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Abstract-A coupled thermomechanical model to simulate solidification problems in casting is 
presented. The model is formulated from a phenomenological point of view using a general isotropic 
thermoelasto-plasticity theory. Generalized phase-change effects accounting for the different 
thermomechanical behaviour of the solidifying material during its evolution from liquid to solid 
have been considered. For this purpose, a phase-change function, plastic evolution equations and a 
temperature-de:pendent constitutive law have been defined. Full thermomechanical effects as well 
as variable thelmal and mechanical boundary conditions are also taken into account. 

Particular details concerning the numerical implementation of the model are given, where 
special emphasis is devoted to the resulting highly non-linear fully coupled finite element equations. 

The behaviour of this formulation is studied first in a simple quenching problem. Finally, a 
cylindrical casting test problem including phase-change phenomena, temperature-dependent consti­
tutive properties and contact effects is analysed. Numerical results are compared with laboratory 
measurements. 

I. INTRODUCTION 

The prediction of the full thermomechanical behaviour of bodies with thermal and mech­
anical temperature-dependent material properties is of great practical importance in many 
engineering situations. In particular, a major issue is the formation of cracks due to induced 
thermal stress fields in casting processes. Although an analytical investigation into thermal 
stress development has been attempted by many researchers [see e.g. Cas senti and Annigeri 
(1989); Malvern (1969); Ziegler (1983)], it has long been recognized that the use of 
numerical methods is necessary to analyse complex realistic problems. 

For this purpose, different thermo mechanical formulations with internal variables 
governed by rate equations [see e.g. Coleman and Gurtin (1967); Lubliner (1972); Lubliner 
(1990)] have been proposed and successfully applied for the analysis of coupled elasto­
plastic problems by many researchers [i.e. see e.g. Argyris et al. (1981); Armero and Simo 
(1992a,b); Bruhns and Sluialec (1989); Kleiber (1991); Simo (1991); Sluialec (1988); 
Smelser and Richmond (1988); Wriggers and Miehe (1992); Wriggers et al. (1989)]. Some 
of these models have been used to simulate solidification processes [see e.g. Smelser and 
Richmond (1988)" Williams et al. (1990) and the references there listed]. Nevertheless, this 
problem has many complex aspects that are usually difficult to deal with, such as: 

• the equilibrium and energy equations are coupled. Consequently, a robust and efficient 
numerical strakgy is crucial for solving the highly non-linear finite element equations, 

• a constitutive model which can represent the liquid, mushy and solid phases of the casting 
is necessary, 

• different kinds of materials are usually involved in solidification processes, 
• thermal and mechanical changing boundary conditions must be taken into account. This 

requires the consideration of a pressure/gap-dependent convection-radiation model and 
a contact-friction formulation, respectively, 

• latent heat effects introduce oscillations in the algorithms, 
• an accurate residual stress evaluation has to be performed, 
• microstructural effects may be important. 
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In this paper, a general phenomenological thermoelasto-plastic model taking into 
account many of previous aspects is presented in Section 2. Furthermore, a thermo­
mechanical contact model, including a gap/pressure-dependent convection-radiation model 
and a contact formulation, is also presented. As a first approach to the problem, infinitesimal 
deformation will be assumed and friction effects will be neglected in this work. 

In Section 3, the finite element formulation of the coupled thermomechanical model is 
derived. Special attention is devoted to "non-standard" terms accounting for phase-change, 
thermomechanical coupling and contact effects. 

Two numerical examples are presented in Section 4. A study of the performance of 
different solution strategies and the influence of the thermomechanical coupling terms when 
solving the energy equation has been performed by means of a simple quenching example. 
Finally, the model is validated in the analysis of a cylindrical casting test problem, for 
which experimental results are available for comparison. 

2. GOVERNING LOCAL EQUATIONS 

2.1. General thermomechanical formulation 

(a) Basic definitions. Let some open bounded domains 0(1) C \Rndnn (1 ~ ndim ~ 3 and 
i = 1, ... , nbody) be the reference (initial) configurations of some nbody continuum thermo­
elasto-plastic bodies f!J(1) (that may thermomechanically interact between themselves) with 
material coordinates labelled by X E n(1) (all of them measured with respect to the same 
reference coordinate system), r(1) = 00(1) their smooth boundaries respectively, and Y c \R+ 
be the time interval of analysis (tE Y). Further, <p(I)(o, t): f!J(O ..... \Rnd;m denotes the con­
figurations of such bodies at time t and, as usual, n(1) = 0(1) U r(l). In the infinitesimal 
displacement/strain context assumed here, the configurations <p(1) at different times coincide, 
respectively, with the reference ones. For simplicity in the notation, subscript (I) will be 
dropped from here onwards unless its use facilitates the description of the formulation. 

In phase-change problems, the domain 0 is usually decomposed into nph domains 
(0 = u Oph with ph = 1, ... ,nph) bounded by np moving phase-change boundaries r~c 
(p = 1, ... ,np), nph being the number of phases or portions of macroscopical homogeneous 
material [see e.g. Celentano (1994)]. The classical isothermal and non-isothermal phase­
change problems are depicted schematically in Fig. 1, where the subscripts s, m and I denote 
solid, mushy and liquid phases, respectively. Once more, with the purpose of simplifying 
the notation, indexes ph and p will be suppressed in the equations presented below. 

A thermomechanical process involving phase-change phenomena can be described by 
the following local form of the field equations: 

8, 

a) b) 

Fig. 1. Geometric description of a non-linear heat conductor i?4(I) for phase-change problems. (a) 
Isothermal case; (b) non-isothermal case. 
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• equilibrium condition 

Voa+pOBF = 0 inaxY, (1) 

• First Law of Thermodynamics or balance of energy 

POW = -Voq+por+a:il inaxY, (2) 

• Second Law of Thermodynamics, expressed by the Clausius-Duhem inequality 

Poy = Po;,-Po~+Vo [~J ~ 0 inaxY, (3) 

together with adequate boundary conditions 

u = 0 in ru x Y, (4) 

aoo=t+t* inr"xY, (5) 

T= T inr TXY, (6) 

q on = -rj-q* in rq x Y, (7) 

initial conditions 

u(X, t)lt = 0 = uo(X) = 0 in a, (8) 

