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Abstract. Parametric studies of structures with holes using the conventional finite element 

method (FEM) have difficulties with regard to  remeshing. To avoid this problem, a coupling-

matrix-free iterative s-version FEM can create separate meshes for the whole analysis domain 

and the vicinity of a hole. In this study, we proposed a parametric analysis system to analyze a 

die with a hole for the V-bending process, and we evaluated the results in terms of fracture 

mechanics. We considered both brittle fracture and fatigue fracture modes. We evaluated 

fatigue fracture by maximum principal stress and brittle fracture by stress intensity factors. In 

the present parametric analysis, we evaluated a V-bending die with a hole by simply moving 

the center coordinates of the local mesh. Thus, this system makes it possible to perform a 

parametric analysis automatically with a single command. As a result of the parametric analysis 

with various hole coordinates, we found coordinates that reduced both the maximum principal 

stress at the V-groove bottom and the stress intensity factors at the deepest part of a crack. 
 

1 INTRODUCTION 

In the process of bending metal plates into a V shape (V-bending), occasionally the die 

breaks under extreme stress. Moreover, sometimes press operators are injured by pieces of a 

crushed die. Therefore, it is necessary to avoid these accidents by designing a V-bending die 

that is more difficult to break. 

According to previous research [1], the tensile stress in a V-bending die with a hole is smaller 

than that in one without a hole. Using the conventional finite element method (FEM), every 

time the hole characteristics are changed, remeshing is required. Thus, in this study, we used 

coupling-matrix-free iterative s-version FEM [2], which is a modification of the s-version FEM 

[3]. In this method, the mesh for the whole analysis domain and the mesh in the vicinity of the 

hole are created separately, and so it is not necessary to perform remeshing in a parametric 

study of the hole coordinates. 

The purpose of the present study was to develop a method to easily perform parametric 
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analyses of hole coordinates. Therefore, a V-bending die with a hole was subjected to a 

parametric study of its coordinates. We assumed failure modes of fatigue fracture and brittle 

fracture. We used maximum principal stresses to evaluate a die by fatigue fracture. Regarding 

brittle fracture, we used a mesh with a crack to assess stress intensity factors in the deepest part 

of the crack. 

2 COMPUTATIONAL METHOD 

2.1 Coupling-matrix-free iterative s-version FEM [2] 

According to the literature [2], in the coupling-matrix-free iterative s-version FEM, a local 

mesh and a global mesh can be configured as shown in Figure 1. A local domain Ω𝐿, a global 

mesh domain Ω𝐺 , a global—local interface Γ𝐺𝐿 , a geometric boundary condition Γ𝑢 , and a 

mechanical boundary condition Γ𝑡  are defined. Here, the displacement 𝒖  and the virtual 

displacement 𝜹𝒖 are calculated using Eq. (1) and Eq. (2), respectively.  

𝒖 = {
𝒖𝐺              𝑖𝑛  𝛺𝐺 ∖ 𝛺𝐿

𝒖𝐺 + 𝒖𝐿    𝑖𝑛  𝛺𝐿
, 

(1) 

𝜹𝒖 = {
𝜹𝒖𝐺              𝑖𝑛  𝛺𝐺 ∖ 𝛺𝐿

𝜹𝒖𝐺 + 𝜹𝒖𝐿    𝑖𝑛  𝛺𝐿
. 

(2) 

On Γ𝐺𝐿, 𝒖 and 𝜹𝒖 satisfy Eq. (3), 

𝒖𝐿 = 𝜹𝒖𝐿 = 0     𝑜𝑛 𝛤𝐺𝐿 . (3) 

The principle of visual work is given as 

∫ 𝜹𝜺𝑇𝑫𝜺𝑑𝛺
𝛺

= ∫ 𝜹𝒖𝑇𝒕𝑑𝛤
𝛤𝑡

+ ∫ 𝜹𝒖𝑇𝒃𝑑𝛺
𝛺

, 
(4) 

where a strain 𝜺, traction 𝒕, and body force 𝒃 are assumed. 

Eq. (1), Eq. (2), and Eq. (4) are used to derive Eq. (5) and Eq. (6), where 𝑫 is the elasticity 

matrix and 𝝈 is a local stress vector. 

