a softening bar: Exact 
solution. J. Eng. Mech.-ASCE, 111:381-389.  

BAŽANT, Z. & CEDOLIN, L. (1979). Blunt crack band propagation in finite element 
analysis. J. Eng. Mech.-ASCE, Vol.105, Nº EM2, pp. 297-315. 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 190 

BAŽANT, Z. & LIN, F.B. (1988). Non-local yield limit degradation . Int. J. Num. Meth. Eng., 
26:1805-1823.  

BAŽANT, Z. & OH, B.H.. (1983). Crack band theory for fracture of concrete. Matériaux et 
Constructions, 93(16):155-177.  

BAŽANT, Z. & PLANAS, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. 
CRC Press LLC, USA.  

BAŽANT, Z. (1976). Instability, ductility and size effect in strain softening concrete. J. Eng. 
Mech.-ASCE, 102:331-344. 

BAŽANT, Z. (1993). Scaling laws in mechanics of failure. J. Eng. Mech.-ASCE, 119(9):1828-
1844.  

BAŽANT, Z.; BELYTSCHO, T.B. & CHANG, T.P. (1984). Continuum theory for strain 
softening. J. Eng. Mech.-ASCE, 110:1666-1692.  

BAŽANT, Z.P. & OH, B.H. (1983). Crack band theory for fracture of concrete. Mater. 
Struct., RILEM, Vol. 16, Nº94, pp.155-177. 

BAZELY, G.P.; CHEUNG, Y.K.; IRONS, B.M. & ZIENKIEWICZ, O.C.(1965). Triangular 
elements in plate bending – Conforming and noncoforming solutions, Proc. First 
Conference on Matrix Methods in Structural Mechanics, Wright-Patterson ATBFB, Ohio. 

BELYTSCHKO,T.; FISH, J. & ENGELMANN, B.E. (1988). A finite element with embedded 
localization zones. Comput. Method Appl. Mech. Eng., 70(1), pp. 59-89. 

BELYTSCHKO,T.; LU, Y.Y. & GU, L. (1994). Element free Galerkin methods. Int. J. Numer. 
Methods Eng., 37: 229-256. 

BHATTACHARJEE, S.S. & LÉGER, P. (1994). Application of NLFM models to predict 
cracking in concrete gravity dams. J. Struct. Eng.-ASCE, Vol. 120. pp. 1255-1271. 

BIGONI, D. & HUECKEL, T. (1991). Uniqueness and localization – I. Associative and non-
associative elastoplasticity. Int. J. Solids Struct., 28(2), pp. 197-213. 

BIGONI, D. & ZACCARIA, D. (1993). On strain localization analysis of elastoplastic 
materials at finite strains. Int. J. Plasticity, 9 Nº 1, pp. 21-33. 

BIGONI, D. (2000). Bifurcation and instability of non-associative elastoplastic solids. CISM 
Lecture Notes. Material Instabilities in elastic an plastic Solids, H. Petryk (IPPT, Warsaw) 
Coordinator, 2000. 

BLAAUWENDRAAD, J.& GROOTENBOER, H.J. (1981). Essentials for discrete crack analysis. 
IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft, pp. 263-272. 

BOCCA, P.; CARPINTERI, A. & VALENTE, S.(1990). Size effects in the mixed mode crack 
propagation: Softening and snap-back analysis. Eng. Fracture Mech., 35:159-170. 

BOCCA, P.; CARPINTERI, A. & VALENTE, S. (1991). Mixed mode crack of concrete. Int. J. 
Solids Struct., Vol. 27, Nº 9, pp. 1139-1153. 

CALLISTER (1997). Materials Science and Engineering. An Introduction. Third Edition Vol. 1 and 
2. John Wiley and Sons Inc., New York. 

CAROL, & WILLAM, K. (1997) Application of analytical solutions in elasto-plasticity to 
locaization analysis of damage models. In Owen,. D.R.J., Oñate, E., and Hinton, E. 
(Eds.), Computational Plasticity (COMPLAS V), pp. 714-719, Barcelona. Pineridge Press. 

CAROL, I.; RIZZI, E. & WILLAM, K. (1994) A unified theory of elastic degradation and 
damage based on a loading surface. Int. J. Solids Struct., 31(20), 2835-2865. 



Bibliography 191

CAROL, I.; RIZZI, E. & WILLAM, K. (1998) On the formulation of isotropic and anisotropic 
damage. Computational Modelling of Concrete Structures, de Borst et al. (Eds), 183-192. 

CARPINTERI, A.; VALENTE, S.; FERRARA, G. & MELCHIORRI, G. (1993). Is mode fracture 
energy a real material property? Comput. & Struct., 48(3):397-413. 

CARPINTERI, A.; VALENTE, S.; ZHOU, F.P.; FERRARA, G. & MELCHIORRI, G. (1995). Crack 
propagation in concrete specimens subjected to sustained loads. In F.H. Wittmann 
(ed.) Proceedings of the Second International Conference on Fracture Mechanics of Concrete 
Structures, (FRA.M.CO.S. II): 1315-1328 

CERVERA, M; AGELET DE SARACIBAR, C. & CHIUMENTI, M.(2001). COMET: a multipurpose 
finite element code for numerical analysis in solid mechanics. CIMNE, Technical University of 
Catalonia (UPC), Barcelona, Spain. 

ČERVENKA, V. (1970). Inelastic Finite Element Analysis of Reinforced Concrete Panels Under In-
Plane Loads. Ph.D. Thesis, University of Colorado, Boulder (USA). 

CHABOCHE, J.L. (1979). Le concept de contrainte effective appliqué à l’élasticité et à la 
viscoplasticité en presence d’un endommagement anitrope. Colloque EUROMECH 
115, Grenoble Edition du CNRS. 

CHAVES, E.W.V. & OLIVER, J. (2001). On the Strong Discontinuity Approach in 3D 
settings.  XXII CILAMCE, November 7th to 9th, 2001.Campinas – Brazil. 

CHEN, A. & CHEN, W.F.(1975). Constitutive relations for concrete. J. Eng. Mech.-ASCE, 
101:465-481. 

CHEN, J.-S.; WU, C.-T. & BELYTSCHKO, T. (2000). Regularization of material instabilities 
by meshfree approximations with intrisic length scales. Int. J. Numer. Methods Eng., 
47:1303-1322. 