T(X,t)lt=o = To(X) ina, (9) 

and appropriate constitutive equations for OJ, fT, '1 and q all defined in a x Y. 
these equations describe a quasi-static coupled thermomechanical initial boundary 

value problem. Here, V = a/ax is the gradient operator, a: n x Y -+ IRnd;m x IRnd;m is the 
Cauchy stress second-rank tensor, Po: a -+ IR+ is the density at the reference configuration 
and BF : a x Y -+ ~~ndUn is the specific body force. Further, OJ: a x Y -+ IR is the specific 
internal energy, q: n x Y -+ IIind;m is the heat flux vector, r: a x Y -+ IR is the specific heat 
source, 8: a x Y -+ IRn"m x IRnd;m is the infinitesimal strain second-rank tensor defined by the 
usual kinematics relation [see e.g. Malvern (1969)] and u: n x Y -+ IRnd;m is the displacement 
field. The superposed dot implies time derivative while the standard notation for the 
multiplication oftensors is used [see e.g. Malvern (1969)]. Moreover, in eqn (3) y: a x Y -+ 

IR is the specific internal entropy production rate and '1: a x Y -+ IR is the specific entropy. 
In eqns (4) and (5) it is assumed that the displacement field u(X, t) and the stress tensor 

a(X, t) are prescribed on parts of the boundary ru c IRnd;m- 1 and r" c IRndUn- 1 respectively, 
where 0: aa -+ IRnd;,,-1 is the unit outward normal to the boundary, 0: r u x Y -+ IRnd;m is the 
prescribed displacement field, t: r" x Y -+ IRnd;m is the prescribed traction vector and 
t*: r" x Y -+ ~"m jis the contact traction vector due to the fact that the fJl(t) bodies may 
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Y(J 
2 

Jq2----u----. 

8 2 

1'c2 

b) 

Fig. 2. Geometric description of two non-linear thermoelastic-plastic bodies ~(I) and ~(2) that may 
thermomechanically interact between themselves. (a) Mechanical boundary conditions; (b) thermal 

boundary conditions. 

come into contact between themselves (see Section 2.4). As usual, the conditions 
fu u f" = an and ru n r., = 0 are assumed to hold (see Fig. 2). 

Similarly with eqns (6) and (7), the absolute temperature field T: n x Y -+ ~+ and the 
heat flux vector q(X, t) are also prescribed on parts of the boundary r T C ~ndim-I and 
rq C ~ndim-I respectively, where T: r TX Y -+ ~+ is the prescribed temperature field, 
lj: rq x Y -+ ~ is the prescribed normal heat flux and q*: rq x Y -+ ~ is the normal heat 
flux due to convection-radiation phenomena (see Section 2.3). Once more, the following 
conditions are considered (see Fig. 2): f TU fq = an and r Tn rq = 0. 

(b) Basic constitutive relations. With the help of the Clausius-Duhem inequality (3) 
and the definition of the specific Helmholtz free energy t/! [see e.g. Coleman and Gurtin 
(1967); Malvern (1969); Ziegler (1983)], 

t/! = tfr(ll, r:t.b T) = OJ-1]T in n x Y, (10) 

the constitutive relations for OJ, (1 and 1] can be established, where the superposed caret 
serves to distinguish a state function from its repective value. In eqn (10), 
r:t.1e: n x Y -+ ~nint is the nin,-dimensional (k = 1, ... , ninl; ninl ~ 1) vector field of phenom­
enological internal state variables governed by rate equations with zero initial values [see 
e.g. Lubliner (1972); Lubliner (1990)]. Such variables can be scalars or tensors. Moreover, 
it is important to note that Il(X, t), OtIe(X, t) and T(X, t) are assumed to be the independent 
thermodynamic state variables which determine t/!. 

The use of the Coleman method [see e.g. Coleman and Gurtin (1967) ; Lubliner (1972)], 
taking into account that e and t can be specified arbitrarily in a given thermodynamic 
state, i.e. if there are no internal constraints, leads to the following relations: 

at/! 
(1 = a(Il,Otb T) = Po all' (11) 



Thermomechanical model for the solidification of cast metals 

01/1 
1] = fj(8, atb T) = - oT· 
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(12) 

Equation (11) is usually known as the isothermal stress-strain relation [see e.g. Malvern 
(1969)]. Lubliner (1972) has shown that, in order to establish unique constitutive equations, 
Coleman's relations (11) and (12) follow even for the definition of «k given by the plasticity 
theory (see Section 2.2). 

as: 
From eqns (10) and (12), the specific internal energy can be expressed in terms of 1/1 

01/1 T. 
0) = 1/1- oT 

Finally, the well-known Fourier law is adopted for q: 

q = -k'VT, 

(13) 

(14) 

where k is the conductivity second-rank tensor. This path independent way of defining q is 
equivalent to that used by Simo (1991) in terms of a smooth convex heat flux potential 
function. 

(c) Derived constitutive relations. Other important thermodynamic expressions related 
to the behaviour .of body f1I are: 

c = 0(1 = 0
2

1/1 
08 Po -;;-:::::-" , (15) 

0(1 02 1/1 
'"h = - Oatk = - Po 08 0 Oatk ' (16) 

0(1 02 1/1 
fJ = - oT = -Po 080T' (17) 

where C is the elastic tangent constitutive fourth-rank tensor (isothermal) [see e.g. 
Malvern (1969)], 'Ilk are the plastic tangent constitutive variables (once more, they can be 
scalars or tensors) [see Celentano (1994); Lubliner (1972)] and fJ is the tangent conju­
gate of the thermal dilatation second-rank tensor [see e.g. Lubliner (1990)]. The symbol 
o indicates the appropriate multiplication according with the nature of each internal 
variable atk. 

In phase-change problems, the following general definition is adopted [see e.g. Celen­
tano (1994); Cele:ntano et al. (1993)] : 

02•1, 
C = -T-'I' -L ofpc(T) 

OT2 oT' 
(18) 

where c: n x 1 ~ IR+ is the specific heat capacity, L is the specific latent heat (released in a 
freezing problem or absorbed in a melting one) andfpc is the "phase-change" function [see 
e.g. Celentano (1994); Celentano et af. (1993)]. In an isothermal phase-change problem 
fpc = H(T - t m), with H being the Heaviside function and tm the melting temperature (see 
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Fig. 3). On the other hand, when the phase-change occurs in the range of temperatures 
CT,-f,),Jpc =fwith: 

I(T) ~ H <g(T) " I 

;VT~f, 

;f,<VT~~ 

;VT> fl' 
(19) 

where fl and f. are the liquidus and solidus temperatures, respectively [see e.g. Celentano 
et al. (1994)]. Function g(n may be obtained using a microstructure model [see e.g. Thevoz 
et al. (1989) and references therein]. However, from a macroscopical point of view assumed 
in this paper, the simplest choice for g(n is the linear one (see Fig. 3) : geT) = (T - f,)/ 
(fl - f,) V f, < T ~ ~. It should be noted that the temperature derivative of the phase­
change function does not exist for certain temperatures. Nevertheless, as it will be shown 
later, there is no need to evaluate such derivatives in the energy equation (20) [see e.g. 
Celentano (1994); Celentano et al. (1994)]. 