∫ 𝜹𝜺𝐺𝑇
𝑫𝜺𝐺𝑑𝛺

𝛺𝐺
= − ∫ 𝜹𝜺𝐺𝑇

𝝈𝐿𝑑𝛺
𝛺𝐿

+ ∫ 𝜹𝒖𝐺𝑇
𝒕𝑑𝛤

𝛤𝑡
𝐺

+ ∫ 𝜹𝒖𝐺𝑇
𝒃𝑑𝛺

𝛺𝐺
, 

(5) 

∫ 𝜹𝜺𝐿𝑇
𝑫𝜺𝐿𝑑𝛺

𝛺𝐿
= − ∫ 𝜹𝜺𝐿𝑇

𝝈𝐺𝑑𝛺
𝛺𝐿

+ ∫ 𝜹𝒖𝐿𝑇
𝒕𝑑𝛤

𝛤𝑡
𝐿

+ ∫ 𝜹𝒖𝐿𝑇
𝒃𝑑𝛺

𝛺𝐿
, 

(6) 

By discretizing and rearranging Eq. (5) and Eq. (6), the following equations are obtained: 

𝑲𝐺�̅�𝐺 = − ∫ 𝑩𝐺 𝑇
�̅�𝐿𝑑𝛺

𝛺𝐿
+ 𝒇𝐺 , 

(7) 

𝑲𝐿�̅�𝐿 = − ∫ 𝑩𝐿𝑇
�̅�𝐺𝑑𝛺

𝛺𝐺
+ 𝒇𝐿 , 

(8) 

where a displacementstrain–matrix 𝑩 is assumed and the stiffness matrix 𝑲 and external force 

vector 𝒇 are expressed as Eq. (9) to Eq. (12), 
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𝑲𝐺 = ∫ 𝑩𝐺𝑇
𝑫𝑩𝐺𝑑𝛺

𝛺𝐺
, 

(9) 

𝑲𝐿 = ∫ 𝑩𝐿𝑇
𝑫𝑩𝐿𝑑𝛺

𝛺𝐿
, 

(10) 

𝒇𝐺 = ∫ 𝑵𝐺𝑇
𝒕𝑑𝛤

𝛤𝑡
𝐺

+ ∫ 𝑵𝐺𝑇
𝒃𝑑𝛺

𝛺𝐺
, 

(11) 

𝒇𝐿 = ∫ 𝑵𝐿𝑇
𝒕𝑑𝛤

𝛤𝑡
𝐿

+ ∫ 𝑵𝐿𝑇
𝒃𝑑𝛺

𝛺𝐿
, 

(12) 

where 𝑵 is a shape function. 

In this method, the calculations are reiterated using Eq. (7) and Eq. (8). First, �̅�𝐺 is calculated 

by the FEM using only the global mesh. The resulting stress is transferred from the global mesh 

to the local mesh, and  �̅�𝐿 is calculated for the local mesh. These calculations are repeated until 

they converge to a solusion. Here, we use the conditions of transferring stress referred to 

“scheme 2” in Ref. [2]. We use the nearest-neighbor interpolation as a way to transfer �̅�𝐺 and 

perform interpolation by the local-least squares method as a way to transfer �̅�𝐿. The sampling 

area of the local-least squares method matches one of the global elements. When these 

calculations are repeated, equilibria of internal forces and external forces are computed as 

relative residuals. When the relative residuals are less than a threshold value, the iterative 

calculation is finished. The equilibrium forces during iteration 𝑘-th are used for the following 

criterion formula with 𝜀 as threshold. 

‖{
𝒇𝐺 + 𝑲𝐺�̅�𝐺(𝑘+1)

− ∫ 𝑩𝐺 𝑇
�̅�𝐿(𝑘+1)

𝑑𝛺
𝛺𝐿

𝒇𝐿 + 𝑲𝐿�̅�𝐿 (𝑘+1)
− ∫ 𝑩𝐿 𝑇

�̅�𝐺(𝑘+1)
𝑑𝛺

𝛺𝐿

}‖

‖{𝒇𝐺

𝒇𝐿}‖
≤ 𝜀, 

 

(13) 

The block Gauss-Seidel method with Aitken acceleration [4] is used for iteration. 

