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Abstract. Lubrication is vital to improve performance, efficiency and durability in trans-
missions; it serves to minimize wear, noise, vibration and friction. The proper functioning of
lubricated transmissions relies on interactions amongst a wide range of physical phenomena (con-
tact dynamics, fluid-structure interaction and heat transfer) operating at different spatial and
temporal scales. A lubricated transmission model is proposed in this work to obtain accurate
information regarding all physical domains and the coupling thereof to quantify performance,
efficiency and durability. The model consists of a thermo-elastically coupled flexible multibody
model for the gear pair and a Thermo-Elasto-Hydrodynamic Lubrication (TEHL) model for the
lubricant, both based on first principle modelling to ensure high fidelity.

1 INTRODUCTION

Lubricated transmissions are inherently multi-scale and multi-physical systems that are present
in gearboxes of automotive applications, wind turbines and machines. Their proper function-
ing relies on the interactions amongst a wide range of physical phenomena (contact dynamics,
fluid-structure interaction and heat transfer) operating at different spatial and temporal scales.
Optimal lubrication is vital to improve performance, efficiency and durability in transmissions,
since it improves the dynamic behaviour of the main components, such as gears and bearings.
After all, it serves to minimize wear, noise, vibration and friction as a result of increased damp-
ing and reduced temperature at the contact zone. Nevertheless, an increasing temperature is
inevitable in lubricated transmissions, resulting in thermal deformations that will influence the
contact conditions, the pressure in the lubricant film and its temperature. Accurate prediction
of dynamic stresses due to elastic deformations are crucial to reduce cost of ownership already
at the design stage. For this purpose, accurate information regarding all physical domains and
the coupling thereof is required to quantify performance, efficiency and durability.
The numerical model of lubricated transmission is twofold in spatial scale. First, global tooth
deformations are computed at macroscopic scale with a thermo-elastically coupled flexible multi-
body model, thereby capturing root bending stresses. This model solves the second law of New-
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ton [1] and Fourrier’s law [2] to obtain elastic deformations with large rigid body motion and
temperature, respectively. The second spatial scale is microscopic where local contact deforma-
tions are computed with a Thermo-Elasto-Hydrodynamic Lubriation (TEHL) model, thereby
capturing local contact stress. This model solves Reynolds’ equation [3, 4, 5] and the energy
equation [5] to compute lubricant pressure and temperature, respectively, as well as Newton’s
second law for local elastic deformation.
The Finite Element Method (FEM) [6] is widely used to discretize all sorts of partial differen-
tial equations, which are multi-physically coupled in the aforementioned lubricated transmission
model. Solving these discretized models remains a challenge due to the excessive amount of
Degrees Of Freedom (DOFs), even for steady-state simulations. All DOFs are coupled due to
the inherent mutual influence of one physical domain on the other. To cope correctly with these
influences, iterative schemes are employed to solve the coupled nonlinear equilibrium equations,
which adds further to the large overall computational complexity of the simulation. The highly
complex multi-physically coupled lubricated transmission models, considered in this work, are
not yet discretised with the FEM in literature, upon the authors best knowledge. The multi-
physically coupled transmission model without thermal effects is already described in [7], albeit
with semi-analytical methods instead of first-principle methods.
A.A. Shabana Outlines the theory of flexible multibody modelling in general [1], which is adopted
by [8], resulting in a numerical model of a meshing gear pair. This work aims to extend the
model with thermal deformations as outlined in [2] leading to a thermo-elastically coupled flexi-
ble multibody model. The outcome is a macroscopic scale model which is highly influencing the
microscopic scale, due to changing contact conditions.
B. Tower observed experimentally that properly lubricated bodies in contact are completely
separated by a thin lubricant film [9], which was firstly described with the famous Reynolds
equation [3], setting the fundamentals of lubrication theory. It can be used as micro-scale model
in flexible multi-body models, which are macroscopic scale, to compute contact forces [10]. In-
stead of coupling the EHL-model with a flexible multibody model, this work aims to combine
the TEHL-model with a thermo-elastically coupled flexible multibody model. The TEHL-model,
which is needed for accurate pressure prediction for highly loaded contacts, is well described in
[5] for point contacts. The theory is similar for line contact in gears.
In this paper, two models are described to simulate the gear pair and lubricant, including ther-
mal effects. The first model, computing the deformation and temperature distribution in the
gear pair, is described in section 2; the second model, computing the pressure and heat flux in
the lubricant, is described in section 3. Both models are subsequently coupled into the targeted
lubricated transmission model in section 4. Numerical results are finally discussed in section 5.