A further generalization of eqn (18) takes place when two or more phase-changes 
occur, i.e. npc ~ 2 [see e.g. Celentano (1994); Celentano et al. (1994)]. In this case, the term 
L iJfpc/iJT must be replaced by I:;~ I Lj iJfpc/iJT, where Lj and fpcj are the latent heat and 
phase-change function associated with thejth phase-change. To facilitate the notation, the 
simpler form of eqn (18) (i.e. npc = 1) is retained [see e.g. Celentano (1994); Celentano et 
al. (1994)]. 

(d) Energy equation and coupling terms. Under these considerations, the energy equa­
tion can be rewritten as : 

-Pocf-poLjpc-V'q+Por-T/J:e+porP = 0, (20) 

where the last two terms in the left-hand-side of eqn (20) denote the thermomechanical 
coupling terms [see e.g. Celentano (1994); Celentano et al. (1991); Celentano et al. 
(I 992a,b) ; Celentano et af. (1993)]: the first one is normally called the thermoelastic 
coupling term [see e.g. Ziegler (1983)] while the second accounts for the thermoplastic 
coupling term [see e.g. Celentano (1994)] and it is given by: 

rP = (T~ - iJ"') 0 (lk' 
iJ T iJlZk iJlZk 

(21) 

(e) Dissipative inequalities. Ifit is assumed that'" and IZk are independent ofVT, and q 
independent of IZto the following inequalities, both derived from equation (3), have to be 
fulfilled [see e.g. Lubliner (1972); Malvern (1969); Ziegler (1983)]: 

fpc fpC 

--------------1"'. ---

fm T I, T 

a) b) 

Fig. 3. Phase-change function for (a) isothermal case; (b) non-isothermal case. 
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8", 
DP = Po :1 0 «k ~ 0, 

uatk 

1 
Dth = -q·VT~ 0, 

T 
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(22) 

(23) 

where DP and Dth are defined as the plastic and thermal dissipations, respectively. Lubliner 
(1972) has also shown that eqns (22) and (23) become the necessary and sufficient conditions 
for the fulfilment of the Clausius-Duhem inequality (3). From eqn (22), it is clear that 
qk = - 8", /rt.k are the conjugate plastic variables of rt.k· 

2.2. Thermoelasto-plastic model 

(a) Basic definitions. In the context of rate-independent plasticity theory, the thermo­
plastic behaviour of the continuum is governed by a state yield function F(qk): IRnin, -+ IR 
(assumed strictly convex and, for simplicity, defined in terms of a unique smooth function), 
such that no plastic evolutions occur when F < O. In accordance with the work of Celentano 
(1994), a particular model takes place when the yield function is assumed to be of the form 
F = F(a, CCP, T), where ccP: n x Y -+ IR is the plastic hardening function [see e.g. Lubliner 
(1972)]. Now, the thermoelastic admissible domain (also assumed convex) Ipc is defined as 
[see e.g. Simo (1991)]: 

IP" = {(a, CCP , T)E(lRn"'m x IRndim) x IR x 1R+IF(a,ccP, T) < O}, (24a) 

and the thermoplastic domain is : 

IPP = {(a, ccP, T) E (IRndim x IRndim) x IR X IR+ IF (a, ccP, T) = O} = 81P'. (24b) 

Further, the principle of maximum plastic dissipation leads to an associate constitutive 
model characterized by the plastic variables (at ( = aP, at2 = ~, at3 = "P) with the following 
evolution equations [see e.g. Armero and Simo (1992a,b)] : 

8F ~ 
(25) gP =-A, 

8a ' 

rjP = H~pA (26) 

1 8F. 
IjP - --A. (27) 

- Po 8T ' 

together with the load-unload Kuhn-Tucker conditions [see e.g. Armero and Simo 
(1992a,b); Simo (1991)] A ~ 0, F ~ 0, AF = Oand the consistency condition [see e.g. Armero 
and Simo (1 992a, b); Simo (1991)] At = 0, where aP : n x Y -+ R"dim X IRncS;,. is the plastic 
strain second-rank tensor, "p: n x Y -+ IR is the plastic entropy and H~(T) : n x Y -+ IR is 
the plastic hardening modulus given by: 

H~p = h~(T)a:R, (28) 

where ~(T): n;< Y -+ IR is the plastic hardening coefficient and R = 8F/oa is the flow 
potential. It can be seen from eqns (26) and (28) that cGP is defined in terms of eP [see e.g. 
Celentano et al. (1991); Celentano et al. (1992a,b); Celentano et al. (1993); Celentano 
(1994)]. 

(b) Proposed specific free energy function. Restricting the analysis to the thermoelasto­
plastic isotropic response, the free energy'" is formulated as [see e.g. Armero and Simo 
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(1992a,b); Celentano (1994); Celentano et al. (1991); Celentano et al. (1992a,b); Celentano 
et al. (1993)] : 

1/1 = tfrte(f.-f.P, T)+tfrp(rt!P,y/P, T)+tfrpc(T), (29) 

where I/Ite, I/Itp and I/Ipe are the thermoelastic, thermoplastic and phase-change parts of 1/1, 
respectively. It should be noted that eqn (29) is a partially decoupled form of the specific 
free energy 1/1. Choosing the initial temperature as the reference one [see e.g. Celentano 
(1994)], the thermoelastic part I/Ite is written as: 

,1 1 
I/Ite = I/Ite(s-sP, T) = -2 (f.-f.P): C': (s-sP) - - {3': (e-sP)(T - To) 

Po Po 

1 T 
+l/Io-Y/o(T-To)+ -(10: (s-sP)+c'(T-To)-c'Tln-r.' (30) 

Po 0 

the thermoplastic part is : 

, rt!P 
I/Itp = I/ItP(rt!P, y/P, T) = - - - Ty/P, 

Po 

and the phase-change part is : 

I/Ipc = tfrpc(T) = _IT Ape (0) dO. 
To 

(31) 

(32) 

In above, subscript "0" denotes the initial state of the different variables and superscript 
"s" indicates secant thermomechanical properties [see e.g. Celentano (1994)]. The secant 
constitutive tensor If can be defined in terms of the more usual secant thermal dilatation 
second-rank tensor lX;h as fl' = C' : lX~h with lX~h = lX;h1, where lX;h is the secant thermal 
dilatation coefficient [see e.g. Malvern (1969); Ziegler (1983)]. A proposed constitutive 
tensor C' will be given in Section 2(d) obtaining in this form a complete definition of 1/1. 
Furthermore, Apc is defined as [see e.g. Celentano (1994)] : 

Ape(T) = fT ~ O/pc(O) 
To 0 aedO

, 
(33) 

where 0 is a dummy variable. The thermoelastic part I/Ite expressed by eqn (30) is a 
generalization of the usual specific free energy definition given in the thermoelastic context 
[see e.g. Malvern (1969); Ziegler (1983)]. On the other hand, the thermoplastic part I/Itp 
takes into account the irreversibility of the thermomechanical process [see e.g. Celentano 
(1994)]. Moreover, the phase-change part I/Ipc includes generalized phase-change effects by 
means of the phase-change function/pc [see e.g. Celentano (1994)]. 

