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E. Oñate, D. Peric, M. Chiumenti and Eduardo de Souza Neto (Eds)

MODELING OF AUSTENITIC TRIP-STEELS AT SMALL
SCALES – A MEAN-FIELD HOMOGENIZATION

APPROACH
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Abstract. A finite deformation mean-field homogenization approach is proposed based
on an extended Mori-Tanaka scheme that incorporates additional eigenvelocity gradients
associated with microstructural changes in austenitic steels such as twinning or solid-solid
phase transformation. The deformation of the individual phases is described by a finite
strain, hyperelastic and single crystal plasticity model, which is fully anisotropic and
captures strong mutual interactions of individual slip systems. The resulting mean-field
model is employed in the simulation of homogeneous deformation states with a prescribed
microstructure evolution at the material point level, where a strong interaction between
phase transformation and plasticity is observed in the individual phases.

1 INTRODUCTION

The constitutive modeling of high-alloyed, metastable austenitic steels, which show
the TRansformation-Induced Plasticity (TRIP)-effect, is a challenging task, because de-
pending on chemical composition, temperature, load case and loading rate, a variety of
different deformation mechanisms is observed [1]. In particular, the face-centered austen-
ite deforms via dislocation glide, twinning, stacking fault formation and stress-assisted /
strain-induced martensitic phase transformation. Within the last decades, a large num-
ber of constitutive models were proposed to capture these phenomena at the macroscopic
scale assuming a polycrystalline microstructure, cf. [2, 3] for phenomenological and [4, 5]
for micromechanical models. At the single crystal scale, the different deformation mech-
anisms are more naturally incorporated, but the discrete and anisotropic nature of the
transformation, slip and twinning systems renders such approaches still quite challenging,
at least from the numerical point of view. Common extensions of crystal plasticity models
employ a superposition of the different deformation mechanisms [6, 7], in which for all the
mechanisms the same stress measure is chosen as driving force. It may therefore be inter-
preted as a Reuss-type homogenization approach. Additionally, crystal plasticity models
have been generalized by extending the multiplicative decomposition of the deformation
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gradient and introducing additional intermediate configurations associated with each of
the mechanisms [8, 9]. Neither of the two approaches incorporates information from the
underlying microstructure other than the volume fractions of for instance transformed or
twinned domains. Furthermore, in order to account for the changes in the elastic prop-
erties due to the presence of these transformed or twinned domains [6, 9], the equality
of the elastic deformation measure within these domains and the embedding austenite is
postulated. Despite the fact that such an assumption allows for an efficient incorporation
of the important aspect of changing elastic behavior upon twinning or phase transforma-
tion, it is not consistent with common micromechanics approaches and certainly does not
hold for a general arrangement of twinned/transformed domains, in particular if these
domains are characterized by anisotropic elastic properties.
On the contrary, micromechanics approaches offer the advantage that features of the mi-
crostructure beyond the volume fraction, like for instance the particle shape, the aspect
ratio of inclusions or the orientation distribution of elongated inclusions can be accounted
for and that sound scale transition rules are available, which prescribe how the macroscopic
deformation is projected into particular domains of a heterogeneous material. Approaches
in which single crystal plasticity models are combined with homogenization schemes com-
monly aim for a more accurate description of the polycrystalline behavior, cf. [10, 11] for
an application of a self-consistent scheme that accounts for transformation induced eigen-
strains, in the context of finite deformations, while in [12] a small deformation framework
is employed in a similar manner.
The current contribution also utilizes a homogenization scheme in connection with a fi-
nite strain single crystal plasticity model, but the aim is to improve the predictions at the
single crystal scale and refine existing models employed in multi-scale approaches [13].

Throughout the paper, the following notation is used. Scalar variables a are denoted
in italic, while parameters a are shown upright. Vectors a and second order tensors
A are distinguished by italic and upright bold symbols, while fourth order tensors are
expressed as A. Furthermore, the dyadic product of two vectors gives a second order
tensor A = a ⊗ b and the square product between second order tensors is computed as
A = A�B = AikBjleiejekel in Cartesian coordinates.