2 THERMO-ELASTICALLY COUPLED FLEXIBLE MULTIBODY MODEL

A flexible multibody model, as the name suggests, defines a model of multiple deformable
bodies, in casu two flexible gears in the application of gear contact. The Floating Frame of Ref-
erence (FFR) formulation [1] is adopted in this work to describe the elastodynamic behaviour of
a flexible body subjected to large rigid body motion, though different formulations exist. A local
reference frame is attached to each body in the system, as illustrated by Figure 1, which allows
to distinguish between rigid body motion (translation and rotation of the local reference frame)
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and small deformations. The latter is discretized with the FEM [6] in this model, resulting in
constant mass and stiffness matrices. In addition, thermal deformations are incorporated in the
flexible multibody model as an extra thermal force acting on the structure resulting into the
thermo-elastically coupled flexible multibody model.

Generalized coordinates describe the rigid body motion and small deformations for each gear
in the flexible multibody model. Given that only perfectly aligned gears are considered in this
work, the considered generalized coordinates for gear i are limited to rigid body rotation along
the Z-axis, θ(i), and small deformations, ū(i), expressed in the local reference frame x(i)y(i)z(i):

q(i) =
[
θ(i) ū(i)T

]T
(1)

Figure 1: FFR fromulation for a flexible gear

2.1 Kinematic description of a material point

The position in the global reference frame, of node j on gear i can be expressed as:

r(ij) = R(i) +A(i)r̄(ij) = R(i) +A(i)
(
r̄
(ij)
0 + ū(ij)

)
= R(i) +A(i)

(
r̄
(ij)
0 + I(ij)ū(i)

)
(2)

where r̄
(ij)
0 represents the undeformed coordinates of node j on gear i expressed in the local

reference frame, while the deformation is described by ū(i) and I(ij) resembles the row of the
mapping matrix corresponding to node j on gear i. The transformation matrix A(i) and its
derivative depend on the Bryant angle θ(i) and are defined for in plane motion as:

A(i) =

cos (θ(i)) − sin
(
θ(i)
)

0

sin
(
θ(i)
)

cos
(
θ(i)
)

0
0 0 1

 , Ȧ
(i)

=

− sin
(
θ(i)
)

− cos
(
θ(i)
)

0

cos
(
θ(i)
)

− sin
(
θ(i)
)

0
0 0 0

 θ̇(i) = B(i)θ̇(i)

(3)
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Differentiating equation (2) to time results in the velocity of node j on gear i expressed in the
global reference frame:

ṙ(ij) = B(i)r̄(ij)θ̇(i) +A(i)I(ij) ˙̄u(i) =
[
B(i)r̄(ij) A(i)I(ij)

] [ θ̇(i)
˙̄u(i)

]
= L(ij)

(
q(i)
)
q̇(i) (4)

2.2 Kinetic energy and generalised forces of a flexible gear pair

Summing the kinetic energy of all nn nodal point masses in the Finite Element (FE) model
results in the total kinetic energy of gear i:

E
(i)
k =

nn∑
j=1

1

2
ṙ(ij)

T
m(ij)ṙ(ij) =

1

2
q̇(i)

T
nn∑
j=1

m(ij)

[
r̄(ij)

T
r̄
(ij)
xy r̄(ij)

T
I
(ij)
y−x

−I(ij)T r̄
(ij)
y−x I(ij)T I(ij)

]
q̇(i) (5)

=
1

2
q̇(i)

T
M (i)

(
q(i)
)
q̇(i) (6)

where M (i) is the multibody mass matrix, which depends on the state vector q(i), ■xy symbol-

izes premultiplying with B(i)TB(i), while ■y−x symbolizes premultiplying with B(i)TA(i).

Summing the virtual work of the elastic forces from all ne elements in the FE-model results
in the total virtual work of the elastic forces:

δW
(i)
f =

ne∑
e=1

−
∫
V (ie)

(
σ
(ie)T

M + σ
(ie)T

T

)
δϵ(ie)dV (ie) (7)

where σM is the stress resulting from mechanical forces, while σT results from thermal forces
and ϵ denotes the strain. Furhter evaluation results in:

δW
(i)
f = −q(i)

T

[
0 0

0 K
(i)T

FE

]
δq(i) − T (i)T

[
0 K

(i)T

TM,FE

]
δq(i) (8)

= −q(i)
T
K(i)T δq(i) − T (i)TK

(i)T

TM δq(i) = Q
(i)T

f

(
q(i),T (i)

)
δq(i) (9)

where K
(i)
FE and K

(i)
TM,FE are the FE-matrices introducting stiffness and thermo-elastic coupling

[6, 2], respectively. Q
(i)
f is the total virtual energy resulting from elastic forces on gear i, which

depends on the state vectors q(i) and T (i). Including the generalized external forces Q
(i)
ex and

generalized contact forces Q
(i)
c results into the total generalized forces Q(i) on gear i.