This definition of 1/1 constitutes a crucial point of the model since it is the basis for 
deriving all the constitutive equations presented in Section 2.1 [see e.g. Celentano (1994)]. 
In particular, the secant and tangent constitutive laws, the specific heat capacity and the 
thermoplastic coupling term will be shown below. 

(c) Secant and tangent constitutive laws. The thermoelasto-plastic secant constitutive 
law is obtained using eqn (11) as: 

(1 = 8"(s-sP, T) = C': (s-sP)-flS(T- To) +(10' (34) 

It should be noted that this secant or hyperelastic constitutive law circumvents the 
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usual thermodynamic constraints [see e.g. Cas senti and Annigeri (\989); Coleman and 
Gurtin (1967)] and it depends exclusively on the thermoelastic part of the free energy 
function. 

Assuming that CS and ps may be temperature-dependent tensors, and using standard 
plasticity theory [see e.g. Lubliner (1990)], the tangent constitutive law can be written as 
[see e.g. Celentano (\ 994)] : 

II = COP :t-pept, (35) 

where the elasto-plastic tangent constitutive fourth-rank tensor cep is: 

H(2) 
COP = C --A C: R ® R: C, (36) 

the thermoelasto-plastic tangent constitutive second-rank tensor peP is: 

H(2) ( OF) pep = p - A R: p - oT C: R, (37) 

the plastic consistency parameter is given by: 

}. = ~~[ R:C:t-(R:P- ~~)tJ)' (38) 

and the scalar A is A = R: C: R -oF/ceep H~p. Further, the tangent constitutive tensors are: 

C =Cs, (39) 

11 = C', 12 = 0, 13 = 0, (40a,b,c) 

oCS cps 
p=ps_ oT:(S-SP)+ oT(T-To). (41) 

With these last considerations, the plastic evolution equations (25)-(27) are completely 
defined [see e.g. Celentano (1994)]. 

Equivalent forms of the secant and tangent constitutive laws can be obtained if ps is 
written in terms of lX~h recovering in this case the usual additive decomposition of strains 
[see e.g. Celentano (1994); Celentano et al. (\991); Celentano et al. (1992a,b); Celentano 
etal. (\993)]. 

(d) Proposed constitutive tensor. During solidification, the material in liquid state 
becomes solid. This means that a qualitative change in its thermomechanical properties is 
produced. Therefore, this fact should be taken into account in the constitutive tensor 
written as [see e.g. Celentano (\ 994); Celentano et al. (\ 993)] : 

C' = C~ol + (1 - f~)Cdev> (42) 

where C~ol and qev are the volumetric and deviatoric parts of CS, respectively [see e.g. 
Malvern (1969) ; Ziegler (1983)]. Now,f~ denotes the phase-change function associated 
with a liquid-solid phase-change [see e.g. Celentano (1994)]. In this case,f~ and 1-f~ 
represent the liquid and solid volume fractions, respectively. It should be noted thatf~ has 
to be a smooth function of T in each phase in order to be able to evaluate the temperature 
derivatives of C' needed in the constitutive relations presented in Section 2.1. 
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V2J2 

Vfc, 
T, >T2 

I, 

V!~ 
Fig. 4. Von Mises temperature-dependent yield function (I) is the trace of /I). 

Note that eqn (42) is an additional constitutive assumption implicitly contained in the 
proposed specific free energy given by eqn (30). With this definition of e, both the classic 
constitutive law of a liquid in rest (i.e. (I is equal to the hydrostatic stress tensor leading to 
(I' = 0 where (I' is the deviatoric stress tensor) and that corresponding to a solid material 
can be represented [see e.g. Celentano (1994); Celentano et al. (1993»). 

(e) Yieldfunction. A Von Mises temperature-dependent yield function (see Fig. 4) has 
been adopted as [see e.g. Armero and Simo (1992a,b); Celentano (1994); Wriggers and 
Miehe (1992); Wriggers et al. (1989») : 

F«(I, ~P, T) = j3.i; -~, (43) 

where J2 = ~(I' : (I' is the second invariant of the deviatoric stress tensor and ~ is the total 
hardening function defined by: 

~(~, T) = ~th(T) + (1-f~)~P, (44) 

where ~th(T) is the thermal hardening function (also assumed to be a positive smooth 
function of T) related to the uniaxial cohesion of the material [see e.g. Celentano (1994»). 

Moreover, the flow potential is now given by R = (j3/2.j:i;)(I', where it should be 
noted that R is non-determinate when (I' = O. However, as ~th > 0, it can be observed that 
F < 0 for this particular situation. Therefore, a purely elastic material behaviour O. = 0) is 
considered for this case. 

With this definition of F, the well-known plastic restriction [see e.g. Lubliner (1972); 
Lubliner (1990») OF/Ofl.kOgk < 0 for F = P = 0 reads R: e : R + (1-f~)H<&l' > 0 for 
F = P = 0 which is clearly satisfied if the additional constraint H'Cf' > - R : ~ : R is assumed 
[see e.g. Lubliner (1972); Lubliner (1990); Celentano (1994»), where the condition 
R: e: R > 0 is verified taking into account the definitions given above [see e.g. Celentano 
(1994)]. In the solid phase (f~ = 0), the particular situation with H'l/p > 0 is characteristic 
of work hardening plastic materi~ls [see e.g. Lubliner (1972); Lubliner (1990)]. 

(f) Specific heat capacity. Taking into account eqn (18) (considering, once more, the 
definition of the specific free energy given above), the specific heat capacity is expressed as 
[see e.g. Celentano (1994») : 

T o2e' T o2/f 
c = c(e-eP, T) = - -(e-eP) :-: (e-eP)+ - -: (e-eP)(T-To) 

2po OT2 Po OT2 

+--: (e-eP)+cs-T- (T-To)-Tln- +2T-In-. 2T off 02e" [ TJ oc· T 
Po oT OT2 To oT To 

(45) 
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It can be clearly observed that eqn (18) preserves the classical definition of the specific 
heat capacity in the whole domain because the phase-change part of t/! does not play any 
role in the expression of c. In the particular case of absence of temperature-dependent 
properties, c = c' is obtained [see e.g. Celentano (1994)]. 

