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A contact formulation based on localized Lagrange multipliers:
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SUMMARY

The non-penetration condition in contact problems is traditionally based on the classical Lagrange
multiplier method. This method makes extensive use of modelling details of the contacting bodies
for contact enforcement as the contact surface meshes are in general non-matching. To deal with this
problem we introduce a novel element in the Lagrange multiplier approach of contact modelling, namely,
a contact frame placed in between contacting bodies. It acts as a medium through which contact forces
are transferred without violating equilibrium in the contact domain for discrete contact models. Only
nodal information of the contacting bodies is required which makes the proposed contact enforcement
generic. The contact frame has its own independent freedoms, which allows the formulation to pass
contact patch tests by design. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computational modelling and analysis of structural contact problems have been important
subjects of interest over the past several decades. Traditionally, the non-penetration condi-
tion has been enforced exactly by the Lagrange multiplier technique [1-5] or approximately
by a penalty method [6, 7, 5]. The traditional Lagrange multiplier technique is essentially
a two-field formulation. The Lagrange multipliers act directly as forces between contacting
bodies.

Recently, several researchers have proposed methods which formulate the so-called interme-
diate contact surfaces, over which contact quantities can be defined and discretized. Examples
of such ideas are to be found in References [§—10]. Further extensions of these approaches can
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be found in References [11-13] and in the mortar-like approaches in References [8, 14, 15],
which enforce pressure continuity on the contact surface. Specifically, in order to circumvent
overcontraining in the approaches of References [11-13], the pressure continuity is enforced
at selected surface nodes and for the remaining nodes a kinematic gap continuity is enforced.
Consequently, this leads in general to an unsymmetric formulation, with the task of choosing
the number of pressure and kinematic constraints left to the user.

In the present paper, first, we introduce a contact frame that is akin to the intermediate
contact surface with one distinct difference, that is, the contact frame is now endowed with its
independent displacement degrees of freedom and its associated equilibrium equations. The
equilibrium equations for the frame displacements on the contact frame turn out to be the con-
tact condition. The frame equilibrium equation consists of the localized Lagrange multipliers
that are assigned to each side of the contacting substructures. Consequently, the displacements
of the two contacting substructural surfaces are related to the frame displacement, instead
of relating themselves directly, leading to a localized kinematic contact condition which is
the variational dual to the frame equilibrium equation. Hence, the task of satisfying the con-
tact patch test [16, 17] is reduced to the nodal placement of the contact frame displacement.
Second, because the contact equilibrium condition and the contact kinematic condition are
dual, one may express them into a variational functional. This leads to a symmetric solution
matrix. Third, the locations and the number of the frame nodal points are uniquely determined
as will be shown in Section 7. This means both the contact equilibrium equation on the contact
frame and its dual kinematic condition are uniquely determined, thus leading to non-singular
contact constraints.

In passing we mention that the present approach is essentially an extension of the varia-
tional framework presented by Park and Felippa [18, 19]. Specializations derived from this
variational framework include: a direct flexibility method and its dual form for parallel com-
putation [20], and an algorithm for extracting substructural flexibility from measured global
flexibility [21]. It should also be noted that Aminpour et al [22] presented an algorithm
for interfacing non-matching grids by utilizing a similar variational approach as utilized in
the present paper. A closer examination of their numerical examples, however, reveals that
the interface construction procedures they employed apparently do not necessarily pass the
patch test.

The contents of this paper are as follows. First, we introduce terminology and notational
conventions. Then, we describe the contact frame that is placed in between two contacting
surfaces. An expression for the virtual work of the contact tractions is derived that will be
helpful for identifying the role of the localized Lagrange multipliers. Next, the two stages of
contact computations are discussed, namely, the contact detection state (stage 1) and the stage
in which the predicted contacting surfaces will slide and deform towards equilibrium within
a load step (stage 2). This is followed by an in-depth derivation of the contact part of the
first variation, which accounts for the tangential motion of the contact frame.

In the remaining part of this paper we specialize the general 3D-formulation to the case of
2D-contact. We first discuss the discretization of the 2D contact frame. A crucial ingredient
in the formulation of the discrete contact frame is its node placement. We will accomplish the
contact frame node placement by satisfying contact patch tests. For a piecewise linear contact
frame and using collocated contact forces, we will show that we need to place the frame
nodes at roots of the moment line to pass these tests. Next, we discuss the non-singularity
of the formulation. Then, we discuss a slip discretization that uniquely defines the tangential
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motion of the frame. Discrete first and second variations are also presented. The latter shows
the symmetry of our approach. We finish by presenting numerical results.

2. NOTATION

Two bodies that come in contact are depicted in Figure 1. All quantities related to body 1
will be denoted by non-barred quantities and the quantities related to body 2 will be denoted
by barred quantities. Although the figure shows two contacting bodies, the picture is intended
to capture also the case that two parts of the same body come in contact. Self-contact is
therefore also implied. One should replace the terminology ‘body’ by ‘contact side’ for such
cases.

The notation of the various quantities is based on the following conventions. Scalars are
given in italics (e.g. @, A). Vectors and tensors are in bold-face (e.g. a,a). Repeated tensor
and matrix indices appearing as both subindex and superindex, as in

a,»bi, Cl,‘biC,’, Al

1

imply summation. Repeated indices that appear only as subindex or superindex, as in
Clibl‘, aibici, Aii

do not imply summation. The usual convention that Latin indices run from 1 to 3 and Greek
indices run from 1 to 2 will be adopted.

3. CONTACT FRAME

The contact system of Figure 1 is redrawn in Figure 2 by separating the two contacting bodies
in opposite directions. A contact frame is placed at the original contact position. The vertical
dashed lines indicate corresponding points on the bodies and the contact frame. That is, the
points connected by the vertical dashed lines have identical positions in space.

body 2, denoted by barred quantities

n Ly
e
y=yg~ i\t - "~ contact frame

tp=—t
T
body 1, denoted_b.y body 1
non-barred quantities
Figure 1. Contact between two bodies. Figure 2. Expanded view of contact between two

bodies with a contact frame placed in between.
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The contact frame is introduced as a new element in the description of contact problems.
Each body contacts one of its sides and exerts forces on the frame. The total force system
on the contact frame is then required to be in self-equilibrium. This property is expected
to produce high accuracy in the computed contact forces. The contact frame can be seen
as a transducer that transfers the action of one body onto the other in a way that satisfies
momentum balance.

The motion of body 1 is described by a displacement u from its reference position X. The
motion of body 2 is described by a displacement u from its reference position X. The current
positions X and X of bodies 1 and 2, respectively, are thus given by

X:X«I»l], )-(:X+l-l (1)

and are indicated in Figure 2.

The description of the motion of the contact frame should include the rigid body motions.
Moreover, it should be able to deform so that the bodies on either side can deform during
contact. The position y of the contact frame is composed of a reference position Y and a
relative displacement v such that

y=Y+v 2)

We choose the reference position Y to be the current position of the contact frame. We also
introduce the notation y for the description of the position of the contact frame from the
opposing side. By definition, we set y equal to y and we have

§y=Y+7V with Y=Y and ¥v=v (3)

Thus, we use y to describe the contact frame side where body 1 contacts and use y to describe
the contact frame side where body 2 contacts. This makes it possible to use similar notations
for the description of the contact on either side of the contact frame. Also, it allows different
descriptions of the same contact frame depending on the side of contact. This will prove to
be convenient.

4. VIRTUAL WORK OF CONTACT TRACTIONS
The tractions acting on the contacting bodies are drawn in the expanded view of Figure 2.
Momentum balance requires that the tractions acting on the contact frame are equal in magni-

tude and opposite in sign to the tractions acting on the corresponding points of the contacting
bodies. The virtual work of the contact tractions is given by

(wz:// (t~5u+tf-5v)d&/+//_(f~5ﬁ+f/»~6"')d&/
A EA
:// t~(5u—6v)d&/+//_f'(5ﬁ—57)dj with ov= v (4)
o, A

The notations .o and .7 are used to indicate the contact areas of bodies 1 and 2, respectively.
In the continuum description these are identical, whereas they can be different when the contact
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system is discretized. Similarly, d.«Z and d.« represent infinitesimal contact areas of bodies 1
and 2, respectively. All areas refer to the current configuration of the bodies.