2.3 Equations Of Motion (EOMs) of a flexible gear pair

Lagrange’s equation of an unconstrained system allows to derive the EOMs from gear i:

d

dt

(
∂E

(i)
k

∂q̇(i)

)T

−

(
∂E

(i)
k

∂q(i)

)T

= Q(i) (10)

M (i)
(
q(i)
)
q̈(i) +K(i)q(i) +K

(i)
TMT (i) = Q(i)

ex +Q(i)
c

(
q(i),T (i)

)
+Q(i)

v

(
q(i), q̇(i)

)
(11)
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where the quadratic velocity term Q
(i)
v is defined as:

Q(i)
v

(
q(i), q̇(i)

)
= −

nn∑
j=1

m(ij)

 ˙̄u(i)T I(ij)T
(
2θ̇(i)r̄

(ij)
xy + I

(ij)
y−x

˙̄u(i)
)

−θ̇(i)I(ij)T
(
θ̇(i)r̄

(ij)
xy + 2I

(ij)
y−x

˙̄u(i)
) (12)

and the temperature is computed from the heat transfer equation:

C
(i)
T Ṫ

(i)
+K

(i)
T T (i) = Q

(i)
c,T

(
q(i),T (i)

)
(13)

where C
(i)
T and K

(i)
T are the FE-matrices introducing thermal capacity and conductivity [2],

respectively. Q
(i)
c,T is the heat flux resulting from the contact interaction of two gear flanks.

Solving this strongly coupled system requires an iterative solution strategy. However, the dy-
namic response of the thermal domain is significantly slower compared to the dynamic response
of structural deformations allowing a weakly coupled system. Equations (11) and (13) are solved
for each timestep in a dynamic simulation where the thermal load in equation (11) is lagging
one timestep behind.

3 THERMO-ELASTO-HYDRODYNAMIC LUBRICATION (TEHL) MODEL

The isothermal Elasto-Hydrodynamic Lubrication (EHL)-model [4] couples Reynolds’ equa-
tion, the elastic deformation equation and the load balance equation. The Reynolds equation is
1D for line contact in gears, as the pressure across the film thickness and along the contact line is
constant. However, temperature is not constant across the film thickness in the TEHL-model [5],
implying a 2D energy equation and a generalized Reynolds equation. The latter takes into ac-
count the temperature variation across the film thickness for usage in the TEHL-model together
with the elastic deformation equation, the load balance equation and the energy equation.

3.1 Generalized Reynolds equation

The generalized Reynolds equation extends the classical Reynolds equation by permitting
variation of the lubricant parameters along the film, but across the film thickness as well, re-
quiring a mean pressure p̄ across the film thickness. The derivation of the generalized Reynolds
equation [11] for line contact is based on the compressible momentum equations (Navier-Stokes)
in 2D, as is the case for the classical Reynolds equation [4]. Reducing the computational complex-
ity of the Navier-Stokes equations is feasible with three assumptions since (i) the film thickness
dimension is significantly smaller than the length of the lubricated surfaces, (ii) inertia-terms
are negligible, and (iii) body forces are negligible. The approximated equation is only 1D in the
direction of the lubricated surfaces, since the momentum equation across the film thickness is
neglected:

∂p̄

∂x
=

∂

∂z

(
ηlub

∂u

∂z

)
(14)

where ηlub is the lubricant viscosity and u is the lubricant velocity. Integrating equation (14) over
the film thickness, and taking into account the boundary conditions, results into an expression
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for the velocity component in function of the film thickness direction z:

u (z) = U1 +
∂p̄

∂x

∫ z

0

z
′

ηlub
dz

′
+

(
ηlube (U2 − U1)−

ηlube

ηlub′e

∂p̄

∂x

)∫ z

0

1

ηlub
dz

′
(15)

where U1 and U2 are the tangential boundary velocities of the upper and lower body, respectively.
ηlube and ηlub

′
e are parameters that require integration across the film thickness and are defined

as follows:

