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Abstract

We present generalizations of the classical structural ¯exibility matrix. Direct or indirect computation of
¯exibilities as `in¯uence coe�cients' has traditionally required pre-removal of rigid body modes by imposing

appropriate support conditions. Here the ¯exibility of an individual element or substructure is directly obtained as a
particular generalized inverse of the free±free sti�ness matrix. This entity is called a free±free ¯exibility matrix. It
preserves exactly the rigid body modes. The de®nition is element independent. It only involves access to the sti�ness
generated by a standard ®nite element program as well as a separate geometric construction of the rigid body

modes. With this information, the computation of the free±free ¯exibility can be done by solving linear equations
and does not require the solution of an eigenvalue problem or performing a singular value decomposition.
Flexibility expressions for symmetric and unsymmetric free±free sti�nesses are studied. For the unsymmetric case

two ¯exibilities, one preserving the Penrose conditions and the other the spectral properties, are examined. The two
versions coalesce for symmetric matrices. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Motivation

The direct or indirect computation of structural ¯ex-

ibilities as `in¯uence coe�cients' has traditionally

required precluding rigid body modes by imposing

appropriate support conditions. This approach agrees

with conventional experimental practices for static

tests, in which forces are applied to a supported struc-

ture and de¯ections measured.

There are applications, however, for which it is con-

venient to have an expression for the ¯exibility of a

free±free ®nite element or assembly of elements. The

quali®er `free±free' is used here to denote that all rigid

body motions are unrestrained. This entity will be

called a free±free ¯exibility matrix, and denoted by F.

In the symmetric case, the free±free ¯exibility rep-

resents the dual of the well known free±free sti�ness

matrix K, in the sense that F and K are the pseudo-

inverses (that is, the Moore±Penrose generalized

inverses) of each other. The general expression for the

pseudo-inverse of a singular symmetric matrix such as

K involves its singular value decomposition (SVD) or,

equivalently, knowledge of the eigensystem of K; see

e.g. [1]. This kind of analysis is not only expensive, but

notoriously sensitive to rank decisions when carried

out in inexact arithmetic. That is: when can a small

singular value be replaced by zero? Such decisions

depend on the problem as well as the working compu-

ter precision. Another disadvantage of going through

an explicit spectral analysis is that symbolic work is

seriously impaired because analytical expressions for

eigenvalues are not available unless K has very low

order.

Explicit expressions are presented here that relate K

and F but involve only matrix inversions or, equiva-

lently, the solution of linear systems. These expressions

assume the availability of a basis matrix R for the
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rigid body modes. Often this matrix may be con-
structed by geometric arguments separately from K

and F. The formulas are well suited for symbolic ma-
nipulation in the case of simple individual elements.

2. Preliminaries

2.1. Substructures

A substructure is de®ned here as an assembly of
®nite elements that does not possess zero-energy
modes (also called spurious modes or kinematic de-

®ciencies) aside from rigid body modes (RBM). It
includes individual elements and a complete structure
as special cases. The total number of nodal degrees of

freedom of the substructure is called Nf.
Should it be necessary, substructures are identi®ed

by a superscript enclosed in brackets, for example K [3]

is the sti�ness of substructure 3. Because the following
exposition deals only with individual substructures, the
identifying superscript will be omitted to reduce clut-

ter.
Fig. 1(a) depicts a two-dimensional substructure,

and the force systems acting on its nodes from external
agents. The applied forces f are given as data. The in-

teraction forces lll are exerted by other connected sus-
bstructures. If the substructure is supported or partly

supported, it is rendered free±free on replacing the
supports by reaction forces s as shown in Fig. 1(b).

The total force vector acting on the substructure is the
superposition

fa � f � lll� s �1�
where each vector has length Nf. Vectors lll and s are
completed with zero entries as appropriate for confor-
mity.

At each node n, considered as a free body, the in-
ternal force is de®ned to be the resultant of the acting
forces, as depicted in Fig. 1(c). Hence

p � fa; or f � lll� sÿ p � 0; �2�
is the statement of node by node equilibrium.
For some applications it is natural to view support

reactions as interaction forces by viewing the `ground'
as another substructure. In such cases vector s is
merged with lll.