The contact tractions are now decomposed into normal and tangential components. To this
end, we introduce a locally orthonormal base system a; at each contact frame point such that
a3 is normal to the contact frame. On the opposing side of the contact frame define a; =—a;.
Finally, introduce the special notation n=as; and n=a; for the normals. The decomposition
of the contact tractions into normal and tangential components becomes

tf:—t:/?a,«, Ef‘:—fz)ul{l[ (5)

The special notation A= /3 and 2= A3 is introduced for the normal components of the contact
tractions. Finally, the orientation of the normals n and n is chosen such that both A and 4
will be positive in compression. This choice of orientation for the normals is illustrated in
Figure 2. The choice for base system a; is motivated by the fact that it makes A’ =/ in the
continuum description as a result of momentum balance.

Substitution of the expressions for t and t into the virtual work of the contact forces yields

5WC:—/ dc(ﬂnﬁﬁaa).((su—5v)d&/—/L_C(zﬁwﬁﬁ“).(aﬁ—awdﬂ 6)

This expression will be useful to identify the Lagrange multipliers, which will be introduced
later, with the components of the contact tractions.

5. CONTACT ENFORCEMENT

Consider two bodies that come in contact. Select from the contact zone of one body an
arbitrary point, which we call the hitting point, and consider the contact of this point with
the target surface of the other body. This situation is depicted in Figure 3. The configuration
of the target surface at three different moments in time is distinguished by {A,B,C}. The
location of the hitting point at the same three moments in time is indicated by {A,B’,C’}.
Positions A and A’ are before contact, position B and B’ are at the instant of first contact and
positions C and C’ are after the instant of first contact.

Figure 3. Motion of hitting node and target surface.
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Looking at the computation of contact, similar stages can be recognized. If contact occurs
within a load (or time) step, the positions B and B’ then correspond to the predicted contact
location. The position A and A’ become the configuration from which the step is taken. At
the end of the step, all forces are in equilibrium at positions C and C’. This leads us to the
following subdivision of computational stages:

Stage 1: Detection of contact (prediction). The contact between a (hitting) point and the
(target) surface it hits has to be detected.

Stage 2: Sliding and deforming towards equilibrium (correction). A detected contact from
stage 1 only predicts the contact location. The hitting point will slide along its moving (and
deforming) target surface starting at its predicted location until force equilibrium is established
within the bounds of the surface characteristics.

The detection of contact involves the motion of the target surface from A to B and the motion
of the hitting point from A’ to B’. Sliding and deforming towards equilibrium involves the
motion of the target surface from B to C and the motion of the hitting point from B’ to C’.
Essentially, this scheme is recognized as a predictor—corrector algorithm with the first stage
as predictor and the second as corrector.

The first stage is known as contact search. Many contact search algorithms can be found
in the literature. Hierarchical contact search [5, 23, 24] and bucket search [5, 25, 26] can be
mentioned. When a point is already in contact with a hitting surface in the previous step, the
contact search is not needed. The contact location in the previous step can then be taken as
the prediction for the next step.

The second stage includes the solution of a set of non-linear contact constraint equations.
This takes into account the effect that contact will have on the motion of the bodies (including
deformations) as well as the change in contact location. This is represented in Figure 3 by
the motion from B’ to B” without a change in contact location plus a slide from B” to
the final position in C’. The sliding motion accounts for the fact that the magnitude of the
frictional forces cannot exceed the maximum frictional force that can be generated on the
contact surface.

The introduction of the contact frame in contact computations affects the formulation of the
second stage. Therefore, in the following this stage is considered in detail. Detailed descrip-
tions of the first stage can be found in the literature and are not given here.

6. VARIATIONAL FORMULATION OF A FRAME-BASED CONTACT MODEL

The contact part of the first variation should be set-up to define the motion of the contact
frame. Traditional contact formulations do not have this requirement since the contact frame is
then absent. The definition of the motion of the contact frame in its normal direction (normal
motion) is dictated by the normal motions of the contacting bodies. Therefore, defining this
motion poses no problems. However, the motion of the contact frame tangential to its own
plane (tangential motion) needs careful consideration. Even for a frictionless formulation, we
still need to define the tangential motion since the frame nodes can move tangentially.

In the case of frictional contact, the local conditions on the contact surface prescribe whether
a state of stick (resp. slip), where the relative velocity is zero (resp. non-zero), will persist.
Basically, we follow the approach advocated in Reference [13] to implement these two states.
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Figure 4. Friction yield function.

A constitutive framework is needed to discern the two states and transitions between them.
To this end, define a single yield function

T=/OIY + (Y - (M)

in which u represents the Coulomb friction coefficient. On the opposing side of the contact
frame a similar yield function YT is defined. However, since the surface characteristics are
the same on both sides of the contact frame we have u=j. The yield function is required
to be negative or zero. A negative value T <0 represents a state of stick, while slip will be
incipient for T =0. Hence, the traction A*a, has to remain inside (T <0) or on (YT =0), a
circular yield surface Y =0 with radius u/ (see Figure 4).
The gap normal to the contact surface has to remain zero on the contact surface. Mathe-
matically, this can be written as
x —y=k with k=«"a,=x,a* (a,=a” and x,=«") ®)

X—§=k with k=i"a,=i,a (a,=a" and i, =i*)

This equation allows slip displacements k and k tangent to the contact frame. These slip
displacements cannot be independent since that would leave the tangential motion of the
contact frame undefined. To deal with this, we set

Ky = ISy )

which defines the tangential motion of the frame to be the average of the tangential motion of
the two bodies on either side of the contact surface. The gap constraints (8) are decomposed
into normal and tangential directions and enforced in a weak sense using the variational form

om = [ [ (0m-(x =)} 007, (k= )} + 0] = 1)+ 51 = ) dof
+ [ [ OUR- =9} + 005, (=9} + 0750~ )+ (1~ DEFD LS
(10)

To discuss this variational form let us investigate the integrand over ., i.e. the contact
between body 1 and the frame. We introduced the Lagrange multipliers 4, A* to enforce the
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Figure 5. Direction of slip displacement.

gap constraint X — y=x in normal and tangential directions. Comparing Equation (10) in
its stick state, i.e. y=0 everywhere, with expression (6) for the virtual work of the contact
tractions and setting dn'*®! = —5W, at equilibrium reveals that these Lagrange multipliers are
the components of the contact tractions. The contact domain .« is defined by the conditions

n-(x—y)=0 where 120 (11)

The third and fourth terms of the integrand govern the sliding behaviour of the model. Para-
meter 7 is used as switch to either allow a point x to slide along the frame (y=1) or prohibit
this sliding (y = 0). This parameter is a function of position.

Two issues remain to be discussed, namely, when to switch between stick and slip states
and how to define the constraint on the frictional force in the slip state. These issues are
interconnected and resolved as follows. At the start of an analysis we have no knowledge
about the appropriate state and assume the whole system is in a sticking state and set y=0
everywhere. This forces the slip displacement k to be zero. Suppose that the resulting deformed
configuration does not violate the yield condition, i.e. T <0 everywhere, so that no further
action needs to be taken. Let all frictional tractions for this configuration be inside the yield
surface (illustrated by point A in Figure 4). Increased loading will at some instant reach the
transition state where T =0 and k=0. This state still satisfies balance of linear momentum
and the stick state is assumed to persist. Further loading finally violates the yield condition
T <0 (illustrated by point B in Figure 4) and we need to switch to the slip state and have
to set y=1 at such points. The direction of the frictional forces is defined by T =0 as being
opposite to the direction of sliding. However, if the previous state was a sticking state, we
have no previous sliding direction available and simply map the frictional force back to the
yield surface in radial direction using (see point C in Figure 4)

A =ulcos @, A}=puising (12)
in which angle ¢ defines the direction of the frictional force in the previous iterate. When the
previous state is a slipping state, a non-zero slipping direction is available. Therefore, we can

set the constitutive equation that defines the frictional forces such that it is consistent with
the yield condition T =0 and use (see Figure 5)

M= —udcosy, A= — uisiny (13)
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in which angle \ defines the direction of slip in the previous iterate. The convergence to the
balance of linear momentum provides a direction of slip until the point of transition T =0
and k=0 is reached again. Directional dependence of the frictional forces then becomes
unavailable and we switch back to the stick state y=0. It is noted that the limiting values
A} are set based on the previous iterate. We also note that the conditions used here to deal
with the stick/slip states correspond precisely to those developed in Reference [27] for rigid
plasticity. For the frictionless case, we can use y =0 in our model and the difference between
the constitutive definitions (12) and (13) vanishes.