Further, considering that II - liP is the thermoelastic deformation term (in the free 
energy definition sense), it should be noted that the specific heat capacity does not depend 
directly on plastic variables. This assumption is typical of materials with uncoupled instan­
taneous elasticity and it is also usually accepted for metals [see e.g. Lubliner (1972); 
Lubliner (1990)]. 

(g) Thermoplastic coupling term. The thermoplastic coupling term defined in eqn (21) 
is obtained as: 

r P = rr: t+r~t, (46) 

where 

rr = H(i)[(a+ TJI) :R+H,...,]cp, (47a) 

r~ = H(i)[(a+ TJI): R+H,...,]X, (47b) 

with cD = R: CjA and X = - (R: JI- 8F/8T)/A. 

(h) Constitutive inequalities. Assuming isotropic heat conduction response, the con­
ductivity tensor is written as k = kl, where k: n x 1-+ ~+ is the conductivity coefficient. 
Therefore, it should be noted that the thermal dissipation equation (23) is clearly fulfilled 
if k ~ O. Moreover, the plastic dissipation equation (22) becomes now: 

[
8t/! at/! at/! aF] ~ [ .j3 (accth 

8j's )]. Po -:R+--H,...,+-- A.= ---a:a'-H,...,+poT --~CCP A.:s;;0. 
aeP accp a'1P 8T 2jJ; 8T 8T 

(48) 

This condition is automatically satisfied if there is no evolution of the internal variables 
(i = 0). If this is not the case, it is clear that the first term in the left-hand-side of eqn (48) 
is less than zero and, in ord~r to guarantee the fulfilment of such equations, the following 
three sufficient conditions are assumed: (i) H,..., ~ 0, (ii) 8~th/8T:S;; 0 and (iii) af";.,/8T ~ O. 
The first condition is related to the hardening behaviour of the material and guarantees 
that ~ ~ 0, while the second one refers to the thermal softening effect [see e.g. Armero 
and Simo (1992a,b)]. Finally, the third condition is satisfied taking into account the 
definition off";., given in Section 2.1. 

2.3. Thermal contact model 

(a) Basic dejinitions. The following conditions are assumed to hold fe u fg = fq and 
fe (') fg = 0, where C C ~ndUn-1 and fg C ~nd;m-I are parts of fq where the convection­
radiation phenomenon takes place between body fA and: (a) the environment around it, 
and (b) another body due to the gap existing among them, respectively (see Fig. 2). The 
heat fluxes corresponding to these two cases are denoted by qeonv and qg' respectively. 
Therefore. the normal heat flux to be considered in the boundary equation (7) is: 

q* = {qeon. 
qg 

in fe x 1 
in fgXI. 

(49) 

(b) Convection-radiation constitutive laws. The standard Newton's constitutive law has 



658 D. Celentano et al. 

been adopted to evaluate the heat flux due to convection-radiation phenomena between a 
body and its surrounding environment. This is written as [see e.g. Malvern (1969); Ziegler 
(1983)] : 

qconv = - h(T - T env), in rc x 1, (50) 

where h: rc x 1--+ IR+ is the convection-radiation coefficient (temperature-dependent) and 
Tenv: nout x 1--+ IR+ is the environmental temperature (defined outside Q). 

When a gap appears between bodies (1) and (2), convection-radiation effects are 
governed by the following constitutive law of the medium separating both bodies [see e.g. 
Malvern (1969); Ziegler (1983)]: 

qg(l) = -hg(T(l) - T(2») in rg(l) XI, (51a) 

qg(2) = -qg(l) in r g(2) XI, (51b) 

where hg : r g x 1 --+ IR + is the gap convection-radiation coefficient that, in generally may 
depend on the normal gap, the normal contact pressure (both will be defined in next section) 
and the temperatures T(O existing at the boundaries between the two bodies [see e.g. 
Celentano (1994)]. Thus, the gap convection-radiation coefficient is expressed as 
hg = hg(gmPm T(l)) [see e.g. Wriggers et al. (1989); Wriggers and Miehe (1992)]. 

2.4. Mechanical contact model 

(a) Basic definitions. In order to define the contact domain, the following conditions 
are assumed to hold fJu r nf= fO' and rJ{l r nJ= (/), where r J c IRnd;m- 1 is the part of rO' 
subject to mechanical contact effects and r nf c IRnd;m- 1 is the part of r" free of such 
phenomena (see Fig. 2). It should be noted that rJ coincides with r g [see e.g. Celentano 
(1994)]. 

The contact traction vector t*, which has to be taken into account in the boundary 
equation (5), is given by: 

t* = {~ in rJ xl 

in r nfx l' 

where tJis the contact vector [see e.g. Celentano (1994)]. 

(52) 

(b) Contact (adherence) constitutive law. The contact vector tJ associated with each 
boundary rJ can be defined as: 

tJ(l) = - PnD(l) in rJ(l) XI, (53a) 

tJ(2) = -tJ(1) in rJ(2) x 1, (53b) 

Pn being the normal contact pressure [see e.g. Wriggers and Miehe (1992); Wriggers et al. 
(1989)]. 

Denoting as u(l) the displacement vector of configuration CP(I) at rJ(,), the definition of 
the so called gap or penetration go is [see e.g. Wriggers and Miehe (1992); Wriggers et al. 
(1989)], 

go = D(l) • (U(I) -U(2») in rj, XI, (,) 
(54) 

where D(l) is the outward unit normal to body !!A(l)' which has been chosen here as the 
reference configuration for the contact problem. This choice is arbitrary, and the reversal 
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is also valid but does not give any new insight on the problem [see e.g. Wriggers and Miehe 
(1992), Wriggers el al. (1989)]. 

The following secant contact constitutive law is adopted for Pn [see e.g. Celentano 
(1994); Wriggers and Miehe (1992) ; Wriggers et al. (1989)] : 

Pn = H(gn)Engn in rJx 1, (55) 

where En is the normal elastic constitutive modulus (also called the normal asperity stiffness 
[see e.g. Wriggers and Miehe (1992); Wriggers et al. (1989)] which is temperature-dependent 
in a general case) and, as above, H is the Heaviside function (see Fig. 5). The condition of 
perfect impenetrability, characterized of ideally polished surfaces in contact, is asymp­
totically approached as En tends to infinity [see e.g. Wriggers and Miehe (1992); Wriggers 
et al. (1989)]. 