1

ηlube

=

∫ h

0

1

ηlub
dz,

1

ηlub′e

=

∫ h

0

z

ηlub
dz (16)

where h is the film thickness of the lubricant and all integrals across the film thickness are
evaluated using Simpson’s integration rule, based on the values of previous iteration.
The last step to end up with the generalized Reynolds equations involves integrating the con-
tinuity equation across the film thickness and inserting equation (15). A stable TEHL-solver
is assured by using dimensionless variables, which are based upon Hertzian contact parameters
(contact half-width a and maximum contact pressure ph) and parameters at ambient conditions
(density ρlubR and viscosity ηlubR ). The dimensionless variables are chosen as follows: X = x/a,
Z = z/h, ρ̄lub = ρlub/ρlub

R , η̄lub = ηlub/ηlub
R , P = p̄/ph and H = hReq/a2, such that the resulting

dimensionless generalized Reynolds equation is defined as:

∂

∂X

(
ϵ̄lub

′ ∂P

∂X

)
=

∂

∂X

(
ρ̄lub

∗
H
)

(17)

where:

ϵ̄lub
′
=

pha
3H3

ηlubR R2
eq

(
ρ̄

η̄

)lub

e

=
H3

λ′

(
ρ̄

η̄

)lub

e

, ρ̄lub
∗
= U1ρ̄

lub
e + (U2 − U1) η̄

lub
e ρ̄lub

′
e (18)(

ρ̄

η̄

)lub

e

=
η̄lube

η̄lub′e

ρ̄lub
′

e − ρ̄lub
′′

e ,
1

η̄lube

=

∫ 1

0

1

η̄lub
dZ,

1

η̄lub′e

=

∫ 1

0

Z

η̄lub
dZ (19)

ρ̄lube =

∫ 1

0
ρ̄lubdZ, ρ̄lub

′
e =

∫ 1

0
ρ̄lub

∫ Z

0

dZ
′

η̄lub
dZ, ρ̄lub

′′
e =

∫ 1

0
ρ̄lub

∫ Z

0

Z
′
dZ

′

η̄lub
dZ (20)

3.2 Film thickness equation

The dimensionless film thickness H, used in the generalized Reynolds equation, is computed
from the penetration depth from both undeformed contacting surfaces H0, the undeformed ge-
ometry of the contacting surfaces (approximated as a parabola, based on the radius of curvature)
and its local deformation δ̄ due to the pressure distribution in the lubricant film:

H (X) = H0 +
X2

2
+ δ̄ (X) (21)

3.3 Load balance equation

The pressure distribution in the lubricant film supports the externally applied load, which
is used to compute the Hertzian contact parameters to retrieve the dimensionless equations.
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Hence, the dimensionless load balance equation reduces to:∫ ∞

−∞
P (X) dX =

π

2
(22)

3.4 Energy equation

The energy equation computes thermal effects in the lubricant film, which are mainly caused
by shear pressure, while compressive heating is neglected. Heat transport is dominated by con-
duction in the lubricant film thickness and convection along the lubricant film, while conduction
and convection in the other directions is negligible. As for the generalized Reynolds equation,
using dimensionless variables in the energy equation assures a stable TEHL-solver. The resulting
dimensionless energy equation, using the dimensionless temperature T̄ = T/TR, is defined as in
[5]:

− ∂

∂Z

(
k̄lubT

∂T̄

∂Z

)
+ ρ̄c̄lubT ū

∂T

∂X
= η̄lub

(
∂ū

∂Z

)2

(23)

where:

k̄lubT =
klubT T0

ηlubR

, c̄lubT =
ρlubR clubT T0a

3H2

ηlubR R2
eq

(24)

ū = U1 +
H2

λ′
∂P

∂X

∫ Z

0

Z
′

η̄lub
dZ

′
+

(
η̄lube (U2 − U1)−

H2

λ′
η̄lube

η̄lub′e

∂P

∂X

)∫ Z

0

1

η̄lub
dZ

′
(25)

∂ū

∂Z
=

H2

λ′
∂P

∂X

Z

η̄lub
+

(
η̄lube (U2 − U1)−

H2

λ′
η̄lube

η̄lub′e

∂P

∂X

)
1

η̄lub
(26)

with klubT as the thermal conductivity coefficient and clubT as the thermal heat capacity.