CHEN, W.F. & HAN, D.J.(1988). Plasticity for Structural Engineers., Springer-Verlag New Yor 
Inc. 

CHEN, W.F.(1982). Plasticity in reinforced concrete., McGraw-Hill, Inc. USA. 

COPE, R.J.; RAO, P.V.; CLARK, L.A. & NORRIS, P. (1980). Modelling of reinforced concrete 
behaviour for finite element analysis of bridgeslabs. Numerical Methods for Nonlinear 
problems 1 Taylor,C.; Hinton,E. and Oden, D.R.J. (Eds.), Pineridge Press, Swansea, 
457-470. 

COSSERAT, E. & COSSERAT, F.(1909). Théorie des Corps Deformables. Librairie Scientifique A. 
Hermann et Fils, Paris. 

COURANT, R., (1943) Variational methods for the solution of problems of equilibrium and 
vibrations, Bulletin of the American Mathematical Society 49 (1943), 1-23. 

CRISFIELD, M.A. (1981). A fast incremental iterative solution procedure that handless 
”snap through”. Comput. & Struct., 13:55-62. 

CRISFIELD, M.A. (1997). Non-Linear Finite Element Analysis of Solids and Structures, volume 1,2. 
John Wiley and Sons, New York, USA. 

DE BORST, R. & MÜHLHAUS, H.-B.(1992). Gradient-dependent plasticity: Formulation and 
algorithmic aspects. Int. J. Numer. Methods Eng., 35, pp. 521-539. 

DE BORST, R. & NAUTA, P. (1985). Non-Orthogonal cracks in a smeared finite element 
model. Eng. Comput., 2, 35-46. 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 192 

DE BORST, R. (1986). Non-linear analysis of frictional materials. Dissertation, Delft 
University of Technology, Delft, Netherlands. 

DE BORST, R. (1991). Simulation of strain localization: A reappraisal of the Cosserat 
continuum, Eng. Comput., 8, p. 317-332. 

DE BORST, R.; SLUYS, L. MÜHLHAUS, H. & PAMIN, J. (1993). Fundamental issues in finite 
element analyses of localization of deformation. Eng. Computation, 10: 99-121. 

DESAI, C.S. & SIRIWARDANE, H.J. (1984). Constitutive laws for engineering materials with emphasis 
on geologic materials. Prentice-Hall, Inc.USA. 

DRUCKER, D.C. (1959). A definition of stable inelastic materials. J. Appl. Mech., 26, pp. 101-
106. 

FARIA, R. & OLIVER, X. (1993). A rate dependent plastic-damage constitutive model for 
large scale computations in concrete structures. Monograph CIMNE Nº17, International 
Center for Numerical Methods in Engineering, Barcelona, Spain. 

FARIA, R. (1994). Avalição do comportamento sísmico de barragens de betão através de 
um modello de dano conitinuo. Dissertação(Ph.D. in Portuguese), Porto University, 
Portugal. 

FEENSTRA, P.H. & DE BORST. (1995). A plasticity model and algorithm for mode –I 
cracking in concrete. Int. J. Numer. Methods Eng., Vol. 38, pp 2509-2529. 

FELIPPA,C.A. (2002). Introduction to Finite Element Methods. Course Notes, see World Wide 
Web: http://caswww.colorado.edu/Felippa.d/FelippaHome.d/Home.html 

FUNG, Y.C. (1965). Foundations of solids mechanics, Prentice Hall Inc. 

GURTIN, M. E. (1996). An introduction to continuum mechanics. NY: Academic Press, Inc. 

GARIKIPATI, K. (1996). On strong discontinuities in inelastic solids and their numerical 
simulation. Dissertation , Stanford University, California – USA. 

GRIFFITH, A. A. (1921). The phenomena of rupture and flow in solids. Philos. T. Roy. Soc. 
A- 221, 163-197. 

HADAMARD, J. (1903). Lenços sur la propagation des ondes et les equations de l’hydrodynamique. 
Librairie Scientifique A. Hermann et Fils, Paris. 

HILL, R. (1952). On discontinuous plastic states, with special reference to localized necking 
in thin sheet. J. Mech. Phys. Solids, 1, 19. 

HILL, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. 
Phys. Solids, 6, pp. 236-249. 

HILL, R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids, 16, 1-10. 

HILLERBORG, A. (1985). Numerical methods to simulate softening and fracture of 
concrete. Fracture Mechanics of Concrete. Structural Apllication and Numerical Calculation,  G. 
C. Sih and A. Di Tommaso, Eds., Martinus Nijhoff, Dordrecht, pp.141-169. 

HILLERBORG, A.; MODEER, M. & PETERSSON, P.E. (1976). Analysis of crack formation 
and crack growth in concrete by means of fracture mechanics and finite elements. 
Cement and Concrete Research, 6, p.773-782. 

HORDIJK, D.A.; REINHARDT, H.W. & CORNELISSEN, H.A.W. (1987). Fracture mechanics 
parameters of concrete from uniaxial tests as influenced by specimen length. Proc. 
SEM-RILEM Int. Conf. On Fracture of Concrete and Rock, S.P. Shah and S.E. Swartz 
(eds.), SEM, Bethel, 138-149. 

http://caswww.colorado.edu/Felippa.d/FelippaHome.d/Home.html


Bibliography 193

HORDIJK, D.A.; REINHARDT, H.W. & CORNELISSEN, H.A.W. (1987). Fracture mechanics 
parameters of concrete from uniaxial tests as influenced by specimen length. Proc. 
SEM-RILEM Int. Conf. On Fracture of Concrete and Rock, S.P. Shah and S.E. Swartz 
(eds.), SEM, Bethel, 138-149. 

INGLIS, C. (1913). Stress in a plate due to the presence of cracks and sharp corners. Proc. 
Int. Naval Architects, Nº 60. 

INGRAFEA, A. R. & SAOUMA, V. (1985). Numerical modeling of discrete crack propagation 
in reinforced and plain concrete. Fracture Mechanics of Concrete. Structural Application and 
Numerical Calculation,  G. C. Sih and A. Di Tommaso, Eds., Martinus Nijhoff, 
Dordrecht, pp.171-225. 

INGRAFEA, A. R. (1977). Discrete fracture propagation in rock: laboratory tests and finite element 
analysis. PhD Dissertation, University of Colorado at Boulder. 

IORDACHE, M.-M. (1996). Failure Analysis of Classical and Micropolar Elastoplastic Materials. 
Ph.D. Dissertation, University of Colorado at Bolder. 