2.2. Rigid body modes and self equilibrium

As for the kinematics, the free±free substructure has
Nr>0, linearly independent rigid body modes or
RBMs. Rigid motions are characterized through the
RBM-basis matrix R, dimensioned Nf�Nr, such that

any rigid node displacement can be represented as
ur=Ra where a is a vector of Nr modal amplitudes.

Fig. 1. A generic substructure [s] and the force systems acting on it. The top ®gures illustrate the conversion from a partly or fully

supported con®guration (a) to a free±free con®guration (b) by replacing supports by reaction forces. The self-equilibrium of a free-

body node n is shown in (c).

C.A. Felippa et al. / Computers and Structures 68 (1998) 411±418412



The total displacement vector u can be written as the
superposition of deformational and rigid motions:

u � d� ur � d� Ra; �3�
Matrix R may be constructed by taking as columns Nr

linearly independent rigid displacement ®elds evaluated

at the nodes. For conveniency those columns are
assumed to be orthonormalized so that RTR= I, the
identity matrix of order Nr. The orthogonal projector

associated with R is the symmetric matrix

P � Iÿ R�RTR�ÿ1RT � Iÿ RRT �4�
where I is the Nf�Nf identity matrix. [The last simpli®-
cation in Eq. (4) arises from the assumed orthonormal-

ity of R.] Note that P2=P and PR = RTP = 0.
Application of the projector Eq. (4) to u extracts the

deformational node displacements d= Pu. Subtracting
these from the total displacements yields the rigid

motions ur=uÿ d = (IÿP)u= RRTu. Using the
idempotent property P2=P it is easy to verify that
dTur=0.

Invoking the Principle of Virtual Work for the sub-
structure under virtual rigid motions Rda yields

RTp � RT�f � lll� s� � 0 �5�
as the statement of overall self-equilibrium for the sub-
structure.

2.3. Generalized inverse terminology

We summarize here the de®nition of two types of
generalized inverses that appear in the sequel, and
introduce related terminology. For a complete cover-
age of the subject the book by Rao and Mitra [2] may

be consulted.
Consider a square real matrix A, which may be

unsymmetric and singular but is assumed non-defective

(that is, it has a complete eigensystem). Its pseudo-
inverse, also called the Moore±Penrose generalized
inverse, is the matrix X that satis®es the four Penrose

conditions

AXA � A; XAX � X; AX � �AX�T ; XA � �XA�T:
�6�

The pseudo-inverse is identi®ed as X = A+ in the

sequel. It can be shown that this matrix exists and is
unique [1].
The spectral generalized inverse of A or simply sg-

inverse, is the matrix A$ that has the same eigenvectors
as A, and whose nonzero eigenvalues are the recipro-
cals of the corresponding nonzero eigenvalues of A.

(The name and notations for this class of g-inverses is
not standardized in the literature.) More precisely, if
the nonzero eigenvalues of A are li and associated left

and right bi-orthonormalized eigenvectors are xi and
yi, respectively, we have

A �
X
i

lixiyTi ; Ay �
X
i

1

li
xiy

T
i ;

li 6� 0; xTi ; li 6� 0; xTi yj � dij �7�
where dij is the Kronecker delta. If A is symmetric,

A+=A$, but for unsymmetric matrices these two g-
inverses generally di�er. It can be shown [2] that A$

always satis®es the ®rst two Penrose conditions in
Eq. (6) but not necessarily the others. Note, however,

that A, A+ and A$ have the same rank.

3. Symmetric Sti�ness and Flexibility Matrices

3.1. De®nitions

We begin with the symmetric case, which is the most

important one in practice. The well known free±free
sti�ness matrix K of a linearly elastic substructure
relates node displacements to node forces through the
sti�ness equations:

Ku � p � f � l� s; K � KT: �8�
If K models all rigid motions exactly, RTK= KR must
vanish identically on account of Eq. (5). Such a sti�-
ness matrix will be called clean as regards rigid body

motions.
The free±free ¯exibility F of the substructure is

de®ned by the expressions

F � P�K� RRT�ÿ1 � �K� RRT�ÿ1P � FT: �9�
The symmetry of F follows from the spectral properties
discussed below. Using F we can write the free±free

¯exibility matrix equation dual to Eq. (8) as

Fp � d � Pu � uÿ ur: �10�
Premultiplication by RT and use of Eq. (5) shows that

FR = 0.
If the substructure is ®xed (that is, fully restrained

against all RBMs), matrix R is void. The de®nition of
Eq. (9) then collapses to that of the ordinary structural

¯exibility F= Kÿ1 whereas Eq. (10) reduces to Fp = u.
Because of coalescence in the fully-supported case, the
same matrix symbol F can be used without risk of con-

fusion.