 

       
Figure 1: Domains and boundary conditions 

for coupling-matrix-free iterative s-FEM 

Figure 2: Example of elements near a crack

2.2 Calculation method for stress intensity factor [5] 

We used a method proposed by Okada et al. [5] to calculate the stress intensity factors. The 
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energy release rates are computed by the virtual crack closure–integral method [6]. Figure 2 

shows the elements of the crack surface for which energy release rates are calculated. We 

assumed that the widths of elements for calculation and the width of elements near calculated 

elements have the same value (Δ1 = Δ2 = Δ). The failure mode in this study is mode I, so the 

following equations are applied under mode I. The deepest part of the crack is subjected to the 

plane strain condition. 

To use Eq. (14) [6], the energy release rate 𝐺I in an element with an area 𝑆1
𝐽
 is determined. 

Then, Young’s modulus 𝐸, Poisson’s ratio 𝜈, the stress intensity factor 𝐾I, the normal stress at 

the crack surface 𝜎33, and the vertical displacement of the crack surface 𝑣3 are assumed. In 

mode I, Eq. (14) and Eq. (15) hold. 

𝐸′ = 𝐸/(1 − 𝜈2), (14) 

𝐺I =
1

2[𝑆1
𝐽 −

1
4

(𝑆1
𝐽 − 𝑆2

𝐽)]
∫ 𝜎33(𝒓)𝑣3(𝛥 − 𝒓)𝑑𝑆1

𝐽

𝑆1
𝐽

. 
(15) 

Based on Eq. (15), Eq. (16) is derived as 

𝐺I =
1

2[𝑆1
𝐽 −

1
4 (𝑆1

𝐽 − 𝑆2
𝐽)]

∑ �̅�𝐼𝑣3
𝐼 𝑃3

𝐼

5

𝐼=1

. 
(16) 

From Eq. (16), the energy release rate depends on the reaction force and displacement for each 

node. 

As above, the energy release rate is calculated. From Ref. [7], Eq. (17) holds. 

𝐾I = √
𝐸

(1 − 𝜈2)
𝐺I. 

(17) 

The energy release rates that are computed, and Eq. (17) is used to derive the stress intensity 

factors. 

2.3 Parametric analysis 

In this study, we analyzed a V-bending die and used the central coordinates of a hole as 

parameters in this analysis. With the coupling-matrix-free iterative s-version FEM, hole 

coordinates are not fixed after meshes are created. To use this property, we created a script to 

conduct many analyses of various coordinates of a hole at once. Before we execute the script, 

we must first specify the central coordinates of the hole. 

We conducted an analysis for holes with 336 different positions specified by the hole center 

coordinates. 

3 ANALYSIS OF V-BENDING DIE 

3.1 Analysis conditions 

We used a die with a V-groove width of 10 mm made by AMADA CO., LTD. [8]. The metal 

material of the die was steel plate cold commercial (SPCC) with a Young’s modulus of 206 

GPa and Poisson’s ratio of 0.3. Figure 3 shows the dimensions of the die. The global mesh size 
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was 0.5 mm, and its thickness was 5 mm. The shape of the local mesh was an ellipse with a 

major hole axis length of 1 mm, and a minor axis length of 0.5 mm. The inclination of the 

ellipse was 47° from the horizontal plane. The major axis of the local mesh was 2 mm long, and 

the minor axis was 1 mm long. Figure 5 shows the global and local meshes. We defined the V-

bending die without a crack as global mesh 1, and the die with a crack as global mesh 2. The 

number of elements and nodes in each mesh are given in Table. 1. 

We expected that most die failures are due to a crack in the V-groove bottom. Thus, we made 

a crack 0 mm thick in this location. The crack spacing was 10 mm, and its radius was 0.5 mm. 

According to Eq. (18) [7], which represents the stress state near a two-dimensional penetrating 

crack under uniform tensile stress, if the tensile stress 𝜎0 is 1 MPa, the stress 5 mm away from 

the center of the crack is 1.01 MPa. We considered this value as sufficiently small and set a 

crack spacing of 10 mm in this study.  