In the remaining part of this section we first rewrite d7'°® in terms of the variational
unknowns. The resulting expression is then used to illustrate that Equation (9) indeed defines
the tangential motion of the frame to be the average of the tangential motion of the two
contacting sides.

We begin by introducing two surface co-ordinates &* that define the location of the con-
tact point on the contact frame. The relation of these co-ordinates with the tangents a, is
defined as

I 20
a,=-—Y, Wwhere (),=—= 14
v D=5 (14)

This definition implies that the &* are orthogonal co-ordinates and its variation 6&* is zero in
the present formulation.

In order to rewrite (371;‘”31 in terms of the variational fields, da, can be shown to be

1
5ax:Qa5V,oca where Qx:m(l_ aoc®aa) (15)

Using this expression for da, we find
o{ay - (x —y)} =a,- (0u—dv) + [Qu(x — ¥)] - V., (16)

Since the base system a; is orthonormal, we can define the normal as n=a;xa, and find its
variation to be

n=a;xa, = on=e"(azx1)Q,dv, (17)

where the orientation of a; and a, should be such that it defines the direction of the normal
as indicated in Figure 2 and e*# represents the permutation symbol. Using this expression for
on we find

ofn-(x —y)} =n-(0u - ov) + [’ Q,(agxI)(x — y)] - oV, (18)
Using these expressions one finds that 7% is given by
ol = 5m, + 07, (19)

where
one = // (OA{n-(x—y)} +0/{a, - (x—y)—yr,} + ou-{in+ A*a,} — ov- {in + A*a,}
A
+0v, {Q. @ (X — y)} + Oro{y(A] = A*) + (1 = y)k*})dost
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O, = //_(52{5 (R—§)}+07%a, (R —§) — F&,} + oa- {Jn+ 1*a,} — ov- {In + 1*a,}
E7A
+ 0V {Q@U(X — §)} + S, {T(AF — A*) + (1 — )} ds/
in which we have introduced the definitions

@ =T + 2 (apx]), @ =)1— Je*(azxI)

The equilibrium of two bodies that come in contact is described by adding on@! to the
first variation of the two individual bodies and then require that the resulting first variation
vanishes. This yields a non-linear set of equations.

The force equilibrium equation in the contact domain will be provided by the coefficients
of v (and JV, but ov=05V). As mentioned earlier, the appearance of this equation is the result
of the introduction of the contact frame with independent displacement freedoms. A second
interesting point is that the integrations that have to be performed are kept strictly local to
each side of the contact frame.

At this point we would like to draw attention to the differences between our frame-based
formulation and other contact formulations. For this purpose it is instructive to write the first
variation of the complete system, in the form

on = midtdl 4 srlotal (20)
where
OMPE = OMfree + OMfrees  OTe™ = 07 + 0T
Otgee =G, 0Me =Gy — Geu + Goe — Geo
Oftfee =G, O7ic=Gej — Gey + Gy — Gy

in which G(x;du) and G(X;dii) are the first variations of the two bodies excluding contact,
and the remaining expressions are given by

G (X, Y, Ky 04, 04%) = //g/ (0A{n-(x—y)}+o1{a, - (x—y) — yr,})do/

Geu(y, 2, /%5 6u) = // (—6u-{in + V*a,})d.o/
R
(21)
Gunly u300) = [ [ (@s(G = 2+ (1 = )y det
o
Geo(X,y, 4, A% 0v) = // (ov-{/n+ Fa,} —ov, {Q,®*(x —y)})d/
o,
and similarly for the barred side. It should be noted that G.;(X,y, k,; 04,54*) constitutes the
kinematic constraint between the contact surface x and contact frame y, G.,(y, 4, A*; du) the
virtual work of the contact traction acting on contact surface x, G..(y, A%, k*; ok, ) the constraint

on the frictional behaviour, and G.,(X,y, 4, A%; 0v) the virtual work of the contact traction acting
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on contact frame y, respectively. Similarly, the four corresponding terms in d7, can also be
identified.

Of particular importance in the present formulation is the equilibrium equation of the contact
frame, which, among other terms, is obtained by setting the first variation dn equal to zero:

Geo(X, ¥, 2, 2% 0V) + Geo(X, ¥, 2, 2% 0V) =0 (22)

This equation accounts for equilibrium conditions on the contact, viz., the traction continuity
condition in the contact domain. In particular, this equation results since the contact frame
surface is endowed with independent kinematic variables v (or Vv, but v=v). As a result,
the traction continuity condition t=—t (see Figure 2) is enforced in a weak sense in our
formulation. It needs to be noted that the approach taken in References [11-13] also enforces
traction continuity on the contact domain in a weak sense. However, in that approach conti-
nuity of traction components (A’ =A%) is enforced in a weak sense as opposed to enforcement
of continuity of the traction vectors (t= —t) in the present formulation. For the continuum
case this makes no difference. However, discrete contact surfaces do not match in general.
Discarding the direction of the contact tractions results for general discrete contact descriptions
in violation of momentum balance.

We would like to point out that the approach taken by McDevitt and Laursen [8] does
utilize the concept of an intermediate surface in between contacting bodies. They use the
intermediate surface to define a common discretization for both sides and map the unknowns
from either side on this shared discretization of the contact domain. Then, they can proceed by
establishing node-to-node contact in the classical sense. An independent variable to describe
the motion of their intermediate surface never enters the formulation and traction continuity
on the contact domain has to be satisfied on the continuum level.

We now offer the following remarks regarding the present localized formulation:

1. Unlike the classical contact formulation, the localized contact tractions on each contact
surface are treated as independent variables.

2. Unlike mortar or mortar-like approaches [8], the need for introducing mortar interpola-
tion schemes is alleviated.

3. The present formulation enables the utilization of additional independent variables for
enforcing contact conditions for both matching and non-matching discrete contact sur-
faces. This is accomplished by the pairs of localized Lagrange multipliers (4%, 1'), and
the independent contact frame displacements v (or v, but v=v¥).

4. The contact frame equilibrium equation (22) makes its possible to completely mod-
ularize the contact enforcement part, independent of the governing equations of the
contacting structures.

Our formulation enforces traction continuity in the contact domain in a weak sense. This weak
enforcement is consistent with the finite element discretization of structural problems. This
feature of our formulation actually localizes the contact tractions and is the basis for each of
the remarks stated above. o

The coefficients of (04,04*) and (04,4%) in (19) define the frame position to be

X—y=#K,a and X—§=r,a" (23)

in which we have set =1 and ) =1 and thereby assume that the constraint on the frictional
traction is active. Constraints (23) require the contacting points x and X to remain on the
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tangent plane to the contact surface at y. Using =Yy, a, = —a, together with definition (9)
yields in tangential direction

am'y:%aa'(x“i‘)-() and K=-—k (24)

This defines the tangential frame motion to be the average of the tangential motions of the
two contacting sides.
After obtaining values for the «,, one can update the contact co-ordinates using

Ky
Y.
in which 7 represents an iteration index. After this update, the x, are reset to zero so that the
K, keep their interpretation of slip displacements within a slip iteration. The first variation

defines the slip displacement x, to be zero when the constraint on the frictional force is not
active, i.e. when y=0 then x,=0.