2 MEAN-FIELD HOMOGENIZATION ACCOUNTING FOR INHOMO-
GENEOUS INHOMOGENEITIES

Analytical homogenization methods to a great extend employ classic results from Es-
helby’s ellipsoidal inclusion problem [14] to estimate the overall properties of an heteroge-
neous material. Herein, the heterogeneous material is replaced by a fictitious homogeneous
comparison material that experiences a suitably chosen eigenstrain field. Following the
terminology of [15, p.77ff], the latter is also referred to as an inclusion, whereas a domain
with properties different from the embedding material is called an inhomogeneity. The
described procedure is perfectly suitable for composite materials, in which the compo-
sition is fixed and the arrangement of the individual constituents only changes if finite
deformations and/or damage and fracture are considered. On the contrary, in materials
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undergoing phase transformation the situation is more complex, as new product phases
evolve upon the change of external stimuli, e.g. deformation, temperature, magnetic field,
etc., from the parent phase. In addition to the different properties of parent and product
phase, the phase transformation is often associated with a characteristic transformation
strain. A generalization of Eshelby’s inclusion problem that accounts for these additional
strain contributions is described in [15, p.88ff] in the framework of small deformations.
Therein, a domain, whose properties are different from the embedding material and which
experiences additional eigenstrains, is referred to as an inhomogeneous inhomogeneity.
In the current contribution, the procedure mentioned above is translated to a finite de-
formation framework, by a proper choice of kinematic and kinetic variables. In [16], the
velocity gradient is proposed as a suitable kinematic variable to solve a rate-type Eshelby
inclusion problem in the framework of finite deformations without considering contri-
butions from additional transformation velocity gradients. Adopting this proposal and
employing the assumption that the inhomogeneous inhomogeneity is embedded into the
matrix experiencing an average velocity gradient Lmat, see [15, p.163ff.] and [17] for an
equivalent assumption under small strains, one obtains the relation

L̄ = [ f0 B + (1− f0) I ] : Lmat + f0 [ I + B : [P : Fmat − I ] ] : Ltr (1)

together with the relation for the average velocity gradients in a two-phase material

L̄ = f0 Lincl + (1− f0)Lmat . (2)

Herein, the overall velocity gradient, the transformation velocity gradient and the average
velocity gradient in the inhomogeneity are denoted as L̄, Ltr and Lincl, respectively, while
f0 is the volume fraction of the inhomogeneity. Furthermore, B is termed the “strain”
concentration tensor and relates the average velocity gradients in the inhomogeneity and
in the matrix. According to [18], it is considered the finite strain extension of the concen-
tration tensor introduced by Mori-Tanaka [17]. It is determined from

B = [ I + P : [Fincl − Fmat ] ]−1 , (3)

in which the Hill tensor P, specified in detail e.g. in [16, 19, 20] depends on the current
geometry of the inhomogeneity and the constitutive tangent Fmat of the matrix material.
The latter emerges from a rate-type description of the constitutive model and connects
the rate of the nominal stress ṅ and the velocity gradient, i.e.

ṅ = F : L . (4)

This type of constitutive description also plays a key role in the generalization of mean-
field homogenization approaches from small to finite deformations, cf. [21, 16, 18]. Here,
the approach proposed in [21] is adopted, together with the assumption that the current
configuration is taken as the reference configuration, which allows one to express the rate
of the nominal stress in terms of the Lie derivative of the Kirchhoff stress as

ṅ = L (τ ) + τ · LT (5)
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and establishes the connection between the nominal and the spatial tangent operators as

F = c + τ � I . (6)

In contrast to [21], the overall stress is not obtained by integration of the rate-type consti-
tutive equations, but by averaging the Kirchhoff stress in the individual phases, obtained
from the hyperelastic-plastic material models introduced in Section 3, over the initial
volume of the heterogeneous material as

τ̄ = [ f0 τincl + (1− f0) τmat ]
J̄

f0 Jincl + (1− f0) Jmat

(7)

Herein, an estimate of the average volume change in the individual phases of the hetero-
geneous material [18] is included in the averaging process. J̄ , Jincl and Jmat denote the
determinant of the overall deformation gradient and the determinant of the deformation
gradient in the individual phases, respectively. These deformation gradients are obtained
by integrating the velocity gradient, determined from the system (1) and (2). They are
also employed in the evaluation of the hyperelastic-plastic constitutive models.
Furthermore, the overall nominal tangent is obtained as the average of the individual
tangents, i.e.