3. WEAK FORM AND FINITE ELEMENT FORMULATION 

In order to obtain the weak form of the quasi-static coupled thermomechanical initial 
boundary value problem described in Section 2, a space of admissible displacement test 
functions?'u is defined as?'u = {'1a E [Hi (O)rdiml'la = 0 on ru} and the corresponding space 
of admissible temperature test functions?' T is ?' T = {t7a EHi(O)It7a = 0 on r T} where 
Hi(O) is the standard notation for the Hilbert space [see e.g. Simo (1991)]. Accordingly, 
an admissible displacement solution space t 2 u (for a fixed time t E 1) is defined 
by t 2u = {u(X, t) '= [Hi (O)rdimlu(X, t) = ii(X, t) on ru} while the admissible temperature 
solution space t ft' T is t 2 T = {T(X, t) E Hi (0) I T(X, t) = T(X, t) on r T} [see e.g. Simo 
(1991)]. 

Hence, the integral form of the mentioned problem can be formulated as: find a 
displacement field u(X, t) and a temperature field T(X, t) which satisfy the local governing 
equations such that: 

(V 00', '1a)n+ (POBF,'1a)n-(O' 0 n, '1a)r. + (i,'1a)r. +(t*,'1a)r. = 0 V'IaE?'u, (56a) 

- (poet, t7a)n - (Po Ljpc, t7a)n + (V ° (k ° VT), t7a)n + (por, t7a)n - (TfJ: e, t7a)n 

+(rP ,t7a)n-(n o k o VT,t7a)r +(q,t7a)r +(q*,t7a)r = 0 Vt7aE?'T' (56b) 
q q q 

where (. , .)n, (., .:>r. and (. , .)r
q 

denote the standard L2-pairing [see e.g. Simo (1991)] in 
0, r q and r q respectively. It is important to note that the contribution of all bodies involved 
in the problem are summed in eqns (56) [see e.g. Celentano (1994)]. 

The time inte:gration of eqn (56b) is performed via a generalized mid-point rule 
algorithm [see e.g. Hughes (1987); Simo (1991); Zienkiewicz and Taylor (1989)]. Let 
[t, t+~t] c l(~t:> 0) be a time subinterval. Assuming that algorithmic approximations of 
the displacement IU(X): 0 ~ lR"dim and the temperature tT(X): 0 ~ IR+ are known, the 
objective is to obtain u(X), T(X), u(X) and t(X) at time t+M. To this end, it is necessary 
to find tHtu(X) and tHtT(X) which verify the local governing equations such that: 

Pn 

gn 

Fig. 5. Normal contact pressure. 
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I+~MX = ('+MX _IX)/i'J.t (57a) 

IHMX = rt.IHIX + (1-rt.)'X with rt. E [0,1], (57b) 

X being any variable in eqns (56). The option chosen in this work is rt. = 1, i.e. backward 
Euler scheme [see e.g. Hughes (1987); Zienkiewicz and Taylor (1989)]. 

In the context of the finite element technique [see e.g. Hughes (1987); Zienkiewicz and 
Taylor (1989)], the discrete problem can be obtained via a spatial Galerkin projection of 
the semidiscrete problem into finite dimensional subspaces h "1/ u c "I/u and h "1/ T C "1/ T of 
admissible CO continuous shape functions Nu c reT and NT c "1/ To respectively [see e.g. Simo 
(1991); Hughes (1987); Zienkiewicz and Taylor (1989)]. Consequently, the admissible 
"algorithmic" solution spaces ~Yu c I Y u and ~Y Tel Y T (for fixed time tEl), also con­
sisting of typical CO functions, are defined such that ~u(X) c I Y u and ~ T(X) ely T, respec­
tively [see e.g. Hughes (1987); Simo (1991); Zienkiewicz and Taylor (1989)]. 

Making use of the standard spatial interpolation for the displacement and temperature 
fields [see e.g. Hughes (1987); Zienkiewicz and Taylor (1989)], it leads to: 

~u(X) = Nu(X)' u(e) (58a) 

~T(X) = NT(X)'T(e) (58b) 

where Nu=[Nu, ... ,Nu ] with Nu=N;IEh"l/u and NT=[NT, ... ,NT ] with 
1 nnode I I nnode 

NT, = N; E h "1/ T both for i = 1, ... , nnode and e = 1, ... , nelem [see e.g. Hughes (1987); Zien-
kiewicz and Taylor (1989)]. 

In above, Nu and NT are the element shape function matrices for the displacement and 
temperature interpolation, respectively. Further, lu(e) is the nodal displacement vector, 'T(e) 

is the nodal temperature vector (the superscript "e" denotes element values) and I is the 
identity matrix. It should be noted that the same finite element interpolation is used for 
each component ofu and T [see e.g. Celentano (1994)]. For simplicity in the notation, the 
subscript h will be dropped from here onwards. 

Following standard procedures [see e.g. Hughes (1987); Zienkiewicz and Taylor 
(1989)], the global discretized thermomechanical equilibrium equations can be written in 
matrix form as [see e.g. Celentano (1994)] : 

{

I+MRU = I+MFu_I+MF,,+t+MFJ = 0 

I+MR
T 

= l+dlF T- [1+dIC _ t+dICpl'+Mt _ '+dIK'+dIT 

_1+dIL _[I+dIG_'+dIG ]t+MiJ = 0 
pc p 

(59) 

where Ru and RT are the mechanical and thermal residual vectors, respectively. The external 
force vector is F u, F" denote the internal force vector and FJ is the mechanical contact 
vector. Moreover, F is the external heat flux vector, C is the capacity matrix, K is the 
conductivity matrix and Lpc is the "phase-change" vector rate [see e.g. Celentano et al. 
(1991); Celentano et at. (1992a,b); Celentano et al. (1993), Celentano et al. (1994), Celen­
tano (1994)]. Furthermore, G is the thermoelastic coupling matrix, while Cp and Gp are 
coupling matrices due to plastic effects. Once more, IHliJ, IHlt and IHILpc are computed 
using eqn (57a). 

As usual, all vectors and matrices are assembled from the element contributions in the 
standard manner [see e.g. Hughes (1987); Zienkiewicz and Taylor (1989)]. The form of the 
different elemental expressions appearing in eqns (59) can be seen in Box l,where the 
superscript f7 denotes the transpose symbol and B is the usual strain-displacement matrix 
[see e.g. Hughes (1987); Zienkiewicz and Taylor (1989)]. Feu and Fer represent the point 
force vector and the temperature-dependent concentrated heat flux vector respectively, 
with neu and ner being the corresponding number of loaded element nodes. 
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Box I. Element matrices and vectors in the discretized thermomechanical equilibrium equations 

F(') = i NYB do+i NYtdr + ~ F(e) U u F u ~ i..J Cu 
n(e) r~C) j = I ' 

F~e) = r BYadO 
JOCe) 

F (') - i . NYt*dr f - u f 
r(e) 

J 

F~) = r N~pordO+ r N~ijdrq+ r N~hT,nvdr,+ i F~~ JoCC) Jr~e) Jr~e) j = 1 i 

c(') = r N~PocNTdO JaCC) 

K(') = r (VNT)YkVNTdO+ r N~hNTdr,+ r N~hgNgTdrf 
jaCC) JrCC1 JrCC) 

c I", 

De) = i NYp Li" dO pc T 0 dpc 
nee) 

qe) = r N~r~NTdO 
Jece) 

G(e) = r N~TfJYBdn 
JOIC) 

G(e) = i NYrPYBdO P T , 
nee) 

with 

NgT = [NT,-NTl 
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Vector Lpc contains the latent heat effect when (Hipc f= O. Considering that fpc may 
present a jump discontinuity for the isothermal problem or a very steep gradient [depending 
on the size of th(: phase-change interval (1'1-1'.)] for the non-isothermal one, a non­
standard spatial integration is required to compute Lpc accurately. The option chosen 
here is the well-known subdomain integration technique [see e.g. Celentano et al. (1994), 
Celentano (1994)]. 