(&) =(&) + (ALY, where AL =

(25)

7. CONSTRUCTION OF DISCRETE CONTACT INTERFACES FOR 2D-CASE

The variational formulation of frame-based contact problems presented in Section 6 applies to
the general 3D-case. In the rest of the present paper we will focus on 2D problems primarily
to render the role of the contact frame as succinctly as possible to the reader. To this end,
let {E;,E,,E;} be the unit triad and let the 2D contact take place in the plane spanned by
{E»,E;}. We select the two tangent vectors a, and a, to follow the contact frame line in the
{E,,E;} plane. Furthermore, we set

a=E, a=-E (26)

With these geometrical parametrizations, we now detail the discretization of the frame and
the frame node determination.

Up to this point the formulation applies to the continuum formulation. However, we have
introduced the concept of a contact frame with application to the finite element method in
mind. Therefore, the next question is how to discretize our contact frame. As a key objective
of the present study, we would like to obtain a generic discrete contact frame, as illustrated
in Figure 6, that should not depend on specific element formulations used to discretize the
contacting bodies. Therefore, it should use only nodal information from the contacting bodies.
In other words, as far as the frame is concerned, the bodies can be replaced by a set of
collocated forces touching the contact frame at distinct places. Ideally, such a generic contact
interface can be applied to any contact problem without tailoring it to the specifics of the FEM
models of the bodies in contact. We regard this as the key advantage of our formulation that
justifies the introduction of additional unknowns, namely, the localised Lagrange multipliers
that usually double the number of classical Lagrange multipliers and the frame displacement
v introduced in (2).

The contact frame is described by a collection of linearly interpolated segments in between
contact frame nodes. The exploded view of Figure 6 shows such a contact frame. The dash—dot
lines are the linear contact frame segments that run in between the contact frame nodes (open
dots). The filled dots represent the discretization of the contacting bodies on their boundaries.
The interpolation used over the boundaries of the contacting bodies is not so restricted.
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.
:
1

~o contact frame

Figure 6. Contact frame discretization.

To obtain the contact frame position, we do a contact search. Basically, this establishes a
list of boundary segments that come into contact with a node of the boundary of the body
on the opposing side of the contact frame. Putting all the nodes connected to these segments
in sequence results in a description of the location of the contact frame. One obtains such a
sequence of nodes in Figure 6 by closing the expanded view in vertical direction.

The two meshes in the contact zone of the bodies on either side of the contact frame
are inherently non-matching. Therefore, it is by no means trivial to come up with a contact
frame mesh. Basically, three questions need to be answered. Firstly, how many frame position
nodes should be used to define the contact frame? Secondly, where should these nodes be
placed? Thirdly, how should the slip displacement field be discretized? The first two questions
deal with the successful application of our approach in so called contact patch test conditions
[16, 17]. The third question is about choosing a discrete definition of the tangential frame
motion that is non-singular. The answers to all three questions determine whether the system
of equations can be solved, i.e., is non-singular. This is related to satisfying the essential
requirements of the Babuska—Brezzi [28, 29] conditions. We will now address each of these
issues in separate subsections.

7.1. Frame nodal placement procedure

The design of any new method in computational mechanics must face a deceptively simple
question, namely: ‘How well can it represent constant stress states?’ For example, a new
finite element should survive a constant stress patch test in order to be able to claim that
convergence to the correct result is expected when mesh refinement is applied. We intend to
design our contact interface such that it will produce the correct results for constant stress
states. The placement of the contact frame nodes plays a vital role in achieving this goal.

A typical patch test for testing the transfer of constant stress states between two bodies in
contact is shown in Figure 7. The two bodies are loaded by a normal line load ¢ acting at
their free upper and lower boundaries. A key feature of a contact patch test is that the meshing
of the contacting bodies is non-matching in the contact domain. It is standard procedure in
finite element analysis to represent a constant line load by using energy equivalent forces
applied at nodal points. Differences in boundary interpolation order manifest themselves in
different values for these energy equivalent forces. The exploded view of Figure 7(b) shows
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Figure 7. (a) Patch test example for contact between two bodies; and (b) exploded view showing the
(collocated) energy equivalent forces (4,,4,) acting between the bodies and the frame.

the location of the energy equivalent forces 4, and Zp that represent the constant line load
g in the contact domain. The set of these collocated forces will be referred to as the set of
patch test passing forces. These forces are acting on the contact frame and equilibrium of
the frame is governed by Equation (22). Linearization of the discrete version of this equation
at the reference configuration leads to (see (42), (45) and (47) for details)

A

—[L, Lj]

] =0 with X=[4 22 ... Ap 23] and N=[A 22 ... A5 23] (27)

in which (i,,,if)) are the collocated normal and tangential forces acting on the frame at body

nodes of body 1 and similarly we have forces (ZP, Zf,) acting on the frame at body nodes of
body 2. The detailed derivation of this equation will be discussed in a separate section. In
that section, we will show also that the linearization of the gap constraint equations at the
reference configuration leads to (if the slip displacements are assumed to be zero)

ol v=—|_ (28)
0 B||u g

in which v,u and u are the collection of discrete displacement vectors at all nodes of the
frame, bodies 1 and 2, respectively. The boolean matrices B' and B' serve to select the
body nodes that are in the contact domain for bodies 1 and 2, respectively. The symmetry
of our formulation manifests itself from the fact that the transpose of the [Li i_}b] matrix
in Equation (27) also governs the compatibility between the body and frame displacements
in Equation (28). In order to pass the contact patch test we need to ensure that the set of
discrete contact patch test passing forces is a solution of frame equilibrium equation (27). We
now offer the following proposition how this is achieved by the present frame node placement
procedure (see References [30, 31] for the related application of this procedure to the problem
of interfacing non-matching finite element meshes)

|
L,
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Proposition (Zero moment rule)
Let the moment M (x) along a straight frame line be given by (see Figure 7 for an illustration)

P P _
M(x)= El IpXp(X) — Zl)°pzp(x) (29)
p= p=

where 4, is the collocated patch test passing force at co-ordinate x, on the non-barred side,
Zp the collocated patch test passing force at co-ordinate X, on the barred side, P the total
number of collocated patch test passing forces 4, on the non-barred side, P the total number
of collocated patch test passing forces Zp on the barred side,

x—x, if x=>x ~ x—Xx, if x=X,
1p(¥) = " "oand 7,(0)= L
0 if x<x, 0 if x<X,

The forces (ip,/_lp), that define the moment M(x) in Equation (29), are a set of patch test
passing forces. They are obtained by first assuming a constant normal stress in the contacting
bodies and then computing the corresponding energy equivalent forces (4,,4,) at body nodes
of the contacting boundaries. In order for our frame-based formulation to pass the contact
patch test, the frame nodes have to be placed at the S+1 roots of M(x)=0, i.e. each frame
node location x, satisfies

M(x)=0 s=1,....,S+1 (30)

with linearly interpolated frame segments between these zero moment points. This frame
construction ensures the exact transfer of both constant normal and constant tangential line
loads through the frame.

Proof

To prove this proposition we need to look at the behaviour of the discrete frame equilibrium
equation (27). The form of the [L) L] matrix determines whether the patch test passing set
of forces is a solution of this equation. In this proof we will investigate the structure of the
(L, i}b] matrix in relation to the frame node placement.