3.2. Spectral and duality properties

The basic properties can be expressed in spectral
language as follows. The free±free sti�ness K has two
kind of eigenvalues:

1. Nr zero eigenvalues pertaining to rigid motions. The
associated eigenvector space is spanned by the col-
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umns of R, because that basis matrix is assumed to

be orthonormal.

2. Nd=NfÿNr nonzero eigenvalues llli. The associated

orthonormalized `deformational eigenvectors' xi
satisfy Kxi=lllixi, R

Txi=0 and xi
Txj=dij.

The eigenvectors of K+ RRT are identical to those of

K but the RBM eigenvalues are raised to unity, giving

the spectral decompositions

K�RRT �
XNd

i�1
lixixTi � RRT;

�K� RRT�ÿ1 �
XNd

i�1

1

li
xix

T
i � RRT: �11�

By construction the projector P = IÿRRT has Nd

unit eigenvalues whose invariant eigenspace is spanned

by the xi, and the same null eigenspace as K.

Consequently, use of orthogonality properties yields

the spectral decompositions

P �
XNd

i�1
xix

T
i ; F � P�K� RRT�ÿ1 �

XNd

i�1

1

li
xix

T
i : �12�

The foregoing relations show that the three symmetric

matrices K, F and P have the same eigenvectors.

Consequently they (and their powers) can be com-

muted at will. For example, FaKbPg=KbPgFa for any

scalar exponents (a,b,g).
Commutativity proves the symmetrization in Eq. (9).

Other important relations that emanate from the spec-

tral decompositions are

K � P�F� RRT�ÿ1 � �F� RRT�ÿ1P � KT; �13�

�K�aRRT��F� bRRT� � I� �abÿ 1�RRT

� P� abRRT �a; b arbitrary scalars�; �14�

KR � FR � PR � 0; �15�

KFK � K; FKF � F;

�KF�T � FK � P; �FK�T � KF � FK � P: �16�
This relation catalog shows that K and F are dual,

because exchanging them leaves all formulas intact.

Comparing to the de®nitions of Eqs. (6) and (7) it is

seen that F and K are both pseudo-inverses and sg-

inverses of each other. The practical importance of the

explicit relation Eq. (9) is that if K and R are known,

F can be computed by solving linear equations without

need of the more expensive eigenvalue analysis of K.

This is especially important for substructures contain-

ing hundreds or thousands of elements, because linear

equation solversÐwith some clever rearrangementsÐ

can take advantage of the natural sparsity of K. The

sti�ness matrix can be e�ciently generated by the
Direct Sti�ness Method using existing ®nite element

libraries, whereas the construction of R from geometric
arguments is straightforward as explained below.

3.3. Alternative expressions

The ¯exibility expressions in Eq. (9) are actually the
®rst two of the following 12 formulas for F:

P�K� RRT�ÿ1; �K� RRT�ÿ1P; P�K� RRT�ÿ1P;
P�PK� RRT�ÿ1; �PK� RRT�ÿ1P; P�PK� RRT�ÿ1P;
P�KPRRT�ÿ1; �KP� RRT�ÿ1P; P�KP� RRT�ÿ1P;

P�PKP� RRT�ÿ1; �PKP� RRT�ÿ1P; P�PKP� RRT�ÿ1P:
�17�

These are equivalent in exact arithmetic if K is `RBM

clean' in the sense that KR = 0. If K is, however, `pol-
luted' in the sense that KR$0, the expressions in
Eq. (17) will generally yield di�erent results for F.
Furthermore, matrices given by the formulas in the

second and third rows may not be symmetric. If K is
polluted, the last row formulas are recommended,
because the ®ltered sti�ness PKP is guaranteed to be

both symmetric and clean.
Similarly, if F is known, K may be computed from

one of the 12 formulas:

P�F� RRT�ÿ1; �F� RRT�ÿ1P; P�F� RRT�ÿ1P;
P�PF� RT�ÿ1; �PF� RRT�ÿ1P; P�PF� RRT�ÿ1P;
P�FP� RRT�ÿ1; �FP� RRT�ÿ1P; P�FP� RRT�ÿ1P;
P�PFP� RRT�ÿ1; �PFP� RRT�ÿ1P; P�PFP� RRT�ÿ1P;

�18�
which are equivalent if FR = 0.