The plastic coupling matrices (Cp and Gp) are zero if no plastic evolutions take place. 
Similarly, Ff is null when no mechanical contact effects appear [see e.g. Celentano et al. 
(1993); Celentano (1994)]. It should be noted that the third integral ofK is only evaluated 
in r./(I) due to the consideration of matrix N9T in its expression [see e.g. Celentano (1994)]. 

Finally, the solution of the non-linear system of eqns (59a) has been attempted by a 
staggered scheme [see details in the work of Celentano (1994)]. 

4. NUMERICAL EXAMPLES 

4.1. Quenching of a pressurized cylinder 
The quasi-static thermomechanical behaviour of a thick-walled cylinder, initially pre­

ssurized with Po = 200 N/mm2 and subsequently quenched from the initial temperature 
To = 320°C down to the environmental temperature Too = 20°C, is analysed. This example 
has been used by several authors as a test problem to study the performance of different 
solution strategies for thermomechanical analyses and to evaluate the influence of coupling 
terms [see e.g. Argyris et al. (1981); Armero and Simo (1992a,b)]. Figure 6 describes the 
problem layout, the geometry and the simple finite element mesh (composed of 20 four­
noded axisymmetric elements) used in the computations. Plane strain conditions in the 
axial direction have been assumed for simplicity (indicated with two continuous lines in 
Fig. 6). The temperature-dependent mechanical and thermal properties are shown in Tables 
I and 2, respectively. 
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h=1 

T",,=20°C 

WATER 

Fig. 6. Quenching of a pressurized cylinder: geometry and finite element mesh. 

Four different numerical analyses (using a time step of 10 s) have been considered for 
this problem [see e.g. Celentano (1994)] : 

• thermally unidirectional coupled and mechanically elastic (TUC-E), 
• bidirectional coupled and mechanically elastic (BC-E), 
• thermally unidirectional coupled and mechanically elasto-plastic (TUC-EP), 
• bidirectional coupled and mechanically elasto-plastic (BC-EP). 

Figures 7 and 8 show the temperature and radial displacement evolutions of a point 
located at the inside wall. It can be observed that, for the physically realistic material 
properties, the thermomechanical coupling terms do not play a significant role in the 
solution considered. 

Table I. Thermal properties 

• DensIty: Po = 1.0 --. [ kg ] 
mm3 

• Specific heat capacity: c'(T) = 1.3 X 10- 3 (T -20)+3.50[~g~~ ] 

• Conductivity coefficient: k(T) = -1.466 x 1O- 2(T -20) +45.0[s ~C ] 

• Convection-radiation coefficient (water-solid): hwate' = 1.16[ m:: OcJ 

• Convection-radiation coefficient (air-solid): hai, = 0.01 [m:: OcJ 

Table 2. Mechanical properties 

• Young's Modulus: E(T) = -95.0(T -20)+2.2 x 105[~J 
mm2 

• Poisson's ratio: v(T) = l.4x 1O-4(T-20) +0.28 

• Thermal dilatation coefficient: CX:h(T) = 5.0 x 1O- 9 (T -20)+ 12.0 x 1O-6[o~ ] 

• Thermal hardening function: CCth(T) = -0.133(T-20)+320.0[~J 
mm2 

• Plastic hardening coefficient: lL". = 0.0[~2 ] 
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Fig. 7. Quenching of a pressurized cylinder: temperature evolution at the inside wall. 

The same analysis has been performed using a physically unrealistic thermal dilatation 
coefficient iX:h = 5 a:h' The results can be found in Figs 9 and 10. In this situation, the 
differences between the unidirectional and bidirectional coupled solutions exhibit clearly 
the importance of the thermomechanical coupling terms. 

4.2. Solidification test 
The cylindrical casting of Nishida et al. (1986) has been analysed. The experiment 

consisted of casting commercial purity aluminium into an instrumented steel mould. The 
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Fig. 8. Quenching of a pressurized cylinder: radial displacement evolution at the inside wall. 
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Fig. 9. Quenching of a pressurized cylinder: temperature evolution at the inside wall for 
~h = 5 IX;". 

analysis begins when the mould is completely filled with aluminium in the liquid state, 
where the initial temperatures are assumed to be 670°C for the casting and 200°C for the 
mould. Thermocouples as well as two quartz rods were placed in the mould wall and in the 
mould cavity [see Fig. l1(a)] in order to measure temperature and radial displacement 
evolutions, respectively. Geometrical data and thermocouple locations are displayed in Fig. 
11 (b). 
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Fig. 10. Quenching of a pressurized cylinder: radial displacement evolution at the inside wall for 
~=5OC;h' 



Thermomechanical model for the solidification of cast metals 

Mold 

0) 

b) 

Fig. 11. Solidification test. (a) Schematic of the experimental setup of Nishida et al. (1986) and (b) 
geometry and thermocouples locations in the mould and casting [drawings from the work of Smelser 

and Richmond (1988)]. 
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The temperature-dependent thermal and mechanical properties of aluminium are 
shown in Tables 3 and 4, respectively. It should be noted that for this class of aluminium, 
only an isothermal liquid-solid phase-change can occur leading, therefore, to 
f';c = H(T - 1m) in this case. The steel is assumed to have constant thermal and mechanical 
properties (see Tables 5 and 6). The convection-radiation coefficient of the metal-mould 
interface is gap-dependent (see Table 7),while the contact properties between aluminium 
and steel can be found in Table 8. It should be noted that a frictionless condition has been 
considered for simplicity. Moreover, the gravity force is the only external force acting on 
the casting and mould. 