We start by assuming that the contact frame is a straight line. Further, we set v=uvn+v2a,
and V=1n + 02a,, use a; = —a;, and take a closed gap (x — y=0) everywhere. Further, we
localize each frame segment by cutting the frame at inner node points as shown at the left
segment node in Figure 8. The displacement compatibility at the cuts is enforced by Lagrange
multipliers R, and R2. Then, Equation (22) can be specialized for this case as

> ) 1262 Tss 7252 S (), (s—1) 20.2(5) _ 2s—1)\yy _

> {Adv+A70v" — 40D — 2700} dx+ D {o{Rs(v” —vy )+ R (v —vy T )} =0 (31)

s=1J .o/ s=2
in which we used x to represent the co-ordinate length along the frame line. The frame is
discretized using piecewise linear segments. Further, v and v are merely different descriptions
of the same displacement, i.e. we must have v=V. Therefore, we represent the displacements
on each segment by

v =N+ N0, PO =Nt MY, M=), M=1149)

. . . ; _ - _ (32)
b= Nov” + N, 7O =Nooi® + Niv3¥, Npy=1(1+8), Ni=1i(1-9
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Figure 8. Contact frame segment s with collocated forces )»anr/If,az (p=1,...,R) and

y pn+ 212,52 (p=1,...,P) acting onto the frame segment from opposing sides. Lagrange
multipliers R, and R? serve to connect segment s on its left side to segment s — 1.

in which ¢ and & represent natural co-ordinates on the segment (see Figure 8 in which open
dots represent frame nodes). The frame interacts with the bodies through a set of collocated
forces at the nodal points of the contacting bodies. Mathematically, this can be represented
by introducing a Dirac delta function ¢ (see Equation (39)). The components of the traction
acting on a frame segment from body 1 are now defined by

Ax) B[ Ap(x) ; 2
22(x) :,;::1 2(x) where A,(x) = 24,0(x —x,) and 1 (x)=4,0(x —x,) (33)

in which /lpn—l—/lf,az is the collocated force acting on the frame at body node p of body 1 and
P, represents the total number of body nodes contacting segment s on the non-barred side.
The tractions on the barred side are similarly defined. The collocated forces 4,n + /A2a, and

Zpﬁ—‘-}_,f)ﬁz act on the frame at co-ordinates &, and Ep, respectively, as illustrated in Figure 8.
The filled dots in this figure merely indicate the point of application of these forces and do
not represent frame nodes. Substituting (32) and (33) into Equation (31) we arrive, after
some manipulations, at

P P _ _
{Z p(1=&)— 3> 2,(1 +5p)} +2R;, =0 fors=1,...,5
=1 =1
! " ‘ (34)
P P _ _
{Z Al =&)X 21 +5p)} +2R? =0 fors=1,...,8
p=1 p=1 .

A
Rsy1 =0 (global normal force equilibrium)

R% +1 =0 (global tangential force equilibrium)

in which the Lagrange multipliers R, and R? are given by

Rl 0 d Rs s—1 B )Lp P. Zp " ) s 1 (35)
= an = — _ or: s=2,...,9 +
R? R? rzzl ,92::1 112, ,;2::1 ,1;
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The Lagrange multipliers R, and R? take the role of applied forces needed to enforce dis-
placement continuity. We note that Ry, R?, Rs.; and R% 41 are all zero since they represent
the resultant forces at the (free) end points of the frame. Equations (34);_4 are now in the
form (27) and they define the 2S5 + 2 rows of the [Lj L;] matrix. We now arrive at a very
important observation, namely, the discrete frame equilibrium equations (34);, will yield a
force distribution over the piecewise linear contact frame such that the moment will be zero
at the frame nodes. In other words, given a certain contact frame node placement, one gets a
solution for the contact forces that is a member of the set of all force distributions with zero
moment at the frame nodes. Likewise, given a certain force distribution, one has to place
the frame nodes such that Equations (34);, hold on all segments. This shows that given
a set of patch test passing forces we have to place the frame nodes at their accompanying
zero moment points is order to ensure that this set of forces will solve Equation (27). This
completes the proof of the frame node placement proposition. O

Finally, we mention the special case that the moment line will be zero along the entire
frame. This can only happen when the two sides have matching nodes and matching boundary
interpolations. The frame node placement for such a case is trivial since the frame nodes have
to be placed at the coinciding nodal positions of the contacting sides and the interpolation
used between frame nodes becomes irrelevant. If the contacting body nodes do match, but the
boundary interpolations do not, then a non-zero moment line with zero moment points exists
and the zero moment rule can be used for frame node placement.

7.2. Non-singularity of contact enforcement operator

We have mentioned in the introduction of Section 7 that the number and placement of the
frame nodes is of crucial importance for obtaining a system of equations that can be solved.
This means in particular that Equation (28) has to define the frame displacements v uniquely
and that Equation (27) has non-zero solutions for the localized Lagrange multipliers. The
matrix [Lj i;] determines whether we can meet these criteria.

Usage of frame node placement criterium (30) ensures that these criteria are satisfied. To
demonstrate this, we need to show two properties of the zero moment rule first. For this
purpose, consider two bodies in contact along a straight contact line. The constant normal
stress field in these bodies produces collocated energy equivalent forces working on the contact
frame as shown in Figure 9(a). The associated resultant normal force distribution along the
frame line is shown in Figure 9(b). Since the forces are energy equivalent to the constant
normal stress field in the two contacting bodies, they represent a set of patch test passing
forces. The x locations of the contacting nodes of the two bodies are given at the bottom
of the figure. The values of the collocated forces are given at the end points of the arrows.
Further, the body node numbering is given right next to the frame for both sides. Starting
from one side, find the location of the zero moment points along the frame, i.e. substitute the
set of patch test passing forces into Equation (29) and solve Equation (30) for its roots x; by
sweeping from one end of the frame to the other. For example, the leftmost point in Figure
9 is the first zero moment point. The moment M(x) (see Figure 7 for its sign convention)
monotonously decreases (starting from 0 at the left side of the frame) until the resultant force
changes sign, which happens at node 3. The moment then monotonously increases (starting
from a negative value) until the next resultant force sign change at node 2. Hence, we can
have at most one zero moment point between the nodes 3 and 2. Similar reasoning reveals
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Figure 9. Limitation of the number of zero moment points by the number of resultant normal force sign
changes: (a) representative patch test passing force system; and (b) resultant normal force distribution.

that the remaining zero moment points can occur only between the frame parts 2—5, 5—4 and
4—6 with the final zero moment point occurring at the right end of the frame. The open dots
in the figure give the actual locations of the zero moment points for this example, with their
co-ordinates given at the top of the figure. We now offer the following observations

1. The upperbound to the number of zero moment points (S + 1) is
upperbound of S + 1 =number of resultant force sign changes +1 (36)

This upperbound is always smaller than the total number of body nodes contacting from
both sides of the frame.
2. The solutions x, of Equation (30) for the zero moment point locations are unique.

Since the S+ 1 frame nodes are placed at a selection of the zero moment points, their number
is limited and their location is unigue. We now use the two properties listed above to motivate
the non-singularity of our contact enforcement operator.

Equation (28) determines the frame displacements v uniquely if

L,

L, = =[c1 2+~ cas42] (37)

L,

has full column rank. The location of each frame node determines two columns of this matrix.
We have observed already that the number of zero moment points is always smaller than the
total number of body nodes contacting from both sides. Hence, the row size of matrix L;
is always larger than its column size. Moreover, we have seen that the zero moment point
locations are unique. Therefore, the zero moment rule leads to an L} matrix with independent
columns, i.e. this frame construction gives a L; with full column rank. The frame equilibrium
equation (27) must have non-zero solutions for (A, %). Otherwise, the formulation suffers from
overconstraining. The zero moment rule ensures that the maximum number of frame nodes
will be smaller than the total number of body nodes contacting the frame. Hence, the rows
of L; are not all independent and overconstraining the frame equilibrium equation does not
occur.
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Figure 10. Projection method for the placement of contact frame nodes along a curved contact domain.

7.3. Frame nodal placement for non-planar contact surface

In general, the contact frame will be curved. The preceeding algorithm for node placement
can be generalized to the case of a curved contact frame as indicated in Figure 10. This figure
shows two discrete bodies in contact along a curved contact line. The bodies are loaded by a
constant line load ¢; in horizontal direction and a constant line load ¢, in vertical direction.
The objective now is to design the frame such that transfer of these loads takes places such
that a constant stress state exists throughout the bodies. Frame equilibrium equation (22)
can still be simplified to the form (34), but now one set of equations is obtained for the
horizontal direction and one set for the vertical direction. This means that we have to work
with the projection of the energy equivalent forces on the horizontal and vertical directions as
indicated by the dashed lines for the inner body nodes in the figure. Then, we can compute
the location of the zero moment points along each of the directions separately. The final step
is to combine the found zero moment point locations in the two directions to obtain the patch
test passing frame node positions. This process is illustrated by the dotted lines connecting
the zero moment points (open dots) in the figure.