3.4. Forming the RBM matrix

If the substructure is free±free and has no spurious
modes, the construction of R by geometric arguments

is straightforward. This is illustrated here for the two-
dimensional case of Fig. 1. To facilitate satisfaction of
orthogonality, it is convenient to place the x,y axes at

the geometric mean of the N node locations of the sub-
structure. Three independent RBMs are the x trans-
lation ux=1, uy=0, the y translation ux=0, uy=1 and

the z rotation ux=ÿ y, uy=x. Evaluation at the nodes
gives

RT �
1 0 1 � � � 0
0 1 0 � � � 1
ÿy1 x1 ÿy2 � � � xN

24 35: �19�

The columns of this R are mutually orthogonal by
construction. All that remains is to normalize them

through division by N1/2, N1/2 and [Si(xi
2+yi

2)]1/2, re-
spectively. The three-dimensional case is equally
straightforward.
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3.5. Reduction to boundary freedoms

The expressions of K, F and R used in previous re-
lations pertain to all degrees of freedom of the sub-
structure. For some applications only the substructural

boundary freedoms are involved, and the interior
degrees of freedom are eliminated in some way. To
e�ect this elimination it is convenient to partition F

and K as follows:

K � Kbb Kbi

Kib Kii

� �
; F � Fbb Fbi

Fib Fii

� �
; R � Rb

Ri

� �
:

�20�
In a free±free substructure, all interior degrees of free-

doms are unconstrained (that is, nodal forces are
known). Reduction to the boundary by a static con-
densation produces the matrices

Kb � Kbb ÿ KbiK
ÿ1
ii Kib; Fb � Fbb: �21�

Kb is the condensed sti�ness matrix, also known as a
Schur complement in the mathematical literature. Note

that the reduction to a boundary ¯exibility Fb is tri-
vial.
Denote the boundary projector by

Pb=IÿRb(RbRb)
ÿ1Rb

T. Note that Rb is not generally
orthonormal, and consequently the scaling by (RbRb)

ÿ1

must be retained. The matrices in Eq. (21) are related
by Eqs. (17) and (18), in which all matrices pertain to

the boundary freedoms only. For example,

Fb � Pb�PbKbPb � Rb�RbRb�ÿ1RT
b �ÿ1;

Kb � Pb�PbFbPb � Rb�RbRb�ÿ1RT
b �ÿ1: �22�

The second part of Eq. (22) is of interest when Fb is
directly available; e.g. from experimental data in sys-

tem identi®cation problems.

3.6. Rank change in nonlinear analysis

In geometrically nonlinear Lagrangian analysis a
common occurrence is the loss of rotational rigid body
modes, which results in a gain of rank of K with

respect to the linear case. The is illustrated in Example
3 below. In plasticity analysis a loss of rank due to
plastic ¯ow mechanisms may occur. In either event the

null space of K has to be appropriately adjusted.

4. Unsymmetric Matrices

Unsymmetric tangent sti�ness matrices occur in
®nite element nonlinear analysis if one or more of the

following e�ects are modeled: (1) co-rotational kin-
ematics, (2) follower load terms, and (3) non-associat-
ive constitutive laws. In this case not only is the free±

free ¯exibility unsymmetric but the pseudo-inverse and
sg-inverse generally di�er.
Assume K is now real unsymmetric real but nonde-

fective. Let R and Q span the null space of columns
and rows, respectively, of K so that KR = 0 and
QTK= 0. The columns of R retain the meaning of

rigid body modes, but Q has no physical signi®cance
and must be computed separately. These matrices may
be assembled from the null left eigenvectors of K and
KT, respectively, and are bi-orthonormalized so that

QTR= RTQ = I. De®ne the column and row projec-
tors

P � Iÿ RQT; PT � IÿQRT �23�
so that KP= K and KTPT=KT.
Two possible choices for the free±free ¯exibility F

are the pseudo-inverse F= K+, and the sg-inverse K$.