IRWIN, G. (1957), Analysis of stresses and strain near the end of a crack traversing a plate. 
J. Appl. Mech.- ASME, 24, 361-364. 

JIRÁSEK, M. & ZIMMERMANN, T. (1998). Analysis of rotating crack model, J. Eng. Mech.-
ASCE, 124 , 842-851. 

JIRÁSEK, M. (1998). Element-free galerkin method applied to strain-softening materials. 
Proc. Computational Modelling of Concrete Structures (EURO-C), Badgastein, Austria. R. de 
Borst, N. Bićanić, H. Mang, and G. Meschke, Balkema, Rotterdam. 

JIRÁSEK, M. (1998). Embendded crack models for concrete fracture. In de Borst et al., 
editor, Proc. EURO-C 1998 Computer Modelling of Concrete Structures, pp. 291-300. 
Balkema. 

JIRÁSEK, M. (1998). Finite elements with embedded cracks. LSC Internal Report 98/01, 
April. 

KACHANOV, L. M. (1958). Time of rupture process under creep conditions. Inzvestia 
Akademii Nauk. Otd Tech Nauk. 8, 26-31. 

KACHANOV, L. M. (1986). Introduction to Continuum, Damage Mechanics. Nijhoff, Dordrecht, 
The Netherlands. 

KLISINSKI, M.; RUNESSON, K. & STURE, S. (1991). Finite element with inner softening 
band. J. Eng. Mech.-ASCE, 117(3):575-587. 

KOBAYASHI, A.S.; HAWKINS, M.N.; BARKER, D.B. & LIAW, B.M. (1985). Fracture process 
zone of concrete. Application of Fracture Mechanics to Cementitious Composite. Shah S.P. 
(Ed.), Matinus Mijhoff Publ., Dordrecht, 25-50. 

LARSSON, R.; RUNESSON, K. (1995). Cohesive crack models for semi-brittle materials 
derived from localization of damage coupled to plasticity. Int. J. Fracture, 69:899-911. 

LARSSON, R.; RUNESSON, K. & ÅKESSON, M. (1995a). Embedded localization band based 
on regularized strong discontinuity, Computational Plasticity – Fundamentals and 
Applications, D.R.J. Owen and E. Oñate (eds.), Vol. 1, 599-610, Pineridge Pres, 
Swansea, U.K. 

LARSSON, R.; RUNESSON, K. & ÅKESSON, M. (1995b). Embedded cohesive crack models 
based on regularized discontinuous displacements. In Fracture Mechanics of Concrete 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 194 

Structures, Proceedings of FraMcoS-2, ed. by Wittmann, F.H., Aedificatio Publishers, 
Freiburg, Germany, pp.899-911. 

LARSSON, R.; RUNESSON, K. & OTTOSEN, N.S. (1993). Discontinuous displacement 
approximation for capturing plastic localization. Int. J. Numer. Meth. Eng., 36:2087-
2105. 

LARSSON, R.; RUNESSON, K. & STURE, S. (1996). Embedded localization band in 
undrained soil based on regularized strong discontinuity – theory and FE-analysis. Int. 
J. Solids Struct., 33(20-22): 3081-3101. 

LEGENDRE, D. (1984). Prévision de la ruine des structures en béton par une approche 
aombinée: mécanique de Fendommagent mécanique rupture. Thèse de Doctorat, 
Univesité Paris 6 – LMT Cachan. 

LEMAITRE, J. (1996). A course on damage mechanics. Spring-Verlag Berlin Heidelberg., 
Germany. 

LEMAITRE, J. & CHABOCHE, J.-L. (1990). Mechanics of Solids materials. Cambridge University 
Press, Cambridge. 

LI, S. & LIU, W.K. (2000). Numerical simulations of strain localization in inelastic solids 
using meshfree methods. Int. J. Numer. Meth. Eng., 48, pp. 1285-1309. 

LOFTI, H. & SHING, P. (1995). Embedded representation of fracture in concrete with 
mixed finite elements. Int. J. Numer. Meth. Eng., 38:1307-1325. 

LOVE, A.E.H. (1944). A treatise on the Mathematical Theory of Elasticity. Cambridge University 
Press, London. 

MAIER, G. & HUECKEL, T. (1979). Non-associated and coupled flow rules of elasto-
plasticity for rock-like materials. Int. J. Rock Mech. Min., 16, 77-92 

MALVERN, L.E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall, Inc. 
New Jersey. 

MANDEL, J. (1964). Proppagation des surfaces de discontinuité dans un milieu 
élastoplastique, Int. Ymp. on Stress Waves in anelastic solids, pp.331-340, Springer, Berlin. 

MANDEL, J. (1966). Conditions de stabilité et postulat de drucker. In. J. Kravtchenko and 
P. Sirieys, editors, Rheology and Soil Mechanics, pp 58-68, Berlin. 

MANZOLI, O.; OLIVER, J. & CERVERA, M. (1999). Localización de deformación: Análisis y 
simulación numérica de discontinuidades en la mecánica de sólidos. Centro Int. De Métodos 
Num. En Ingeniería (CIMNE), Monografía N. 44, Barcelona – Spain. 

MANZOLI, O.L.(1998). Un modelo analítico y numérico para la simulación de discontinuidades fuertes 
en la mecánica de sólidos. Ph.D. Thesis, Technical University of Catalonia, Barcelona 
España. 

MARSDEN, J. E. & HUGHES, T. J.R. (1983). Mathematical foundations of elasticity. Dover 
Publications, Inc., New York. 

MASE, G.E. (1977). Mecánica del Medio Continuum. McGraw-Hill, USA. 

MAZARS, J.(1986). A Description of micro- and macroscale damage of concrete structures. 
Eng. Fracture Mech., V.25, No. 5/6. pp.729-737. 

MAZARS, J. & PIJAUDIER-CABOT, G.(1996). From damage to fracture mechanics and 
conversely: a combined approach. Int. J. Solids Struct., Vol. 33, Nº 20, pp 3327-3342. 



Bibliography 195

MÜHLHAUS, H.-B. & VADOULAKIS, I. (1987). The thickness of shear bands in granular 
materials, Geotechnique, 37, p.271-283. 

MÜNZ, T.; WILLAM, K. & RUNESSON, K. (1998). Viscoplastic algorithmic operators and 
their localization properties. In. de Borst, Bićanić, Mang & Meschke (ed.) Computational 
Modelling of Concrete Structures. Balkema, Rotterdam. 