7.4. Discretization of frame slip displacement

The final issue in the construction of the discrete contact interface is the discretization of
the slip displacement along the frame. In Section 6, we have shown that definition (9) leads
to a frame positioning that is the average of the positions of the two contacting sides. In
the discrete case we can enforce this average frame placement only at a distinct number of
points. In essence, this means that when slip occurs along the whole frame, we have only
a limited number of average frame placement constraints available that define the tangential
motion of the frame. The maximum number of such constraints is set by the number of body
nodes 7 in the coarser contact boundary. For the example shown in Figure 11 we can have
a maximum of three average frame placement constraints that define up to three tangential
frame displacement components uniquely. As a result, we can have a maximum of three frame
nodes as indicated by the open dots in the figure. The frame nodes are chosen also as slip
displacement nodes so that the slip field can be interpolated continuously along the frame.
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Figure 11. Slip displacement discretization.
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Figure 12. Expanded view of 2D contact between a linear contact frame segment
and a mesh node p of contacting body 1.

Setting the number of frame nodes equal to m (m<n), we choose the m body nodes on either
side of the frame that are closest to the frame nodes as the nodes that will define the average
frame position during slip. Since this uniquely defines the tangential frame position, we can
introduce additional slip nodes at the remaining body nodes in the contact boundary. For the
example in Figure 11 we must have m <3 and have chosen three frame nodes (placed at zero
moment points). All three boundary nodes of body 1 and the three boundary nodes of body
2, that are closest to the frame nodes, are involved in defining the tangential motion of the
frame. Then, we can choose the three remaining nodes in the contact boundary of body 2 to
define three additional slip nodes as indicated by the dashed lines in the figure. We interpolate
the slip displacement field linearly between the slip nodes.

8. DISCRETE FIRST VARIATION FOR 2D-CASE

Let us now consider the contact between a body node p and a linear contact frame segment,
as shown in Figure 12. This pairing of a contact frame segment and a hitting node will be
referred to as a contact pair. The entire contact of the two bodies simply becomes the union
of all such pairs. A hitting node can be a member of only one such pair. A contact segment
usually appears as a member of several contact pairs.

The position and displacements of the frame are interpolated linearly between the nodes 1
and 2 (open dots in Figure 12). The slip displacement is assumed to be interpolated linearly
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between the nodes 1 and 2 (crosses in Figure 12). In general, slip displacement nodes will
be placed at frame displacement nodes to maintain slip continuity between segments. The
separate slip discretization simply allows additional slip nodes to be placed along the frame
segment as explained in Section 7.4. Thus, the discretization along the frame segment is
given by

2 2 2
Y:ZN]YI, V:ZN[V[; KZZZNfKZi (38)
=1 I=1 I=1
where

M=31-9, M=31+0, N=1(1-9, N;=1(1+9d

_ 1

=7

(2s —s; —s7) with s,>s; and —-1<¢é<1

in which /, represents the current length of the contact frame segment and the s; are the
values of s at the end nodes of the contact frame segment. We choose contact co-ordinate &2
to be the are length coordinate s.

Finally, to keep the contact interface generic, we stated already that the frame interacts
with the bodies through a set of collocated forces at the nodal points of the contacting bodies.
Mathematically, this can be represented by introducing a Dirac delta function J such that

/ " F()0(s — 5)ds = £(5,) (39)

where 6 — oo for s — 5, and 6 equal to zero outside an infinitesimal region around s=s,.
The components of the traction t; defined over the contact segment of a contact pair are now
defined by

W(s)=2p0(s —s5,), AA(s)= if,é(s —5,) (40)

Integrating this t; over the contact segment results in a concentrated force A,n+ )ulz,az applied
at s =s,.

To obtain the discrete form of the first variation, we first convert the integrations over the
contact zones to summations over contact pairs. Hence, we write

’ ’
L/C(...)ds—[; e /&/;(...)ds—ﬁz_:l /I_ﬁ(...)ds

in which capital P and P represent the total number of contact pairs on either side of the
contact frame. Also, we need to define some finite element assembly operators in order to
extract variables local to a specific contact pair from global vectors of unknowns. Therefore,
we introduce

A Vi Kyp
[u], = Z,u, 2 =2\, =LV, ) =LK 41)
p V2l K21 lp
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in which u is the vector of all structural nodal displacements on the non-barred side, A the
vector of all localized contact Lagrange multipliers on the non-barred side, v the vector of all
contact frame nodal displacements and k is the vector of all slip displacements. The operators
Lp, Lp, <Lop and &, are the Boolean finite element assembly operators. These select the
unknowns local to a specific contact pair p from the global vectors of unknowns.
Substituting the discretization into expression (19) for dn, and carrying out the integrations,
we arrive on the non-barred side at the following expression for the discrete form of the contact

part of the first variation
on.=—ou-f.+0rL-g—dv-p+0k-q (42)

where

P P P P
fo=2 Ll 8= L8 P=2 LuPp 4= Ll
p=1 p=1 p=1 p=1

f,=—{/n+/*a},

:{' n-(x—y) H
B (22 (X=Y)—rK2 | ),

IR Mkl o e
M R R P (O (xfy)]p
=V bz -+ a -

P N 1 ]

The vector f., represents the contact-pair force acting on body 1. The vector g, represents
the contact-pair gap. The contact-pair force acting on the frame is represented by p,. Finally,
q, has two interpretations depending on whether or not the (constitutive) constraint on the
frictional force is active. If it is active, i.e. when y=1, then it represents the constraint on
the frictional force. Otherwise, i.e. when y=0, it sets the slip displacement equal to zero.

9. DISCRETE SECOND VARIATION FOR 2D-CASE

Using the frame-based contact first variation, as derived in the previous section, leads to a
non-linear set of equations. This set of equations can be solved using a predictor—corrector
scheme. The corrector consists of a sequence of Newton iterations, i.e. solving successive
linearizations of the non-linear equations. In this section, we consider the linearization of
the frame-based discrete contact first variation o' (see Equation (19)). This leads to the
so-called frame-based discrete contact second variation.
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The linearization of dn'®? is obtained as follows. First, assume an arbitrary, but admissible,
path through the configuration space given by

M) = A+nAl, An)=I+nAl
() = 22+ nAR2, 22(n)=22 +nAl?
u(n) = u+ngAu, i(n)=1ia+nAi (43)
v(n) = v+ Ay, V(n)=V+ nAv
K(n) = Kk + 1Ak, &(n)=K+ nAi
in which 7 is the path parameter. Substitute the discretization presented in the previous section

into path (43) and then substitute the obtained discrete admissible path into the frame-based
discrete contact first variation. Finally, compute the linearization according to

L(omy = 577:;“"‘1]":0 + Adnl! where Adn® = [51{5713:0‘31(;7)}] (44)

n=0

After straightforward manipulations we arrive on the non-barred side at the following expres-
sion for the frame-based discrete contact second variation

Aon, =ou- {BAL — L,Av} + ok - {B'Au — L,Av — L, Ak}
+0v-{-L,Au — L,AL — D,Av} + 0k - {—L, Ak + DAk} (45)
where

P P P
B=2 £,8,%,), Li=3ZLy%, Li=) &)ly%,
p= p= p=

P P P
L, Zl &Ly Leps D= Zl <, Dy Ly, D= 21 L Dip Ly
p= p= p=

Bp = {[ll aZ]}p
Ly = {[—(®*)'Q:][N1.21 NI,

t _ t 1
L, - { L: (x—y)'(a; xI)
2

(x-y)
0
L;Cp: { [ ‘| [NI NQ]}
y P
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Ml [Q @[V T N,
Wl = 2 11 N

mMI
D, = (@) Q2][Ni2l NyoI] +

AN a0k y) s + a2 0 [Qu02x — y)]
Nool | Tyl YIEd i e y

{I9%x — y)] - 02} Q)N ok Naoll} =D,

]\[~
D,=<| '[(1-pWV; N]} =D,
N; )

in which the Au and Av are aggregate variables storing increment vectors at all body (for
non-barred side) and frame nodes as opposed to their meaning in Equation (43) as being
displacement increment vectors of a single point. The frame-based discrete contact first and
second variations on the barred side follow also from expressions (42) and (45) by following
the contact frame in the opposite direction.