For the pseudo-inverse choice the following 12 for-
mulas apply:

�PT �QRT�ÿ1PT; �PTKP�QRT�ÿ1PT; �PTKPT �QRT�ÿ1P;
PT�KPT �QRT�ÿ1; PT�KPT �QRT�ÿ1PT; PT�PKPT �QRT�ÿ1;

PT�PKPT� �QRT�ÿ1PT; PT�PTK�QRT�ÿ1PT; PT�PTKP�QRT�ÿ1PT;
PT�PTKP� RQT�ÿ1PT PT�PTKPT �QRT�ÿ1; PT�PTKPT �QRT�ÿ1PT:

�24�

For the sg-inverse choice F= K$ the following 20 expressions apply:

P�K� RQT�ÿ1; �K� RQT�ÿ1P; P�K� RQT�ÿ1P;
P�PK� RQT�ÿ1; �PK� RQT�ÿ1P; P�PK� RQT�ÿ1P;
P�KP� RQT�ÿ1; �KP� RQT�ÿ1P; P�KP� RQT�ÿ1P;
P�PKP� RQT�ÿ1; �PKP� RQT�ÿ1P; P�PKP� RQT�ÿ1P;
P�K� RQT�ÿ1P; P�KP� RQT�ÿ1P; P�KPT � RQT�ÿ1P;
P�PK� RQT�ÿ1P; P�PKP� RQT�ÿ1P; P�PKPT � RQT�ÿ1P;
P�PK� RQT�ÿ1P; P�PTKP� RQT�ÿ1P:

�25�

Transposing Eq. (24) yields 12 expressions for (KT)+

and transposing Eq. (25) yields 20 expressions for

(KT)$. All of the expressions are equivalent in exact
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arithmetic when KR = 0 and KTQ = 0. The question

of which choice of generalized inverse is more appro-
priate depends on the target application. In appli-
cations in which the spectrum of K is important, such
as dynamic instability, the sg-inverse is obviously pre-

ferable.

5. Examples

The three following examples pertain to simple indi-

vidual elements, in which case the free±free ¯exibility
can be computed analytically from the de®nition for-
mulas. More complicated elements or subtructures

formed by multiple elements require numeric work.

5.1. Example 1: linear 1D bar element

For the one-dimensional 2-node bar element illus-
trated in Fig. 2(a) direct application of Eq. (9) yields

K �k 1 ÿ1
ÿ1 1

� �
; R � 1���

2
p 1

1

� �
;

P � 1

2

1 ÿ1
ÿ1 1

� �
� 1

2k
K;

F �P�K� RRT�ÿ1 � 1

4k

1 ÿ1
ÿ1 1

� �
� 1

4k2
K �26�

where k = EA/L is the axial (equivalent spring) sti�-

ness. It can be veri®ed that the result K= 4k2F also
holds for two-node linear bar elements moving in two
and three dimensions. Robinson [3] has given an equiv-
alent ¯exibility expression starting from an axial

assumed-stress element.
For this element one may also use the de®nition of

pseudo-inverse from the spectral decomposition

K �QT�2k�Q; Q � 1���
2
p ÿ1

1

� �
;

F �QT 1

2k
Q � 1

4k2
QT�2k�Q � 1

4k2
K; �27�

in which QTQ = I. But this becomes unwieldy for

more complex elements.

5.2. Example 2: linear plane beam element

For the 2-node, 4-dof, Bernoulli-Euler prismatic
plane beam element shown in Fig. 2(b),

K �EI

L3

12 6L ÿ12 6L

6L 4L2 ÿ6L 2L2

ÿ12 ÿ6L 12 ÿ6L
6L 2L2 ÿ6L 4L2

26664
37775;

Fig. 2. Bar and beam elements for examples 1±3.
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R �

1=
���
2
p ÿ 1

2
L=

�����������������
2� 1

2
L2

q
0 1=

�����������������
2� 1

2
L2

q
1=

���
2
p 1

2
L=

�����������������
2� 1

2
L2

q
0 1=

�����������������
2� 1

2
L2

q

26666666664

37777777775
;