NEILSON, M.K. & SCHREYER, H.L. (1993). Bifurcations in elastic-plastic materials. Int. J. 
Solids Struct., Vol. 3, No. 4, pp. 521-544. 

NGO, D. & SCORDELIS, A.C. (1967). Finite element analysis of reinforced concrete beams. 
Journal of the American Concrete Institute, Vol. 64, Nº3, pp. 152-163. 

OGDEN, R.W. (1943). Non-linear elastic deformations. Dover Publications, Inc., New York. 

OLIVER, J. & AGELET DE SARACÍBAR, C. (2000). Mecánica de medios continuos para ingenieros. 
Ediciones UPC, Barcelona, España. 

OLIVER, J. (1989). A consistent characteristic length for smeared cracking models. Int. J. 
Num. Meth. Eng., 28:461-474. 

OLIVER, J. (1995a). Continuum modelling of strong discontinuities in solid mechanics 
using damage models. Comput. Mech., 17(1/2):49-61. 

OLIVER, J. (1995b). Continuum modelling of strong discontinuities in solid mechanics. In 
D. Owen, E. Oñate and H.E., editors, Proc. International Conference on Computational 
Plasticity IV, pp. 455-479, Barcelona, CIMNE  

OLIVER, J. (1996a). Modeling strong discontinuities in solids mechanics via strain softening 
constitutive equations. Part 1: Fundamentals. Int. J. Num. Meth. Eng. , 39(21):3575-
3600. 

OLIVER, J. (1996b). Modeling strong discontinuities in solids mechanics via strain softening 
constitutive equations. Part 2: Numerical simulation. Int. J. Num. Meth. Eng. , 39 (21) : 
3601 - 3623. 

OLIVER, J. (1998). The strong discontinuity approach: an overview. In: Idelsohn,S., Oñate, 
E.,Dvorkin, E.N. (Eds.), Computational Mechanics. New Trends and Applications. 
Proceedings (CD-ROM) of the IV World Congress on Computational Mechanics 
(WCCM98). CIMNE, pp. 1-19. 

OLIVER, J. (2000). On the discrete constitutive models induced by strong discontinuity 
kinematics and continuum constitutive equations. Int. J. Solids Struct., 37:7207-7229. 

OLIVER, J. (2002). Topics on Failure Mechanics. Monograph CIMNE Nº 68, International 
Center for Numerical Methods in Engineering, Barcelona, Spain. 

OLIVER, J.; CERVERA, M. & MANZOLI, O. (1997). On the use of J2 plasticity models for 
the simulation of 2D strong discontinuities in solids. In: Owen,D., Oñate, E., Hinton, 
E. (Eds.), Proc. Int. Conf. On Computational Plasticity, Barcelona, Spain. CIMNE, pp. 38-55. 

OLIVER, J.; CERVERA, M. & MANZOLI, O. (1998). On the use of strain-softening models 
for the simulation of strong discontinuities in solids. In R. de Borst and E. van der 
Giessen, editors, Material Instabilities in Solids. John Wiley and Sons Ltd. 

OLIVER, J.; CERVERA, M.; OLLER, S. & LUBLINER, J. (1990). Isotropic damage models and 
smeared crack analysis of concrete. In N. Bićanić et al. (ed) Proc.. SCI-C Computer 
Aided Analysis and Design of Concrete Structures, pp. 945-957. 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 196 

OLIVER, J.; CERVERA, M.; OLLER, S. & LUBLINER, J. (1990). Isotropic damage models and 
smeared crack analysis of concrete. In N. B. et al., Eds, SCI-C Computer Aided Analysis 
and Design of Concrete Structures, pp. 945-957, Swansea, Pineridge Press. 

OLIVER, J.; CERVERA, M.; PULIDO, M.D.G. & CHAVES, E. (1999). Sobre la aproximación 
continua de discontinuidades en mecánica de sólidos. Congreso Español de Método 
Numérico en Ingeniería. R. Abascal, J. Dominguez y G. Bugeda (Eds.) SEMNI. 

OLIVER, J.; HUESPE, A.E.; PULIDO, M.D.G. & CHAVES, E. (2000). Modelação de fissuras 
em estruturas de concreto mediante uma aproximação de descontinuidades fortes VI 
Congresso Nacional de Mecânica Aplicada e Computacional, Aveiro – Portugal.  

OLIVER, J.; HUESPE, A.E.; PULIDO, M.D.G. & CHAVES, E.W.V. (2001). From continuum 
Mechanics to fracture mechanics: the strong discontinuity approach. Eng. Fracture 
Mech., 69, 113-136. 

OLIVER, J.; HUESPE, A.E.; SAMANIEGO, E. & CHAVES, E.W.V. (2002). Elementos finitos 
con discontinuidades internas. Estudio del bloqueo de tensiones y de sus posibles 
soluciones. Métodos Numéricos en Ingeniería V, Goicolea et al. (Eds.), SEMNI, Madrid – 
España.  

OLIVER, J.; HUESPE, A.E.; SAMANIEGO, E. & CHAVES, E.W.V. (2002). On strategies for 
tracking strong discontinuities in computational failure mechanics. WCCM V - Fifth 
World Congress on Computacional Mechanics, July 7-12, Vienne, Austria H.A. Mang et al. 
(Eds.) . 

OLIVER, J. & SIMO, J. (1994). A new approach to the analysis and simulation of strong 
discontinuities. In. Z.P. Bažant et al., editors, Fracture and Damage in Quasi-brittle 
Structures, E&FN Spon, pp. 25-39. 

OLLER, S. (1988). Un modelo de daño continuo para materials friccionales, Ph.D. thesis. 
Universidad Politécnica de Cataluña, Barcelona, España. 

OLLER, S. (2001). Fractura mecánica. Un enfoque global. CIMNE, Barcelona, España. 

ORTIZ, M & QUIGLEY, J. (1991). Adaptive mesh refinement in strain localization problems. 
Comput. Method Appl. Mech. Eng., 90: 781-804. 

ORTIZ, M. (1987). An analytical study of the localized failure modes of concrete. Mech. 
Mater., Vol. 6, pp. 159-174. 

ORTIZ, M.; LEROY, Y. & NEEDLEMAN, A. (1987). A finite element method for localized 
failure analysis. Comput. Method Appl. Mech. Eng., 61:189-214. 