𝜎 =
𝜎0𝑥

√𝑥2 − 𝑎2
 (18) 

The shape of an actual crack in a V-bending die is unknown. Therefore, we assume a 

semicircular shape for the crack. The size of the front of the crack Δ was about 0.014 mm. We 

used the 8-point Gaussian quadrature for the integration on elements. 

 

          
Figure 3: Size of V-bending die (Unit: 

mm) 

Figure 4: Boundary conditions 

 

Table 1: Number of elements and nodes 
Mesh Elements Nodes 

Global mesh 1 600 1,300 

Global mesh 2 5,295 6,590 

Local mesh 46,256 50,400 
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Figure 5: Global mesh 1 (no crack), global mesh 2 (with crack), and local mesh (hole) 

 

Next, we conformed the model to the coordinate system and boundary conditions in Figure 

4. We considered the length of the V-bending die in the z direction to be infinity and we 

regarded the surface of the V-groove as symmetric in the x direction, giving symmetric 

boundary conditions to each suitable surface. The bottom of a V-bending die is fixed during 

use, so clamped conditions were applied to the bottom of the V-bending die. 

We used the results from process simulation of a V-bending die from the Kuboki Laboratory 

(University of Electro-Communications) [9] as the mechanical boundary conditions. In this 

simulation, the punch was a rigid body, the punch load was 0.1 tonf/mm, and the die made of 

steel with a Young’s modulus of 205.8 GPa. The work-piece was a 1.6 mm thick SPCC plate. 

The contact tractions shown in Figure 6 and Figure 7 were used as mechanical boundary 

conditions. In Figure 6, the horizontal axis is the x coordinate, and the vertical axis is traction 

in the x direction. In Figure 7, the horizontal axis is the x coordinate, and the vertical axis is 

traction in the -y direction. These values were used to assume value at the center of an element 

is the same as the traction at the surface. Thus, we approximated a constant traction on each 

element. 

To use the traction described above, the first term on the right hand of the Eq. (11) is 

calculated. 

 

    
Figure 6: Mechanical boundary 

                 conditions in x direction  

 

Figure 7: Mechanical boundary 

conditions in y direction 

3.2 Results of analysis of maximum principal stress 

This section describes how the global mesh without a crack was used to evaluate maximum 
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principal stress. Figures 8 and Figure 9 show the distributions of the maximum principal stress 

without a hole and with a hole, respectively. Note that the smallest maximum principal stress 

in Figure 9 is located at the V-groove bottom in the parametric analyses. The values of the 

maximum principal stress at the V-groove bottom using dies with and without a hole are 283 

and 208 MPa, respectively. The central coordinates of the smallest maximum principal stress 

are (1.75, 9). The maximum principal stress decreased by 26.5% due to this hole. 

 

        
Figure 8: Maximum principal stress  

    (without hole) 

 

Figure 9: Maximum principal stress  

  (with hole) 

Figure 10 shows the distribution of maximum principal stress from the results of 336 

parametric analyses. The horizontal and vertical axes are the coordinates of the center of the 

hole, and the maximum principal stress corresponding to each coordinate is given in each box 

with color-coding. The box of the value of the maximum principal stress without the hole, 283 

MPa is yellow. The smaller the value in each box is than 283 MPa, the redder the box is, and 

the bigger, the greener. 
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Figure 10: Distribution of maximum principal stress (MPa) 

 

3.3 Results of the analysis of stress intensity factors 

This section describes how we used the global mesh with a crack to evaluate the stress 

intensity factors. First, we used the conventional FEM to compare V-bending dies with and 

without a hole. Figure 11 shows the results for stress intensity factors near a crack in the V-

bending die without a hole. The horizontal axis is the angle at each point along a semicircular 

crack, and the vertical axis is the stress intensity factor. In this study, we used the deepest part 

of the crack (𝜃 = 90°) as an evaluation index to make a comparison. The stress intensity factor 

for the deepest part of the crack is 4.74 MPa√m in a V-bending die without a hole. 