F � Fb

L2 1
2
L3 ÿL2 1

2
L3

1
2
L3 12� 6L2 � L4 ÿ 1

2
L3 ÿ12ÿ 6L2 ÿ 1

2
L4

ÿL2 ÿ 1
2
L3 L2 ÿ 1

2
L3

1
2
L3 ÿ12ÿ 6L2 ÿ 1

2
L4 ÿ 1

2
L3 12� 6L2 � L4

266666664

377777775 �28�

where Fb=L(4 + L2)ÿ2/(3EI). Note that entries of F

are not dimensionally homogeneous. This is a conse-

quence of the unavoidable mixture of translational and
rotational nodal displacements in the orthonormaliza-
tion of R.

5.3. Example 3: unsymmetric bar sti�ness

The last example deals with a geometrically non-
linear 2-node bar element moving in the xÿ y plane
under follower lateral pressure q, as illustrated in
Fig. 2(c). The bar is under a prestress axial force P. In

a total Lagrangian description, the tangent sti�ness
matrix, referred to as the longitudinal bar axis, is

K �km

1 0 ÿ1 0

0 0 0 0

ÿ1 0 1 0

0 0 0 0

26664
37775

� kg

1 0 ÿ1 0

0 1 0 ÿ1
ÿ1 0 1 0

0 ÿ1 0 1

26664
37775

� kf

0 ÿ1 0 1

1 0 ÿ1 0

0 ÿ1 0 1

1 0 ÿ1 0

26664
37775 �29�

where km=EA/L, kg=P/L and kf=1/2q. The matrix is
symmetric if q= 0. It has rank 2 if kg$0 or kf$0

because the rotational RBM is then lost. Hence R and
Q have two columns:

RT � 1���
2
p 1 0 1 0

0 1 0 1

� �
;

QT � 1���
2
p

ÿ kf
km � kg

1 kf
km � kg

1

1 kf
km � kg

1 kf
km � kg

2664
3775:
�30�

The pseudo-inverse ¯exibility is

F � K� � 1

4

a b ÿa b
c d c ÿd
ÿa ÿb a ÿb
ÿc ÿd ÿc d

2664
3775 �31�

where a = (km+kg)/(kf
2+kg

2+2kg km+km
2 ), b = kf/

(kf
2+kg

2+2kgkm+km
2 ), c =ÿ kf/(kf

2+kg
2) and d= kg/

(kf
2+kg

2).
The sg-inverse ¯exibility is

F � Ky � 1

4

a b ÿa b
c d ÿc ÿd
ÿa ÿb a b
c ÿd ÿc d

2664
3775 �32�

where a = 1/(km+kg), b = kf/kg
2, c = kf/(km+kg)

2,

d = 1/kg. Matrices in Eqs. (32) and (31) coalesce if
kf=0. If kg=kf=0 both expressions `blow up' and do
not reduce to that of a linear bar because the rank of
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K changes from 2 to 1 as the rotational RBM becomes
active.

6. Concluding Remarks

We have introduced structural free±free ¯exibility
matrices F as duals of the well known free±free sti�-

ness matrix K. Although K and F are generalized
inverses of each other, the formulas presented here use
only ordinary inverses and projectors, and hence

bypass the use of an expensive eigensystem analysis.
This avoidance comes at the price of the separate con-
struction of the matrix of rigid body modes R (and of
Q in the unsymmetric case). For free±free substruc-

tures the construction of R may be carried out geome-
trically.
The main applications of the free±free ¯exibility to

date have been in substructural-based solution algor-
ithms typi®ed by the Direct Flexibility Method (DFM)
described by [4]. The DFM may be viewed in a certain

sense as a dual of the Direct Sti�ness Method, and
belongs to a wider class of ¯exibility-based methods [5].
These methods have proven useful in special appli-

cations, notably massively parallel processing and sys-
tem identi®cation [6±9].
The present exposition has illustrated the compu-

tation of F using individual ®nite elements, in which

case symbolic computations are possible. In practical
applications of the DFM, however, the free±free ¯exi-
bility of substructures containing hundreds or thou-

sands of degrees of freedom is usually required. The
e�cient numerical computation of F for such cases is
dealt with in a separate article [7].
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