OTTOSEN, N.S. & RUNESSON, K. (1991a). Acceleration waves in elasto-plasticity. Int. J. 
Solids Struct., 28(2): pp. 135-159. 

OTTOSEN, N.S. & RUNESSON, K. (1991b). Discontinuous bifurcations in a nonassociated 
Mohr material. Mech. Mater., 12 pag.255-265. Elsevier. 

OTTOSEN, N.S. & RUNESSON, K. (1991c). Discontinuous bifurcations in elasto-plasticity, 
Int. J. Solids Struct. 27, 401-421. 

PAMIN, J.(1994). Gradient-dependent plasticity in numerical simulation of localization phenomena. PhD 
Thesis, Delft University of Technology, Delft, Netherlands. 

PEERLINGS, R. H.J.(1999). Enhanced damage modelling for fracture and failure. PhD Thesis, Delft 
University of Technology, Delft, Netherlands. 



Bibliography 197

PETERSSON, P. E. (1981). Crack growth and development of fracture zones in plain 
concrete and similar materials. Report Nº TVBM-1006, Division of Building Materials, 
University of Lund, Sweden. 

PIJAUDIER-CABOT & BAŽANT, Z.P. (1987). Nonlocal damage theory. J. Eng. Mech.-ASCE, 
113, pp.1512-1533. 

PLANAS, J. & ELICES, M. (1992). Nonlinear fracture of cohesive materials. Int. J. Fracture, 
51:139-157. 

POTTS, D.M. & ZDRAVKOVIĆ, L. (1999). Finite element analysis in geotechnical engineering. 
Thomas Telford Publishing, London. 

RABOTNOV, Y.N. (1969). Creep problems in structural members. Amsterdam, North-Holland. 

RASHID, .R. (1968). Analysis of prestressed concrete pressure vessel. Nucl. Eng. Des., 7(4), 
334-355. 

REGUEIRO, R. & BORJA, R. (1999). A finite element model of localized deformation in 
frictional materials taking a strong discontinuity approach. Finite Elem. Anal. Des. 33, 
283-315. 

REINHARDT, H.W.; CORNELISSEN, H.A.W. & HORDIJK, D.A. (1986). Tensile tests and 
failure analysis of concrete. J. Struct. Eng.-ASCE, 112(11), 2462-2477. 

RICE, J. (1976). The localization of plastic deformation. 14th Int. Congress on Theoretical and 
Applied Mechanics. W.T. Koiter, editor, 1, pag. 207-220. North-Holland Publ. Co. Delft, 
The Netherlands. 

RICE, J.R. & RUDNICKI, J.W. (1980). A note on some feature of the theory of localization 
of deformation, Int. J. Solids Struct., 16, pp.597-605. 

RICE, J.R.(1973). Plasticity and Soil Mechanics. Proc. of the Symposium on the Role of Plasticity in 
Soil Mechanics. Palmer, A.C. (Ed.), p.263. Cambridge, England. 

RIZZI, E.; CAROL, I. & WILLAM, K. (1995). Localization analysis of elastic degradation with 
application to scalar damage. J. Eng. Mech.-ASCE , Vol. 121. Nº4. 

ROTS, J. & BLAAUWENDRAAD, J. (1989). Crack models for concrete: discrete or smeared? 
Fixed, multi-directional or rotating?, HERON, Delft University of Technology, The 
Netherlands, 34(1). 

ROTS, J.; NAUTA, P.; KUSTERS, G.M.A. & BLAAUWENDRAAD, T. (1985). Smeared crack 
approach and fracture localization in concrete. HERON, 30(1): 48. 

ROTS, J.G. & DE BORST, R. (1987). Analysis of mixed-mode fracture in concrete. J. Eng. 
Mech.-ASCE, Vol. 113, Nº 11, pp 1739-1758. 

ROTS, J.G. (1988). Computational modeling of concrete fracture. Dissertation, Delft University of 
Technology, Delft, Netherlands. 

ROTS, J.G.; NAUTA, P.; KUSTERS, G.M. & BLAAUWENDRAAD, J. (1985), Smeared crack 
approach and fracture localization in concrete. HERON, 30(1):48. 

RUDNICKI, J.W. & RICE, J.R. (1975). Condition for the localization of the deformation in 
pressure-sensitive dilatant material. J. Mech. Phys. Solids, 23, 371-394. 

RUNESSON, K. & MROZ, Z. (1989). A note on nonassociated plastic flow rules. Int. J. 
Plasticity, 5, 639-658. 

RUNESSON, K. ; OTTOSEN, N. & PERIĆ, D. (1991). Discontinuity bifurcation of elastic-
plastic solutions at plane stress and plane strain. Int. J. Plasticity, 7:99-121. 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 198 

SAMANIEGO, E. (2002). Contributions to the continuum modelling of Strong Discontinuities in two-
dimensional solids. PhD Thesis, Technical University of Catalonia, Barcelona, Spain. 

SIMO, J. & ARMERO, F. (1992). Geometrically non-linear enhanced strain mixed methods 
and the method of incompatible modes. Int. J. Num. Meth. Eng. 33:1413-1449. 

SIMO, J. & HUGHES, T.J.R. (1998). Computational Inelasticity. Spriner-Verlag, New York. 

SIMO, J. & JU, J.W. (1997a). Strain- and stress-based continuum damage models – I. 
Formulation. Int. J. Solids Struct., 23:281-840. 

SIMO, J. & JU, J.W. (1997b). Strain- and stress-based continuum damage models – II. 
Formulation. Int. J. Solids Struct., 23:841-869. 

SIMO, J. & OLIVER, J. (1994). Modelling strong discontinuities by means of strain softening 
constitutive equations. In H. Mang et al., editor, Proc. EURO-C 1994 Computer Modeling 
of concrete structures, pp. 363-372, Swansea. Pineridge Press. 

SIMO, J. & RIFAI, S. (1990). A class of mixed assumed strain methods and the method of 
incompatible modes. Int. J. Num. Meth. Eng., 29:1595-1638. 

SIMO, J.; OLIVER, J. & ARMERO, F. (1993). An analysis of strong discontinuities induced by 
strain-softening in rate-independent inelastic solids. Comput. Mech., 12:277-296. 

SLUYS, L.J. (1992). Wave propagation, localization and dispersion in softening solids. Printed by: 
W.D. Meinema B.V. Delft. 