 

           
Figure 11: Stress intensity factor of V-bending die without a hole 

y coordinate [mm]

12 286 285 285 284 284 284 283 283 283 283 283

11.5 288 288 287 286 285 285 285 284 284 283 283 283

11 291 292 290 289 288 286 285 285 285 284 284 283 283

10.5 286 294 295 291 291 290 288 286 285 285 284 284 284 283

10 267 288 295 296 293 294 290 288 287 286 286 285 284 284 284

9.5 237 275 292 298 298 294 295 291 289 288 287 286 285 285 284 284

9 208 259 285 297 300 300 296 296 293 290 289 288 287 286 285 285 284

8.5 273 282 298 303 302 300 297 297 294 292 289 288 287 286 286 285 285

8 296 299 301 304 302 297 296 294 294 293 292 290 288 287 286 286 285

7.5 306 300 300 301 300 295 297 293 293 292 291 290 289 288 287 286 286

7 305 300 297 297 298 293 295 292 291 290 290 290 289 288 287 287 286

6.5 300 297 293 295 295 290 294 291 290 289 289 289 290 289 288 288 287

6 293 293 290 292 290 289 291 290 289 289 288 288 288 288 289 288 288

5.5 289 289 288 288 289 288 288 288 288 288 288 288 287 287 287 288 288

5 286 285 286 286 287 286 286 287 287 287 287 288 287 287 287 287 287

4.5 284 284 284 284 285 285 285 285 286 286 286 287 287 287 287 287 288

4 282 283 282 283 283 284 284 285 285 286 286 286 287 287 287 288 288

3.5 282 282 282 282 282 283 283 284 285 285 286 286 286 287 288 289 289

3 281 282 281 282 282 283 283 283 284 285 285 286 286 287 287 288 289

2.5 281 281 281 281 282 282 282 283 283 284 285 285 286 287 287 288 289

2 281 281 281 281 282 282 282 283 283 284 284 285 286 287 288 289 289

1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75

x coordinate [mm]
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Figure 12 shows the results of a parametric analysis for 336 different hole positions. In the 

figure, the horizontal and vertical axes are the coordinates of the center of the hole, and the 

stress intensity factors corresponding to each coordinate are given in each box with color coding. 

The box of the value of the stress intensity factor without the hole, 4.74 MPa√m is yellow. The 

smaller the value in each box is than 4.74 MPa√m, the redder the box is, and the bigger, the 

greener. 

From the results, the stress intensity factor for the central coordinates (1.75, 9) has the 

smallest value of about 3.39 MPa√m. The stress intensity factor at the deepest part of the crack 

with the central coordinates (1.75, 7) has the largest value of about 4.91 MPa√m. Figure 13 

shows the residual history over time. The horizontal axis is the iteration step 𝑘, and the vertical 

axis is the right-hand side of Eq. (19). In this analysis, the residual after 17 iterations was lower 

than the threshold, 𝜀 = 10−3. 

 

 
Figure 12: Distribution of stress intensity factor (MPa√m) 

 

K_I比較

12 4.67 4.67 4.66 4.66 4.65 4.64 4.64 4.64 4.63 4.63 4.63

11.5 4.69 4.70 4.69 4.68 4.67 4.66 4.65 4.64 4.64 4.64 4.63 4.63

11 4.70 4.74 4.71 4.70 4.69 4.68 4.67 4.66 4.65 4.65 4.64 4.64 4.63

10.5 4.60 4.70 4.71 4.73 4.74 4.70 4.70 4.69 4.68 4.67 4.66 4.65 4.64 4.64

10 4.35 4.54 4.70 4.69 4.78 4.71 4.72 4.70 4.70 4.68 4.67 4.66 4.66 4.65 4.64

9.5 4.01 4.25 4.52 4.67 4.76 4.73 4.76 4.72 4.72 4.70 4.69 4.68 4.67 4.66 4.65 4.65

9 3.39 3.92 4.30 4.55 4.70 4.74 4.73 4.75 4.75 4.72 4.71 4.70 4.68 4.67 4.67 4.66 4.65

8.5 3.48 4.11 4.49 4.64 4.71 4.70 4.77 4.75 4.74 4.73 4.72 4.71 4.69 4.68 4.67 4.67 4.66

8 4.33 4.52 4.69 4.72 4.73 4.83 4.74 4.75 4.74 4.73 4.73 4.72 4.70 4.69 4.68 4.67 4.67