F̄ = Fincl + (1− f0) [Fmat − Fincl ] :
∂Lmat

∂L̄
, (8)

employing (4) and (2). Note that, the implicit function theorem is applied to (1) to
compute the derivative of the velocity gradient in the matrix with respect to the overall
velocity gradient numerically by means of the complex step derivative [22]. Taking into
account the identity that the average of the product of nominal stress and deformation
rate decomposes into the product of averages under prescribed uniform boundary condi-
tions [16] and considering the choice that the current configuration is taken as reference,
a relation identical to (5) can also be established for the overall quantities. Thus, the
overall spatial tangent can be deduced and takes the form

c̄ = F̄− τ̄ � I . (9)

In order to complete the model, a description of the stress-free transformation veloc-
ity gradient is required, which may be due to diffusion, chemical reactions or solid-solid
phase transformations. In the current contribution, the transformation velocity gradient
is associated with the diffusionless martensitic transformation in high-alloyed steels from
face-centered austenite to body-centered martensite. At the single crystal scale, crystal-
lography based theories are typically employed to derive the kinematics associated with
this transformation, cf. [23, 24, 25], which provides the corresponding deformation gradient
that transforms the crystal lattice. Furthermore, it is commonly assumed [13, 26, 27, 12]
that this deformation gradient is present as soon as martensite nuclei appears, i.e. the
deformation gradient is prescribed by a step function. Although this approach is physi-
cally sound, it is not applicable in the formulation (1) without modification, because the
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jump in the deformation renders the associated velocity gradient infinite. Therefore, the
non-smooth activation of the deformation gradient is regularized by

Ftr = I +
∑
I

ξI
fm
g (ξI)MI ⊗NI , (10)

in which MI, NI, ξI and fm denote the shape deformation vector, the habit plane nor-
mal, the volume fraction of the martensite variant I and the martensite volume fraction,
respectively, while g (ξI) is a nonnegative, continuous, monotonically increasing function
with g (0) = 0 and g (1) = 1, that regularizes the step function. In the subsequent
computations, presented in Section 4.2, the function

g (ξI) = 1− exp (−c ξI) (11)

is chosen, in which c controls the initial slope. The transformation velocity gradient is

obtained from Ltr = Ḟ
tr · Ftr.

3 MATERIAL MODEL OF INDIVIDUAL PHASES

The constitutive response of the individual, single-crystalline phases is described by
means of a finite deformation crystal plasticity model, which is based on the multiplicative
split of the deformation gradient

F = Fe · Fp (12)

into an elastic and a plastic part. The former is used to determine the second Piola-
Kirchhoff stress in the intermediate configuration from the hyperelastic relation

Ŝ = 2
∂ψe(Ce)

∂Ce = 2
∂ψ̃e

∂Em︸ ︷︷ ︸
T

:
∂Em

∂Ce , (13)

in which the right Cauchy-Green tensor is computed as Ce = FeT · Fe, while Em and T
denote the generalized strain tensor of Seth-Hill type and the stress dual to the Seth-Hill
strain, respectively. The elastic part of the free-energy ψ̃e employs a quadratic form of
the Seth-Hill strain and also incorporates the cubic symmetry of the crystal, see [28] for
further details.
The evolution of the plastic part of the deformation gradient is described by the associative
multi-surface flow rule

Ḟ
p · Fp−1 =

Nslip∑
α

λ̇αSα ⊗Nα , (14)

where Sα andNα denote the slip direction and slip plane normal, respectively. In the face-
centered austenite (fcc), the family of primary 〈110〉{111} slip systems is considered, while
in the body-centered martensite (bcc), two families of slip systems, namely the 〈111〉{110}
systems and the 〈111〉{112} systems, are taken into account. Differentiating between
positive and negative slip directions of a given slip system gives rise to a total number of
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slip systems Nslip = 24 in the fcc structure, whereas for the bcc crystal Nslip = 48. The
Lagrange multipliers λ̇α, characterizing the plastic slip rate on the different slip systems,
are determined from the KKT conditions

λ̇α ≥ 0, Φα ≤ 0 λ̇αΦα = 0 , (15)

where the repeated index α does not imply a summation. The yield function, associated
with each of the slip systems, takes the form