SLUYS, L.J. & DE BROST, R. (1992). Wave propagation and localization in a rate-dependent 
crack medium: Model formulation and one-dimensional examples. Int. J. Solids Struct. 
29:2945-2958. 

SOKOLNIKOFF, I.S. (1987). Mathematical Theory of Elasticity. Robert E. Krieger Publishing 
Company, Florida-USA. 

STEINMANN, P. & WILLAM, K. (1991). Localization within the framework of micropolar 
elasto-plasticity, Advances in continuum mechanics, Ed. V Mannl et al., Springer Verlag, 
Berlin, p.296-313. 

STEINMANN, P. & WILLAM, K. (1994). Finite-element analysis of elastoplastic 
discontinuities. J. Eng. Mech.-ASCE, 120(11):2428-2442. 

STEINMANN, P. (1998). A model adaptive strategy to capture strong discontinuities at large 
inelastic strains. In: Idelsohn,S., Oñate, E., Dvorkin, E.N. (Eds.), Computational 
Mechanics. New Trends and Applications. Proceedings (CD-ROM) of the IV World 
Congress on Computational Mechanics (WCCM98). CIMNE. 

STEINMANN, P. (1999). A finite element formulation for strong discontinuities in fluid-
saturated porous media. Mech. Cohes.-Frict. Mater., 4, pp.133-152. 

TANO, R. (1997). Localization modelling with inner softening band finite elements. Ph.D. Thesis, 
Luleå University of Technology. 

THOMAS, T. (1961). Plastic flow and fracture in solids. Academic Press, New York, N.Y. 

TRUESDELL, C.A. & NOLL, W. (1965). The non-linear field theories of mechanics, in 
Handuch der Physik, Vol. III/3, S. Flügge (Ed.), Springer-Verlag, Berlin. 

TVERGAARD, V. & NEEDLEMAN, A.(1995) Effects of nonlocal damage in porous plastic 
solids. Int J Solids Struct., 32(8/9): 1063-1077. 

VARDOULAKIS, I. (1981). Bifurcation analysis of the plane rectilinear deformation on dry 
sand samples. Int. J. Solids Struct., 17(11):1085-1101. 



Bibliography 199

VARDOULAKIS, I.; GOLDSCHEIDER & GUDEHUS, G. (1978). Formation of shear bands in 
sand bodies as a bifurcation problem. Int. J. Numer. Anal. Meth. Geomech., 2:99-128 

WELLS, G.N. & SLUYS, L.J. (2000). Application of embedded discontinuities for softening 
solids. Eng. Fracture Mech., 65, 263-281. 

WELLS, G.N. (2001). Discontinuous modeling of strain localization and fracture. Dissertation, Delft 
University of Technology, Delft, Netherlands. 

WILLAM, K. & SOBH, N. (1987). Bifurcation analysis of tangential material operators. In. 
G.N. Pande and J. Middleton, editors, Transient/Dynamic Analysis and Constitutive 
Laws for Engineering Materials, C4/1—13. Martinus-Nijhoff Publishers. 

WILLAM, K. (2000). Constitutive models for materials: Encyclopedia of Physical Science & Technology, 
3rd edition. Academic Press. 

WILLAM, K.; BIĆANIĆ & STURE, S. (1984). Constitutive and computational aspects of 
strain-oftening and localization in solids. In K.A. Willam, editor, Constitutive 
Equations: macro and computational aspects, pp. 845-867, New York. 

WILSON, E.L.; TAYLOR, R.L.; DOHERTY, W.P. & GHABOUSSI, J. (1973). Incompatible 
displacement models, in S.J. Fenves et al.(eds.), Numerical and Computer Models in 
Structural Mechanics, Academic Press New York. 

ZIENKIEWICS, O.C. & TAYLOR, R.L. (1994a). El método de los elementos finitos. Volumen 1: 
Formulación básica y problemas lineales. CIMNE, Barcelona, 4ª edition. 

ZIENKIEWICS, O.C. & TAYLOR, R.L. (1994b). El método de los elementos finitos. Volumen 2: 
Mecánica de sólidos y fluidos. Dinámica y no linealidad. CIMNE, Barcelona, 4ª edition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITY MODELLING IN FAILURE MECHANICS 200 

 

 

 

 

 

 

 

 

 



Index  

 
 
 

 

Index
 

 
 
 
 
 
 

A 
Anchorage structure ..................................... 135 
Angle of internal friction ............................... 78 
Arc-length ...................................................... 143 
Assumed enhanced strain.............................. 15 
 
 

B 
Band Smeared Crack Model.......................... 11 
Bandwidth law................................................. 40 
Bifurcation time ........................................40, 41 
Brazilian test .................................................. 141 
Brittle Materials ................................................. 6 
 
 

C 
Cohesion .......................................................... 78 
Cohesive Crack Model ..................................... 9 
COMET ......................................................... 143 
Consistency condition.................................... 30 
Constant Strain Triangle .............................. 106 
Constitutive equation .................. 21, 25, 30, 98 
Continuous bifurcation............................55, 56 
Continuous failure line................................. 122 
Cosserat continua ........................................... 14 
 

D 
Damage criterion ......................................25, 30 

Damage Mechanics ........................................ 23 
Damage variable.............................................. 30 
Damping-like parameter .............................. 116 
Deviatoric stress tensor ................................. 75 
Diffuse failure zone........................................ 17 
Dilatancy angle ................................................ 79 
Dirac delta distribution .................................. 36 
Direct tension................................................ 156 
Dirichlet’s boundary  conditions.................. 20 
Discontinuity kinematics ............................... 32 
Discontinuity line.......................................... 122 
Discontinuous bifurcation ......................55, 56 
discontinuous failure line............................. 122 
Discrete (or intrinsic) hardening/softening 

parameter .................................................... 44 
Discrete crack approach ................................ 10 
Dissipation....................................................... 25 
Double-notched shear beam....................... 137 
Drucker-Prager model .............................54, 81 
Ductile Materials ................................................6 
 
 

E 
Effective strain ................................................ 46 
Effective stress ............................. 10, 23, 24, 25 
Elastic phase .................................................... 38 
Elastic-Plastic localization ............................. 55 
Element-by-element tracking...................... 122 
Ellipticity condition ..................................53, 58 
Enhanced continuum approaches ............... 14 
Equilibrium equation .........................20, 21, 98 
Essential boundary conditions ...............21, 98 
Evolution law .................................................. 30 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 202 