7.5 4.80 4.74 4.77 4.74 4.76 4.77 4.80 4.73 4.74 4.73 4.72 4.71 4.70 4.69 4.68 4.68 4.67

7 4.91 4.82 4.76 4.77 4.77 4.73 4.75 4.74 4.74 4.72 4.71 4.71 4.70 4.69 4.68 4.68 4.67

6.5 4.88 4.84 4.79 4.79 4.76 4.76 4.72 4.73 4.72 4.72 4.71 4.71 4.70 4.69 4.69 4.68 4.68

6 4.81 4.79 4.76 4.75 4.73 4.72 4.73 4.72 4.71 4.71 4.71 4.71 4.71 4.70 4.70 4.69 4.69

5.5 4.77 4.75 4.74 4.72 4.71 4.71 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.69 4.69

5 4.71 4.70 4.70 4.70 4.68 4.69 4.69 4.68 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69

4.5 4.68 4.66 4.67 4.67 4.67 4.66 4.67 4.68 4.68 4.68 4.69 4.69 4.69 4.70 4.70 4.70 4.70

4 4.65 4.64 4.65 4.65 4.65 4.66 4.66 4.66 4.67 4.67 4.68 4.69 4.69 4.70 4.70 4.71 4.72

3.5 4.64 4.64 4.63 4.63 4.64 4.64 4.65 4.65 4.66 4.66 4.67 4.68 4.69 4.69 4.70 4.70 4.71

3 4.62 4.63 4.63 4.62 4.63 4.63 4.63 4.64 4.65 4.66 4.66 4.67 4.68 4.69 4.69 4.70 4.71

2.5 4.62 4.62 4.62 4.62 4.62 4.62 4.63 4.63 4.64 4.65 4.65 4.66 4.67 4.68 4.69 4.70 4.72

2 4.62 4.61 4.61 4.62 4.62 4.62 4.62 4.63 4.63 4.64 4.65 4.66 4.66 4.67 4.69 4.70 4.71

1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75

x coordinate [mm]

y coordinate [mm]
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Figure 13: Residual history for hole center coordinates (1.75, 9) 

 

3.4 Discussion 

First, from Figure 10, the values of almost all maximum principal stresses are not reduced 

very much, indicating that an improperly placed hole increases the maximum principal stress. 

This could possibly make the die more fragile and prone to fatigue fracture. Conversely, the 

tendency of reduced maximum principal stress is clear. The coordinates (1.75, 9) are nearest 

the crack. Thus, as the coordinates of the hole center approach a crack, the maximum principal 

stress is reduced. 

In the same way, from Figure 12, most of stress intensity factors are increased. Therefore, 

we concluded that an improperly placed hole also makes the die prone to brittle fracture. 

Accordingly, the stress intensity factor is the smallest at (1.75, 9). As the coordinates of the 

hole center approach the crack, the stress intensity factor is reduced. 

Previous research [1] also showed a reduction of the tensile stress at the V-groove bottom 

by an appropriate hole. This study shows that a properly placed hole reduces the maximum 

principal stress and the stress intensity factor, which in turn reduces the potential for fatigue 

fracture and brittle fracture. 

4 CONCLUSIONS 

In this study, we evaluated fatigue and brittle modes using the maximum principal stress and 

stress intensity factor as evaluation indices. 

A parametric analysis showed that a properly positioned hole in a V-bending die reduced the 

maximum principal stress and stress intensity factor. 

By separating the meshes for the entire V-bending die and the hole to use coupling-matrix-

free iterative s-version FEM, we realized hole relocation without remeshing. In conventional 

FEM, we must consider the difference in the shapes of meshes. In the method used here, the 

same meshes are used for the analysis, so we did not have to account for the difference in 

meshes. Additionally, we could make a script that easily performed the parametric study by 

without remeshing. Hence, the method in this study allowed us to do parametric analyses for a 
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structure with a hole automatically. 

Regarding future work, although the only parameters of this analysis was the coordinates of 

the hole center, we need to perform the analysis with additional parameters, such as the hole 

shape and size. In addition, a parametric analysis with many degrees of freedom, such as the 

analysis in this study, takes a lot of computional time. We are going to consider a solution for 

this problem based on mathematical optimization. 
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