We write the linearization of the first variation of the potential energy of the body on the
non-barred side in the form

total : of
onpa =ou- (f + KAu) with K= “u (46)

and note that f=0 are its non-linear equilibrium equations. The matrix K represents its
stiffness matrix. A similar expression describes the behaviour of the body on the barred side.
We now write the Newton system of equations of the frame-based contact problem as

K 0 B 0 -L, 0 J7Au] [—f+f]
0 K 0 B -L, 0 A —f+f,
BE 0 0 0 —L, ~L, A g
) ) _ Tl = (47)
0 B 0 0 -L, ~L, AL -
- -1 -1, -1, -D,-D, 0 Av p+p
L0 0 -L. -L., 0 D.+D.|[Ax] | -q—q]

A significant feature of our frame-based contact model is immediately visible from these
equations, namely, they are symmetric. This is due to the fact that every contact node is
treated in exactly the same way, namely, the gap constraint and the collocated force continuity
are enforced between every body contact node and the frame. This is in sharp contrast with
the contact formulations proposed in References [12, 13, 16] which result in a set of non-
symmetric Newton equations that can be represented by

Au
Ar|
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Figure 13. Plane strain contact patch test problem.

with C in general not equal to B and u, A being discrete representative body displacements
and Lagrange multipliers. In contrast, our frame-based formulation results in a symmetric
system of iterative equations which is a definite advantage for solving the equations.

The contact frame node placement depends on the place of the body nodes that come
into contact. The system of equations to solve in one load or time step is non-linear and
requires a number of Newton iterations for obtaining the solution with acceptable tolerance.
This means that each Newton iteration results in a change in the contact boundary deformation
and possibly also sliding, so that the position of the body nodes in contact will change. Hence,
before each additional Newton iteration, one has to recompute the zero moment points and
reconstruct the contact frame. This can be seen as a pre-processing step before each Newton
iteration.

10. NUMERICAL SIMULATIONS

Three numerical examples are presented. The first two are intended to demonstrate the ability
of our formulation to transfer constant stress states correctly through the contact frame. The
first example is a contact patch test taken from literature. In the second example, we will
include frictionless sliding. The third example looks at the 2D-contact of a pin in a hole in
a plate. It has a curved contact frame as opposed to the flat contact frame of the first two
examples.

10.1. Contact patch test

A flexible punch comes into contact with a deformable foundation as in Figure 13. Uniform
loading ¢ is applied on the free upper surface of both the punch and the foundation. Plane
strain and linear elasticity are assumed. The same elastic constants are used in the computations
for both bodies and they are given in the figure. The thickness ¢ of both bodies is taken
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Figure 14. Applied (energy equivalent) load system and computed collocated contact forces that act
on the deformed bodies for a non-matching mesh (four-noded bilinear elements are used in (a), while
nine-noded quadratic elements are used in (b)).

to be 1.0. The dimensions are given in the figure. The boundary conditions allow for free
lateral expansion. This problem tests the capability of our formulation to allow transmission of
constant pressure through the contact surface. The same problem was used by Papadopoulos
and Taylor [9, 17] for this purpose.

The computations were performed using the mesh that is shown with dashed lines in
Figure 13. The mesh of body 2 is regular in both directions. The mesh of body 1 is taken
regular in the vertical direction. Its meshing in horizontal direction is given in the figure.
Four-noded plane strain quads were used for case (a), whereas nine-noded plane strain quads
were used in case (b). Please notice that the mesh set-ups are non-matching at the contact
surface. This is an essential characteristic of the contact patch test. The distributed line load
g is cast into a set of energy equivalent forces which are applied to the nodal points of the
loaded edges. These forces are given by open arrows in Figure 14. We would like to note
that the elements of the foundation, that are in contact with the punch, are only partly loaded
by line load g on their top surface. This has been taken into account in the computation of
the energy equivalent forces.

The value for the distributed line load ¢ has been selected such that the top of body 2
displaces 1 downward. To obtain the corresponding expression for ¢, we first note that the
stress state (in both bodies) is given by

0, =0, o0,= 5 Ty =0
The corresponding plane strain state is
—v(l+v I—v)(1+v
The condition &, =—1/22 then leads to
B Et
1= 00w
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Table 1. Computed internal energy.

Case (a) (b)
U' 81736.445373 81736.445373
U? 5449.096358 5449.096358

Table II. Final contact frame node positions.

Case (a) Case (b)
Frame node X ¥y X y
1 —12.233766 17.181818 —20.389610 17.181818
2 —3.234214 17.181818 —3.662436 17.181818
3 8.155844 17.181818 20.389610 17.181818

as the load to use to get a downward displacement of unity at the top of body 2. The internal
energy in each of the bodies is computed from
— 2 2
U= %aysyV“: % (%) V* with a=1,2
in which V* represents the volume of body o.

The computation results for the contact forces acting on the contact frame are drawn in
the exploded view of the deformed state plotted in Figure 14. These forces are represented
by filled arrows. By adding the forces applied to the top nodes of body 1 and the contact
forces acting on this body, one verifies easily that the result exactly corresponds to the energy
equivalent forces that belong to a constant stress state in body 1. The computed contact
forces acting on body 2 are the energy equivalent forces belonging to a constant stress state
in body 2.

The internal energy in the two bodies has been computed for the two cases and the re-
sults are reported in Table I. These results are in perfect agreement with the theoretical
values.

The final position of the contact frame nodes is given in Table II. The node numbers in
this table refer to the contact frame node numbering in Figure 14. It is easily verified that
each of these nodes is situated at a zero moment point. The downward displacement of the
top of body 1 is equal to 18-¢,=0.818182 so that the final y-co-ordinate of the frame must
be 17.181818, which is equal to the computed value. Since the minimum number of body
nodes in the contact domain on one side is 3, the maximum number of frame nodes (open
dots in the figure) for which we can define the tangential motion is 3. Slip nodes are placed
at the frame nodes (crosses in the figure). For case (b) we have more than three foundation
nodes in the contact domain so that two additional slip nodes have been defined for this case.

Finally, we note that the computational results were obtained in a single Newton itera-
tion step. This is because no sliding has to take place since the Poisson ratios of the two
contacting bodies are equal. We conclude that the numerical results are in perfect agreement
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Figure 15. Plane strain contact patch test problem with sliding.

with the theoretically expected behaviour. Therefore, our formulation passes the contact patch
tests.

10.2. Contact patch test with sliding

The contact patch test presented in the previous section did not involve any sliding. The
plane strain test problem shown in Figure 15 is specifically designed to include this aspect
in the computations. Two bodies come into static contact. The top body carries a distributed
line load ¢ on one side and is supported by a flexible body on the other side. The contact
between the bodies is assumed to be frictionless. The bodies have different and non-zero
Poisson ratios. This way, relatively sliding with respect to the contact frame will take place
for each body. The lower body rests on a rigid foundation and its support allows it to ex-
pand freely in the x-direction. The load ¢ is chosen such that the width of the two bodies
becomes equal after deformation. Hence, the analysis should yield a constant stress state
in each body. The thickness and elasticity modulus are the same in both bodies. Numeri-
cal values for the material parameters as well as the problem dimensions are given in the
figure.

Figure 15 also shows the finite element mesh. Four-noded plane strain elements were used.
The mesh of body 1 is regular in both directions. The meshing of body 2 is regular only in
the vertical direction. The details of the horizontal meshing of body 2 can be found in the
figure. The meshing has been designed such that four mesh lines of body 2 will slide beyond
vertical mesh lines of body 1 and that the horizontal distance to the mesh lines they pass is
the same in the initial and deformed states. The meshing of body 2 is symmetric will respect
to the y-axis.