3.5 Lubricant rheology

The rheological parameters ηlub and ρlub of the lubricant are not constant in TEHL-modelling
since compressibility of the lubricant is not negligible at high pressure values (∼ 0.01-3 GPa).
In this work, empirical laws are used to model the variation in rheological parameters due to
their simplicity and good correspondance with measurements for moderate pressure values (<
1 GPa). Among the wide variaty of models available, the model proposed by Roelands [12] is
adopted to evaluate viscosity variations:

ηlub = ηlubR exp

((
ln
(
ηlubR

)
+ 9.67

)[(
1 + 5.1 · 10−9p

)Z ( T − 138

TR − 138

)−S

− 1

])
(27)

where:

Z =
αlub
V P

5.1 · 10−9
(
ln
(
ηlubR

)
+ 9.67

) , S =
βlub
V T (TR − 138)

ln
(
ηlubR

)
+ 9.67

(28)
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and αlub
V P and βlub

V T depend on the type of lubricant.
Density variations are evaluated with the model proposed by Dowson & Higginson [13]:

ρlub = ρlubR

[
1 +

0.6 · 10−9p

1 + 1.7 · 10−9p
− βlub

DT (T − TR)

]
(29)

where βlub
DT depends on the type of lubricant.

4 LUBRICATED TRANSMISSION MODEL

Coupling of the thermo-elastically coupled flexible multibody model (section 2) with the
TEHL-model (section 3), to compute macroscopic and microscopic deformations, results into
the lubricated transmission model. The TEHL-model cannot be readily used in this coupled
framework as it needs a known total contact force Fc, in order to make the system dimensionless,
which is generally not known in gear contact. Algorithm 1 computes the unknown contact force,
which introduces an iterative loop over the (iterative) TEHL-solver to match its penetration
depth h0 with that of the locally undeformed gear flanks δpen.

Algorithm 1 Contact force computation from TEHL-model with known penetration depth H0

Input: Penetration depth from locally undeformed gear flanks in contact δpen and estimate of
total contact force Fc

Output: Distributed F and total Fc contact force resulting from the pressure distribution in
the TEHL-model

1: for i = 1 to Max. iterations do
2: Compute Hertzian parameters a & ph based on Fc

3: Compute the penetration depth H0 from the (iterative) TEHL-solver (h0 = H0a2/Req)
4: Compute residual: Res = δpen − h0
5: if Res < tol then
6: Break
7: else
8: Compute Jacobian: Jac = ∂Res

∂Fc
= −∂h0

∂Fc
≈ −h0(Fc+∆Fc)−h0(Fc)

∆Fc

9: Update total contact force: Fc = Fc − Jac−1 ·Res
10: end if
11: end for

The deformation of gear teeth, contact forces due to lubricant pressure and externally applied
torque must be matched for steady-state equilibrium in gear contact. Algorithm 2 illustrates
the lubricated transmission model for steady-state equilibrium, which consist of three nested
iterative loops ((i) iterative TEHL-solver, (ii) contact force from TEHL-model with known pen-
etration depth & (iii) match gear deflection with lubricant force), where the Jacobian of the
contact forces is computed via the finite difference method.
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Algorithm 2 Steady-state lubricated transmission model

Input: Stiffness matrices K
(i)
FE , torque T (1), deformation resulting from steady-state dry con-

tact equilibrium ū(i) and corresponding angular configuration θ(1) of gear 1.
Output: Deformation resulting from steady-state lubricated contact equilibrium ū(i) and cor-
responding angular configuration θ(1) of gear 1.

1: for i = 1 to Max. iterations do
2: Compute contact force from deformation: F (i) = K

(i)
FEū

(i)

3: Compute global deformation of gear tooth (ommit local deformation) [14]
4: Compute contact force from TEHL-model with know penetration depth (Algorithm 1)
5: Project distributed contact force resulting from TEHL-model on gear flank

6: Construct generelized force vectors Q
(1)
c,θ (q), Q

(1)
c,u (q) & Q

(2)
c,u (q)

7: Compute residual: Res =

0 0 0

0 K
(1)
FE 0

0 0 K
(2)
FE


θ(1)ū(1)

ū(2)

−

T (1)

0
0

−

Q
(1)
c,θ (q)

Q
(1)
c,u (q)

Q
(2)
c,u (q)


8: if ||Res|| < tol then
9: Break

10: else

11: Compute Jacobian: Jac = ∂Res
∂q =

0 0 0

0 K
(1)
FE 0

0 0 K
(2)
FE

−


∂Q

(1)
c,θ

∂θ(1)
∂Q

(1)
c,θ

∂ū(1)

∂Q
(1)
c,θ

∂ū(2)