 
 

F 
Failure line ......................................................121 
Failure surface................................................120 
Fictitious crack model.......................................9 
Fixed-crack model ...........................................10 
Four-point bending test ...............................163 
Fourth order unit tensor ................................24 
Fracture energy ...............................8, 11, 24, 51 
Fracture Mechanics ...........................................7 
Fracture Modes..................................................8 
 
 

G 
Gradient-enhanced models............................15 
 
 

H 
Hadamard’s conditions...................................58 
Hardening rule .......................................... 26, 30 
Heaviside function ................................... 35, 99 
Helmholtz free energy ....................................30 
Hexahedron....................................................103 
Hydrostatic stress tensor ................................76 
 
 

I 

Impulse function .............................................34 
Inelastic phase..................................................38 
Inner traction continuity ...................22, 41, 98 
 
 

K 
Kinematics equation ................................ 21, 98 
 
 

L 

Lamé’s parameters...........................................24 
Line search......................................................143 
Loading-unloading condition ........................30 
Localization ellipse ...................... 70, 76, 82, 86 
Localization instability ....................................11 
Localization tensor ................................... 42, 59 
Localization ........................................................5 
Lüders bands ......................................................5 

 
 

M 
Material bifurcation.........................................53 
Maximum shearing stress...............................77 
Meter level ..........................................................4 
Micrometer level................................................4 
Micropolar method .........................................14 
Millimeter level ..................................................4 
Mohr-Coulomb criterion ........................ 54, 78 
 
 

N 
Nanometer level ................................................4 
Natural boundary conditions.................. 21, 98 
Neumann’s boundary conditions..................20 
Newton-Raphson ................................. 118, 143 
Non-local models ............................................15 
 
 

O 
Octahedral shear stress...................................75 
Outer traction continuity ...............................98 
Overall tracking .............................................128 
 
 

P 
Plastic Potential ...............................................59 
Plastic-Plastic localization ..............................55 
Poisson’s ratio..................................................24 
Polarization.......................................................57 
 
 
 
 

R 

 
Rankine criterion .............................................74 
Regularized Dirac’s delta................................38 
Residual forces vector...................................116 
Rice’s criterion .................................................57 
RILEM............................................................151 
Rotating-crack model......................................10 
 
 



Index 203

S 
Second order unit tensor ............................... 24 
Second-order work ......................................... 54 
Slip line ............................................................... 5 
Smeared crack approach................................ 10 
Softening .......................................................... 11 
Static condensation....................................... 117 
Step function ................................................... 35 
Strain space ...................................................... 25 
Strain-softening ............................................... 10 
Stress concentration ......................................... 7 
Stress intensity factor ....................................... 8 
Stress locking...................................... 11, 13, 19 
Stress space ...................................................... 25 
Stress-like hardening/softening variable..... 25 
Strong discontinuity approach................14, 19 
Strong discontinuity conditions..............46, 47 
Strong discontinuity equation ....................... 43 
Strong discontinuity phase ............................ 39 
Strong discontinuity time............................... 40 
Strong discontinuity zone.............................. 17 
Strong ellipticity condition ............................ 57 
 
 

T 
Tangent acoustic tensor................................. 57 
Tangent material operator ............................. 59 
Tangent moduli ............................................... 28 
Tangential material stiffness.......................... 29 
Tension test ................................................... 149 
Tension-only damage model......................... 30 
Tetrahedron ................................................... 103 
Three-point bending test ............................. 151 
Torsion problem........................................... 140 
Tresca yield criterion ...................................... 77 
 
 

V 
Variable bandwidth model ......................16, 48 
Vertex-like yield surface................................. 54 
Virtual work principle .................................... 21 
von Mises yield criterion................................ 75 
 
 

W 
Weak discontinuity approach........................ 14 
Weak discontinuity kinematics ..................... 33 
Weak discontinuity phase .............................. 39 
Weak discontinuity zone................................ 17 
 

 

Y 
Yield Function................................................. 59 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 



2  

 
 
 

 

Author Index
 

 
 
 
 
 

A 
Aifantis ............................................................. 15 
Åkesson ............................................................ 98 
Armero ........................................16, 19, 98, 118 
Arrea ............................................................... 163 
 
 

B 
Bažant ............................................ 10, 11, 12, 15 
Bazely................................................................ 15 
Belytschko........................................... 14, 15, 97 
Berends............................................................. 98 
Bhattacharjee ................................................. 163 
Bigoni................................................................ 54 
Blaauwendraad ................................................ 10 
Bocca ......................................................137, 163 
Borja.................................................................. 19 
 
 

C 

Callari ................................................................ 16 
Carol.................................................................. 23 
Carpinteri ...................................................9, 163 
Cedolin ............................................................. 10 
Červenka........................................................... 10 
Cervera ........................................................... 143 
Chaboche ......................................................... 23 
Chen.................................................................. 73 
Cope.................................................................. 10 
Cosserat ............................................................ 14 
Cuitiño .............................................................. 97 

 

D 

de Borst .......................................14, 15, 98, 135 
Desai ................................................................. 73 
Dvorkin ............................................................ 97 
 
 

E 

Engelmann....................................................... 97 
 
 

F 
Faria .................................................................. 23 
Felippa ............................................................ 104 
Fish.................................................................... 97 
 
 

G 
Garikipati .............................................16, 19, 98 
Gioia ................................................................. 97 
Griffith ................................................................7 
Grootenboer.................................................... 10 
 
 

H 
Hadamard ..................................................54, 58 
Han.................................................................... 73 
Hill..................................................................... 54 



 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS 206 

Hillerborg..................................................... 9, 10 
Hordijk ............................................................156 
Hueckel .............................................................54 
 
 

I 
Inglis ....................................................................7 
Ingraffea................................................... 10, 163 
Iordache ............................................................14 
Irwin ....................................................................8 
 
 

J 
Jirásek ......................................................... 11, 97 
 
 

K 
Kachanov................................................... 10, 23 
Klisinki ..............................................................98 
 
 

L 
Larsson.................................................16, 19, 98 
Léger................................................................163 
Lemaitre ..................................................... 23, 25 
Leroy..................................................................97 
Lotfi ...................................................................98 
Love.....................................................................1 
 
 