The finite element meshes used in the numerical analysis of this problem can be seen 
in Fig. 12. The first of them [Fig. l2(a)] is a 20 mesh composed of 225 linear triangular 
axisymmetric elements. Moreover, assuming that all the state variables depend exclusively 
on the radial direction and time, it is possible to choose a horizontal slice at the mid­
height of the mould for numerical analysis [see e.g. Celentano (1994); Celentano et al. 
(1994); Smelser and Richmond (1988)]. This simplificative assumption allows, therefore, 
the use of a 20 strip [Fig. l2(b)] containing 42 four-noded bilinear axisymmetric elements 
and a quarter of a 30 strip [Fig. 12(c)] discretized with nearly 600 linear tetrahedral 
elements. 
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Table 3. Thermal properties of aluminium 

• Density: Po = 2650.0 [:~ ] 

• Specific heat capacity: 

[ 
kcal ] 

c'(T) kgOC 

0.2283 
0.2379 
0.2476 
0.2576 
0.2672 
0.2769 

T[°C] 

100.0 
200.0 
300.0 
400.0 
500.0 
600.0 

• Conductivity coefficient: 

k(T) [ kcal ] 
msOC 

0.0560 
0.0540 
0.0530 
0.0520 
0.0500 
0.0220 
0.0230 

T[°C] 

100.0 
200.0 
400.0 
600.0 
659.9 
660.1 
800.0 

• Melting temperature: Tm = 660.0 [0C] 

[
kCalJ • Latent heat: L = 94.44 kg 

The variations of c'(T) and ken have been assumed to be piecewise linear within the mentioned 
temperatures. 

+--- casting 'I" mould ... 
y [I I I I I I I I I I ) I I ) I ) I I I ) I I I I I I I I I I ) I uTI]] II I I 

Lx b) 

""'casting .... mould--./' 

~xy 

c) 

Lx a) 
Fig. 12. Solidification test: finite element meshes. 
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Table 4. Mechanical properties of aluminium 

• Young's Modulus: 

E(T) x 104 [MPa] 
6.93 
3.54 

T[°C] 
25.0 

800.0 

• Poisson's ratio: v = 0.37 
• Thermal dilatation coefficient: 

ot~h(T) x W [,~ ] 
23.19 
27.86 
30.23 
30.36 
30.12 

T[°C] 

25.0 
300.0 
400.0 
659.9 
660.1 

• Thermal hardening function: 

'Cth(T) [MPa] T [0C] 
49.30 25.0 
0.01 660.0 

• Plastic hardening coefficient: H"" = 0.0 [MPa] 
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The variations of E(T), ot~h(T) and 'Cth(T) have been assumed to be piecewise linear within the mentioned 
temperatures. 

Table 5. Thermal properties of steel 

• Density: Po = 7850.0 [:~ ] 

• Specific heat capacity: c' = 0.1320 [k~:~ ] 
• Conductivity coefficient: k = 0.0109 [~:~~ ] 

Table 6. Mechanical properties of steel 

• Young's Modulus: E = 19.4 X 104 [MPa] 
• Poisson's ratio: v = 0.30 

• Thermal dilatation coefficient: ot~h = 12.0 X 1O-6[o~ ] 
• Thermal hardening function: 'Cth = 210.0 [MPa] 
• Plastic hardening coefficient: H"" = 0.0 [MPa] 

Table 7. Thermal properties of the casting­
mould interface 

• Convection-radiation coefficient: 

h[~J m2 soC 

0.7 
0.1 

gap [mm] 

0.0 
>0 

Table 8. Mechanical properties of the casting-mould interface 

• Normal asperity stiffness: En = 10.010 [MPa/m] 
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Fig. 13. Solidification test: temperature evolution at the center of the casting. 

System (59a) has been solved using the BC numerical strategy with a time step of 5 s. 
In addition to the features already commented, this fact implies that the energy equation 
has been solved considering the coupling thermomechanical terms and taking into account 
the changes in the thermal boundary conditions due to the radial displacements of the 
specimen. 

The temperature evolutions at different points of the mesh are plotted in Figs 13-17. 
The phase-change effects in the casting can easily be appreciated. Excellent agreement 
between the numerical results and the experimental ones is obtained. 

Figure 18 shows the evolution of the radial displacement at the external aluminium 
surface. Similarly, Fig. 19 plots the same evolution for a point situated at the inner mould 
surface. Once more, a good agreement is found between the experimental and numerical 
results. Further, the progressive change in contact conditions, causing the convection­
radiation coefficient to decrease significantly, can clearly be noted in the radial gap evolution 
depicted in Fig. 20. 

The numerical results shown in Figs 13-20 using the three meshes of Fig. 12 show that 
the simplificative assumption mentioned above seems to be relatively good [fact already 
noted by Celentano et al. (1994) and Smelser and Richmond (1988)]. 

Although linear interpolation elements have been used in the analysis [Fig. l2(a) and 
l2(c)], the well-known volumetric locking effect on the numerical solution [see e.g. Hughes 
(1980)] for the liquid phase does not occur because the material is assumed to be com­
pressible (the bulk modulus has a finite value) during the whole cooling process. Further­
more, knowing that in the present formulation tr eP = 0 (tr is the trace symbol), even with 
tr ee = 0 (typical locking when considering a infinite bulk modulus [see e.g. Hughes (1980)], 
the constraint tr e = 0 is not satisfied due to the thermal deformations, i.e. tr e = 3 lX~h 

[T - To]. 
Finally, it is important to emphasize that the usual "numerical trick" of increasing the 

thermal dilatation coefficient in the liquid phase in order to obtain more realistic dis­
placement evolutions [see e.g. Smelser and Richmond (1988)] is not necessary in this model 
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Fig. 14. Solidification test: temperature evolution at a point situated 10 mm from the center of the 
casting. 
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Fig. 15. Solidification test: temperature evolution at the casting surface. 
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Fig. 18. Solidification test: radial displacement evolution at the casting surface. 
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Fig. 19. Solidification test: radial displacement evolution at the inner mould surface. 

due to the full volumetric behaviour of the material in this phase given the constitutive 
equation (42). 

5. CONCLUSIONS 

A thermomechanical model to simulate the solidification problem of casted metals has 
been presented. The model, based on thermodynamic principles, takes into account different 
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Fig. 20. Solidification test: radial gap evolution. 

states of the solidifying material by introducing: a new phase-change function into the 
definition of the constitutive tensor, some internal plastic variables and a temperature­
dependent constitutive law. Besides, full thermomechanical coupling terms and variable 
mechanical and thermal boundary conditions have been considered. 

The model has been implemented in a finite element code. An enhanced staggered 
scheme has been used in order to solve the highly non-linear fully coupled finite element 
equations. Finally, the numerical examples analysed show the robustness of the approach. 

Further research in this field by the authors includes an extension of the model to 
account for micro-macro evolution laws, the use of mixing theory to model casting of 
complex alloys and the implementation of different numerical strategies to enhance even 
more the cost-effectiveness of the numerical solution. 
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