∂Q
(1)
c,u

∂θ(1)
∂Q

(1)
c,u

∂ū(1)

∂Q
(1)
c,u

∂ū(2)

∂Q
(2)
c,u

∂θ(1)
∂Q

(2)
c,u

∂ū(1)

∂Q
(2)
c,u

∂ū(2)


12: Update state vector q:

θ(1)ū(1)

ū(2)

 =

θ(1)ū(1)

ū(2)

− Jac−1 ·Res

13: end if
14: end for

5 NUMERICAL RESULTS

All numerical experiments are conducted on the same lubricated gear pair at steady-state
equilibrium. A globally rigid, but locally flexible gear pair is considered in section 5.1, while a
fully flexible one is dealt with in section 5.2.

5.1 TEHL-model

The TEHL-model is applied to a globally rigid, but locally flexible gear pair from which
the radius of curvature at the contact point and the corresponding contact force are computed
analytically. An angular configuration with two teeth pair in contact is considered. The contact
point of the first tooth pair is close to the pitch point (where pure rolling motion occurs), and
further from the pitch point for the second tooth pair. The difference in sliding velocity between
both gear flanks is higher for the latter case, leading to higher shear forces and more lubricant
heat-up, as illustrated in Figure 2.
A simulation with the (dry) Hertzian contact model and the Elasto-Hydrodynamic Lubrication
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(a) Contact of first tooth pair close to pitch point,
with a contact force of 1585N and a radius of cur-
vature of 16.91mm (11.82mm) for gear 1 (2)
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(b) Contact of second tooth pair furhter from pitch
point, with a contact force of 781N and a radius of
curvature of 5.10mm (23.63mm) for gear 1 (2)

Figure 2: TEHL-solution of a globally rigid, but locally flexible gear pair

(EHL) model is conducted as well in Figure 3 to showcase the need of the TEHL-model in gear
contact. The difference in friction coefficient between dry and lubricated contact proves without
any doubt the need of lubrication, while the need of the TEHL-model is only apparent for the
contact further from the pitch point where lubricant heat-up causes an overestimation of the
friction coefficient by the EHL-model.
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(a) Contact of first tooth pair close to pitch point,
with average friction coefficient of 0.4, 0.021 and
0.019 for the Hertzian (dotted line), EHL- (dashed
line) and TEHL-model (solid line), respectively
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(b) Contact of second tooth pair further from pitch
point, with average friction coefficient of 0.4, 0.066
and 0.035 for the Hertzian (dotted line), EHL-
(dashed line) and TEHL-model (solid line), respec-
tively

Figure 3: Comparison of the Hertzian, EHL- and TEHL-model applied on the rigd gear geometry
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(a) Stresses in flexible gear geometry
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(b) Pressure and film thickness

Figure 4: Numerical result of the lubricated transmission model

5.2 Lubricated transmission model

The EHL-model is coupled with a steady-state flexible gear pair for contact close to the pitch
point, since it provides a good estimate of the friction coefficient if the difference in sliding
velocity between both gear flanks is not too high. An angular configuartion with only one tooth
pair in contact is considered to fulfill latter condition, while a coupling with the TEHL-model
is required for an increasing difference in sliding velocity. The resulting stress in the gear pair
and the corresponding pressure distribution and film thickness are shown in Figure 4.
Algorithms 1 and 2 were successfully adopted to obtain the converged steady-state equilibrium
of a lubricated gear pair, where the driven gear is clamped such that the angular configuration of
the driving gear matches the lubricant pressure (contact force) and elastic deformation with the
applied torque. The model is quite expensive as the contact-Jacobian is computed by employing
the finite difference methods, such that the EHL-model needs to be evaluated for every column
in the contact-Jacobian. Nevertheless, only the relevant nodes at the contact zone are taken
into account and the EHL-solution from the residual is reused as initial guess to speed up the
assembly of the contact-Jacobian.

6 CONCLUSIONS AND FUTURE WORK

The high-fidelity lubricated transmission model introduced in this work reveals the challenges
to couple a thermo-elastically coupled flexible multibody model for the gear pair and a TEHL-
model for the lubricant. Three nested iterative loops are needed to develop a stable solver that
converges to steady-state equilibrium. First principle modelling is adopted to ensure high fidelity,
implying a considerable computational cost due to the nonlinearities in the model. Future work
will focus on the development of a Reduced-Order-Model (ROM) to enable dynamic simulations,
allowing the quantification of dynamic phenomena.
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