M 
Maier..................................................................54 
Mandel...............................................................54 
Manzoli ..............................................19, 40, 127 
Mazars ...............................................................23 
Mohr..................................................................78 
Mroz ..................................................................54 
Mühlhaus ................................................... 14, 15 
 
 

N 
Needleman................................................. 15, 97 
Ngo....................................................................10 
 
 

O 
Oh............................................................... 11, 12 
Oliver 15, 16, 17, 19, 22, 23, 31, 40, 

42, 48, 50, 70, 98, 127, 128, 
131 

Ortiz .....................................................15, 63, 97 
Ottosen ................................................54, 57, 80 
Ogden................................................................58 
Oller...................................................................73 
 
 

P 
Pamin ................................................................15 
Peerling .............................................................15 
Pijaudier-Cabot ......................................... 15, 23 
Potts...................................................................73 
Petersson.........................................................151 
 
 

R 
Rabotnov ..........................................................23 
Rankine .............................................................74 
Rashid................................................................10 
Regueiro............................................................19 
Reinhardt ........................................................156 
Rice ......................................6, 53, 54, 55, 56, 57 
Rifai................................. 15, 53, 54, 55, 56, 110 
Rizzi ...................................................................57 
Rots...........................10, 11, 135, 151, 156, 163 
Rudnicki .................................... 6, 53, 54, 55, 56 
Runesson ...................................... 54, 57, 80, 98 
 
 

S 
Samaniego.......................................................116 
Saouma..............................................................10 
Scordelis ............................................................10 
Shing..................................................................98 
Simo....................14, 15, 16, 19, 22, 23, 98, 110 
Siriwardane .......................................................73 
Sluys...................................................................98 
Sobh...................................................................44 
Steinmann............................................14, 15, 17 
Sture...................................................................98 
 
 

T 
Taylor ..............................................................114 
Tvergaard..........................................................15 



Author Index 207

 
 

V 
Vadoulakis........................................................ 14 
von Karmán....................................................... 5 
 
 

W 
Wells................................................................ 163 
Willam..............4, 14, 44, 53, 70, 73, 83, 84, 85 
 
 

Z 
Zdravković ....................................................... 73 
Zienkiewics .................................................... 114 
Zimmermann................................................... 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 



 


	Front Matter
	Contents
	Nomenclature
	Abbreviations
	Operators
	Abstract

	Chapter 1
	Introduction
	Why failure mechanics?
	How to face the problem
	Material behavior (meter-millimeter level)
	Some approaches to the modeling of failure
	Linear Elastic Fracture Mechanics – LEFM
	Discrete crack approach
	Smeared crack model
	Intraelement crack
	Enhanced continuum approaches

	Weak/strong discontinuity approach
	Failure simulation in three dimensions
	Adopted approach and aim of this work
	Contents of this work



	Chapter 2
	Strong Discontinuity in Solids Mechanics
	Introduction
	Governing equations
	Representative continuum damage model
	Isotropic damage model
	Constitutive equation

	Hardening rule
	Linear hardening law
	Exponential hardening law

	Time integration of the evolution laws, Tangent moduli
	Tension-only damage model

	Discontinuity kinematics
	Weak discontinuity kinematics
	Strong discontinuity kinematics
	Representative Weak-Strong discontinuity kinematics
	Regularized Dirac’s delta

	Phases of the stress-strain curve
	Bifurcation time
	Strong discontinuity analysis of the isotropic damage model
	Discrete constitutive equation
	Strong discontinuity conditions

	Variable Bandwidth Model - VBM
	VBM by pre-established law
	Automatic VBM

	Fracture Energy



	Chapter 3
	Material Bifurcation Analysis
	Introduction
	Historical aspects on localization
	Continuous and discontinuous bifurcation
	Material bifurcation condition
	Critical values
	General case
	Critical angle
	Calculation of

	Case of colinearity between
	Non-associated case
	Critical angle
	Calculation of

	Associated case (�)
	Geometrical interpretation – localization ellipse
	Critical angle – Associated case \(�\)
	Calculation of the � – Associated case \(�\)



	Critical values for several constitutive models
	One-parameter models
	Rankine criterion
	von Mises yield criterion
	Tresca yield criterion

	Two-parameter models
	Mohr-Coulomb criterion
	Non-associated Mohr criterion – Particular case

	Drucker-Prager criterion – Two-Invariant plastici
	Particular case


	Three-parameter models
	Three-invariants plasticity formulation

	Damage models
	Isotropic damage model


	Two dimensional case
	Plane stress
	Critical angle
	Non-associated case (�)
	Associated case (�)

	Critical hardening modulus -
	Non-associated case (�)
	Associated case (�)





	Annex 3A
	Specific Material Bifurcation Analysis
	
	Simple traction
	Triaxial case
	Drucker-Prager – Non-associated case



	Chapter 4
	BVP Discretization and Implementation Element Method
	Introduction
	Governing equations
	Redefinition of the kinematics

	Variational formulation
	Spatial discretization and solution
	Approximation of the regular part of the displacement field
	Tetrahedral finite element
	Hexahedral finite element

	Approximating displacement field in an enhanced element
	Approximation of the enhanced strain field
	System of algebraic equations
	Numerical integration

	Stability of the global solution
	Static condensation
	Newton-Raphson scheme for the statically condensed version

	Algorithm for tracking the discontinuity path
	Element-by-element tracking
	Overall tracking
	Heat conduction-like problem
	Finite element formulation

	Flowchart of the coupled problem
	Some examples of the failure surface
	Anchorage structure
	Double-notched shear beam
	Torsion problem
	Brazilian test




	Chapter 5
	Numerical Simulation
	Introduction
	Tools

	The importance of the exact capture of the bifurcation pseudo-time
	Tension test
	Tension bar

	Three-point bending test
	Notched bar in tension

	Direct tension
	Results for Case A
	Results for Case B
	Results for Case C

	Four-point bending test
	Single-notched shear beam
	Case A
	Case B




	Chapter 6
	Conclusions and recommendation for further work
	Summary and conclusions of the research developed
	Main contributions
	Future research lines


	Appendix A
	Symbolic notation of tensors
	Identity tensors
	Matrix notation
	Coordinate transformation
	Elasticity
	Elastic acoustic tensor
	Two-dimensional case

	Voigt-matrix representation
	Transformation of the stress, strain and constitutive tensors components
	Stress and strain tensor
	Constitutive tensor


	Stress deviator tensor and its invariants

	Bibliography
	Index
	Author Index