Φα = M : [Sα ⊗Nα ]− Y0 − Yα (εβ) . (16)

Herein, the Mandel stress is related to the second Piola-Kirchhoff stress as M = Ce · Ŝ
and Yα (εβ) describes the hardening associated with the slip system α. In particular, it
includes self- and latent hardening effects by means of a six-parameter interaction matrix
(hαβ) and the saturation-type, phenomenological hardening function [29]

Yα (εβ) = ∆Y
∑

β
hαβ
[

1− exp (−h εβ)
]

. (17)

In the case of the bcc crystal, where the dislocation slip along the dense 〈111〉 direc-
tions involves several slip planes, the two-parameter interaction matrix introduced by
Asaro [30] is employed. The interaction of different slip systems is only accounted for
among the systems of the same family, while the interaction of systems stemming from
different families is neglected. Finally, it is remarked that the hardening variables εα are
determined from the temporal integration of the corresponding Lagrange multiplier. For
further details regarding the derivation of the model and the implementation of the rate-
independent model by means of an Augmented-Lagrangian formulation, the interested
reader is referred to [31, 32].

4 RESULTS

4.1 Parameter estimation of individual phases

In order to obtain meaningful results from the mean-field homogenization approach
described in Section 2, the parameters in the constitutive models employed for the indi-
vidual phases have to be estimated. Therefore, the experimentally measured response of
an AISI 316L single crystal [33] is taken as a reference for the austenitic phase, where it is
assumed that the evolution of the microstructure at room temperature, like the formation
of stacking faults and twins, has at least initially a minor influence on the hardening be-
havior. Thus, the estimation of the hardening parameters of the crystal plasticity model
from the initial portion of the measured stress-strain curve corresponds to a reasonable de-
scription of a stable austenitic single crystal. Similarly, experimental data obtained from
bcc α-iron single crystals [34] is used to estimate the hardening parameters employed in
the crystal plasticity model of the martensitic phase. Due to the fact that α-iron and the
martensitic phase in a metastable TRIP-steel both possess a bcc crystal structure, it is
furthermore assumed that the addition of typical alloying elements, like chromium, nickel,
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Figure 1: Comparison of the experimentally measured and simulated response of a single crystal under
uniaxial tension along different crystal orientations: (a) AISI 316L and (b) α-iron. The experimental
data is taken from the literature.

manganese and carbon, only increases the initial yield stress of the martensitic phase and
does not alter its hardening behavior significantly. Of course, more realistic parameter es-
timation might be obtained from nanoindentation experiments [35, 36], which is however
beyond the scope of the current contribution. The results of the simulated uniaxial tensile
tests along different crystal orientations are depicted in Fig. 1 together with the exper-
imental data points from the literature. Within the simulations, spatially homogeneous
deformation states are assumed, which is a reasonable assumption at least for the highly
symmetric crystal orientations and allows for efficient simulations at the material point
level. The material parameters associated with the two phases are presented in Table 1.

phase C11 C12 C44 Y0 h1 h2 h3 h4 h5 h6

γ 204.6 GPa 137.7 GPa 126.2 GPa 78.0 MPa 1.0 1.0 0.6 12.3 1.6 1.3
h m ∆Y

10.0 0.0 8.0 MPa

phase C11 C12 C44 Y0 h1 h2 = h3 = h4 = h5 = h6

α′ 231.4 GPa 134.5 GPa 116.3 GPa 224.4 MPa 1.0 1.4
h m ∆Y

60.0 0.0 10.0 MPa

Table 1: Material parameters of the austenitic phase (γ) and martensitic phase (α′). The elastic
coefficients are taken from [37, 38] and the parameters of the interaction matrix are adopted from [39].
Note that the initial yield stress is increased to account for contributions from alloying elements in
martensite and an initial yield stress of Y0 = 17.87 MPa is determined for pure α-iron.