The value for the distributed line load ¢ has been selected such that the width of the two
bodies becomes equal after deformation. To obtain the corresponding value for g, we first
note that the stress state is intended to become
1 4q(a—2c)

=0, 0,=— ———% and o'yzz—

q
Y at t

s r;‘yzo with aa=1,2
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Figure 16. Newton iteration convergence behaviour.

in which a superindex is used as body index. The corresponding plane strain state is given by

o vi(1 + v (a —2¢c)q R (1 =y +vh)(a—2¢c)g

’\l:
¥ Eat v Eat > e =0
2 2 2 2
y_vi(d+ve L, A=v)HA+v)e 5
C N

The condition that the width of the two bodies becomes equal after deformation can now be
written as

(I +eha=14+e>)a—-2c)

and yields the formula for ¢ that is given in Figure 15. As stated earlier, the meshing is
designed such that vertical mesh lines of the top and bottom bodies will pass each other at
the contact surface. To ensure this, we require that the horizontal distance between passing
mesh lines is the same in the initial and deformed states. This requirement can be written as

a a

- _ —(1+eDa—(14+eH)—=

(75 —%) = +eha— 1+
3a 3a
(36 - 8) =+ e+ - +abig

and leads to the expressions for « and f that are given in Figure 15. The internal energy in
each of the bodies is computed from

U*=ja}elV* with a=1,2
in which V* represents the volume of body o.

The problem to solve in inherently non-linear. A total number of six Newton iteration steps
were performed. In the first step, all contact points are assumed to be in a stick state. All the
other steps (2—6) are performed using a slip state at all the contact points.

The convergence behaviour of the algorithm is illustrated in Figure 16. The horizontal
axis shows the number of Newton iteration steps. The horizontal dashed lines indicate the
theoretical values for the internal energy in each of the bodies. The symbol ||A?| at the vertical
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Table III. Computed internal energy and friction norm
at the final iteration step.

' U 122
Iteration 6 136377551 139.285714 8.1877e-07
Theoretical 136377551 139.285714 0
35.59 76.15 60.84 40.56 60.84 76.15 35.59

x = slip node

38.57 77.14 77.14 77.14 77.14 a7 © = frame node

Figure 17. Exploded view of the final deformation which shows the
contact frame location and the contact forces.

axis of the friction figure represents the norm of a vector in which all frictional contact forces
are collected. The residual is defined as the right-hand side vector of Equation (47), i.e.
the error in the first variation, and should converge to zero. All the three plots show rapid
convergence. The final values computed for the internal energy and the frictional forces norm
at the last iteration step are given in Table III. The agreement with the theoretical values is
excellent.

Finally, let us take a closer look at the behaviour of the contact frame. Figure 17 shows
an exploded view of the final deformed state. The contact frame is drawn in between the two
bodies and the computed contact forces are also given. It is easily verified that these forces
correspond exactly to the energy equivalent forces that belong to the constant stress states in
the two bodies. This figure also shows that six frame nodes were used. Six slip nodes are
placed at the frame nodes and one additional slip node was introduced at the centre of the
frame.

The behaviour of the contact frame during iterations can be found in Figure 18. Observe
from this figure that the frame nodes do move during iterations in order for the nodes to
lie at zero moment positions, a key requirement to pass the contact patch test in the present
formulation.

A number of conclusions can be drawn from the presented results for this example. In
the first place, we note that the algorithm converges to the theoretically expected behaviour.
Secondly, convergence occurs in a low number of iterations. This example shows also that
mesh lines that pass each other at the contact surface do not pose any problems. Nodes on
opposing sides of the contact frame that need to pass each other are detected and taken care
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Figure 18. Movement of frame nodes during iterations in order for the nodes to be placed
at zero moment positions. The horizontal motion is magnified by five times to illustrate the
importance of frame nodal adjustments.
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Figure 19. Two-dimensional contact of a pin in a hole in a plate. The unloaded
pin and hole have the same radius.

of, while the frame node positions are adapted to be at zero moment positions. This proves
to be working well.

10.3. Two-dimensional contact of a pin in a hole in a plate

We now turn to a problem that has a curved contact frame as opposed to the flat contact
frame of the first two numerical examples and look at the 2D-contact of a pin in a hole
in a plate. Figure 19 shows a circular pin in contact with a circular hole in a plate. Both
the pin and hole have radius R, i.e. there is no clearance nor interference between the pin
and plate in the unloaded state. The clamped boundary conditions suppress all displacements
along the outside boundary of the plate. The external load P is applied to the pin effectively
at its centre and causes its centre to displace 0 downward. The meshes of the pin and plate
match in the reference configuration as shown in Figure 20(a). The frame nodes then match
the nodal positions on either side of the contact frame (open dots in the figure). The slip
nodes are placed at the frame nodes (crosses in the figure). Four-noded plane strain elements
were used in the analysis.
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Figure 20. (a) Discretization in the reference configuration; and (b) deformation
at final iteration (iteration 8).
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Figure 21. (a) Newton convergence behaviour; and (b) normal pressure
distribution p(a) in the contact domain.

A total of eight Newton iteration steps were carried out. The first step used a stick state at
all contacting nodes. The other steps used a slip state throughout the model. Rapid Newton
convergence behaviour is obtained as shown in Figure 21(a) in which the residual r is defined
as the right-hand side vector of equation (47). The final deformed state at iteration 8 is
shown in Figure 20(b). Observe that the body nodes are no longer matching in the contact
domain. The location of the frame nodes has been adapted before each Newton iteration step
to place them at zero moment points. A pressure distribution has been generated from the
collocated contact forces at each side of the contact frame. The results are given in Figure
21(b) and compared to the normal pressure distribution obtained by Persson [32, 33]. The
normal pressure distribution obtained for the pin and plate are nearly coinciding except at
the very end. The mesh is too coarse to resolve the end of the contact domain with high
precision. Deviations from Persson’s results are to be expected since the plate in this example
is finite, while Persson’s results hold for an infinite plate. The finite dimensions of the plate
cause the boundary conditions to become important. To study their influence we repeated
the computation with a set of boundary conditions that allow free lateral expansion. This
means that the top and bottom faces of the plate are allowed to slide freely in horizontal
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Figure 22. (a) Deformation when boundary conditions allow free lateral expansion; and (b) influence of
the boundary conditions on the normal pressure distribution p(a) in the contact domain.

direction. The left and right outer boundaries are left completely free. We expect the pressure
distribution to concentrate more around o =0 accompanied by a shorter contact domain as
a result of the fact that the resistance for the plate to move sideways is reduced. Figure 22
shows the computational results. Indeed, the frame is shorter and the number of frame nodes is
reduced by two. The average of the computational results for the pressure distribution on both
sides of the frame is shown in Figure 22(b) for both boundary condition sets. The pressure is
indeed more concentrated around « =0. Moreover, the pressure predicted by Persson at =0
is in between our computational results. This can be expected since the boundary conditions
that should be used to simulate the infinite plate behaviour with our finite plate model are in
between the two sets we used. Finally, we conclude that we get satisfactory agreement of our
numerical results with Persson’s results.

11. CONCLUSION

We have introduced a novel element in the modelling of contact problems, namely, an
adaptive contact frame placed in between contacting bodies. The contact frame is endowed
with its independent displacements and the associated equilibrium equations. The contact
becomes indirect because the contact forces are exerted on the contact frame and not
directly from one body onto the other. A number of advantages can be mentioned.
First, our formulation yields a variationally consistent force equilibrium equation for the
contact frame. This ensures force equilibrium in the contact domain even for discrete con-
tact models. Basically, it takes care of the problem of non-matching meshes of the contact-
ing bodies in a consistent manner. Second, all integrations at one side of the contact frame
are completely [localized to that side of the contact frame. This property makes it
possible to design a stand-alone and modular contact frame by requiring that only nodal
information from the contacting bodies is used in the construction of the frame. We re-
gard this property as most important in our formulation. It implies that any finite element
program can be used to generate the nodal information. The stand-alone contact interface
is then used as a module to handle the contact enforcement. Third, the introduction of
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the tangential motion of the contact frame allows to model frictional contact from the outset
of the present formulation.

For the case of 2D-contact we have shown that it is possible to design the contact interface
such that it can transfer constant stress states exactly. Numerical examples have been used to
demonstrate this ability. Future work needs to focus on the 3D-case. Like in the 2D-case a
method needs to be found for designing the 3D-contact frame such that it can transfer constant
stress states exactly.
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