4.2 Two-phase composite with evolving microstructure

The micromechanical model, described in Section 2, is employed in connection with
the calibrated single crystal plasticity model for the austenitic and the martensitic phase
to investigate the effect of the phase transformation onto the elastic-plastic deformation
of the individual phases. Therefore, a uniaxial tension and a uniaxial compression test
along the [010] direction of the austenite is simulated, prescribing the initial orientations
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such that the principle axes of the crystal lattice of both phases are aligned with the
axes of the global coordinate system. The shape deformation vector and the habit plane
normal associated with 24 transformation systems are adopted from [13]. Furthermore,
the evolution of 8 favorable variants that develop upon loading is prescribed as a function
of the overall deformation. It is also taken from [13] and illustrated in Fig. 2 (b) and 3 (b).
In the two-phase model at hand, it is additionally assumed that all the variants evolve
simultaneously within the initially spherical, martensitic inhomogeneity. The resulting
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Figure 2: Comparison of the material response under uniaxial tension. (a) true stress-nominal strain
curve of the two-phase composite material and the pure austenite and (b) evolution of the accumulated
plastic slip A =

∑
α εα in the individual phases of the composite material and the pure austenite.

stress-strain curves are depicted in Fig. 2 (a) and 3 (a). Comparing the results with the
ones for the pure austenite, a strengthening due to the evolving microstructure and the
transformation induced deformation is clearly visible. Note that the prescribed evolution
of the martensite variants possesses an asymmetry, i.e. more martensite is formed in
tension than in compression at the same absolute value of nominal strain. This asymmetry
can also be observed in the strengthening, although the absolute values of stress only differ
slightly. On the contrary, the evolution of the accumulated plastic slip A in the individual
phases varies significantly in tension and compression. While during the initial stage of the
test, the evolution of the accumulated plastic slip in the austenitic phase of the two-phase
material closely follows the evolution of the pure austenite, due to the small martensitic
volume fraction, the martensitic phase shows a strong increase in the accumulated plastic
slip, which is even more pronounced in compression than in tension and stems from
the accommodation of the transformation induced deformation. As the transformation
deformation gradient Ftr reaches its asymptotic value at ξI ≈ 0.01, plastic slip activity in
martensite drops to that of the austenite or even below in uniaxial tension. Within the
strain range |F22−1| ∈ [0.023, 0.042], the deformation of martensite in the compression test
is almost entirely accommodated elastically, thus causing additional plastic deformation
in the austenite. Under uniaxial tension, this trend is reversed and more plastic slip is
observed in the martensite, while the plastic slip activity in the austenitic phase of the two-
phase material decreases below that of the pure austenite. Thus, one can conclude that
there is a strong coupling of the plastic flow in the individual phases, their contribution to
the overall straining changes dynamically and is even sensitive to the direction of loading.
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Figure 3: Comparison of the material response under uniaxial compression. (a) true stress-nominal strain
curve of the two-phase composite material and the pure austenite and (b) evolution of the accumulated
plastic slip A =

∑
α εα in the individual phases of the composite material and the pure austenite.

5 CONCLUSION

The current contribution describes a two-phase mean-field homogenization approach,
employing an extended finite deformation Mori-Tanaka scheme. It accounts for additional
stress-free eigenvelocity gradients associated with twinning or phase transformation in
austenitic steels at the single crystal scale. In order to incorporate the eigenvelocity gra-
dient into the rate-type formulation of the homogenization approach, a regularization of
the former is proposed, which approximates the jump-like prescription of the deformation
associated with the microstructural changes as soon as a transformed or twinned domain
appears. The material behavior of the individual phases is captured by a finite strain
crystal plasticity model, taking into account both anisotropic elastic and anisotropic plas-
tic flow and hardening behavior. The mean-field model is employed in a uniaxial tension
and uniaxial compression test with a prescribed evolution of multiple martensite variants
developing inside the martensitic inclusion phase. It is found that there is a pronounced
strengthening compared to the pure stable austenite, which is due to evolution of the
martensitic phase and is consistent with experiments. Furthermore, a strong interaction
between phase transformation and plasticity within the martensitic phase as well as a mu-
tual interaction of the plastic deformation in the individual phases is observed. The latter
also changes dynamically during the deformation process. As these complex interactions
are not prescribed a priori and are rather due the adopted mean-field approach in conjunc-
tion with the constitutive models of the individual phases, the current modeling approach
seems to be suitable to accurately describe the deformation behavior of austenitic steels at
the single crystal scale. The current framework should be extended to incorporate a ther-
modynamically consistent transformation criterion. Such an extended model would allow
for a critical assessment of the necessary complexity of plastic inheritance approaches.
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