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Abstract. Structural Health Monitoring (SHM) is a growing field in civil engineering and has 

relevance for detecting changes in the state of structures, including identifying damage 

conditions. SHM strategies commonly employ Artificial Intelligence (AI) techniques on raw 

dynamic data measured from structures to perform classifications or extract features from the 

original data. Among the AI algorithms for SHM, autoencoder, and convolutional neural 

networks have been identified as promising solutions, being the focus of this article. Both 

algorithms are applied to identify eight damage scenarios in a beam starting from the time 

histories of the tested structure, pointing out the advantages and disadvantages of each 

algorithm. The authors tested the beam through monitoring based on image processing using a 

high-speed camera. By comparing the results obtained from both algorithms, the researchers 

were able to highlight their respective strengths and weaknesses in the context of SHM. This 

information can assist engineers and researchers in selecting the most appropriate algorithm 

based on the specific requirements of their monitoring project. 
 

 

1 INTRODUCTION 

Classically, monitoring the state of conservation of structures is done by analyzing the 

evolution of their modal characteristics [1]. This strategy was adopted in the first works that 

dealt with this theme and is still relevant today. However, environmental and operational 

factors negatively affect this strategy, causing changes in the natural frequencies of an 

evaluated structure to be incorrectly associated with structural damage. Therefore, several 

Structural Health Monitoring (SHM) techniques have been developed, seeking to consider the 
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environmental effects in damage detection algorithms.  

The most promising seems to be those based on Artificial Intelligence (AI) [2,3]. In these 

techniques, displacement or acceleration time histories collected from structures at different 

situations are presented to algorithms that can “learn” if an alteration in the mechanical 

behavior is detected due to operating conditions or consequences of structural damage. 

Among the most promising AI algorithms that have received special attention from 

researchers, Sparse Autoencoders (SAE) [4,5], and Convolutional Neural Networks (CNN) 

[6,7] stand out. These algorithms have been successfully used in several recent works that 

address SHM [8,9].  

In this context, this article compares the performance of autoencoders and CNNs applied to 

identify eight damage scenarios in a beam tested by the authors, pointing out the strengths and 

weaknesses verified in each AI technique. The paper's experimental program includes a 

methodology that provided good results for the displacements measured simultaneously at 60 

points on the beam, of which 40 monitored points were used to evaluate the tested AI 

algorithms. 

2 THEORETICAL BACKGROUND 

2.1 Sparse autoencoders - SAE 

An autoencoding neural network [10], or just autoencoder, is a type of artificial neural 

network designed to reproduce its inputs as closely as possible after unsupervised training. An 

autoencoder is made up of two parts: an encoder, which receives the input data x and 

transforms it into a lower dimensional code h; and a decoder, responsible for decoding h into 

an output x' that closely matches x. In other words, autoencoders attempt to reconstruct their 

inputs as outputs while generating a vector h that holds much of the information contained 

within the training data in fewer dimensions. Therefore, autoencoders are useful tools for 

extracting features that represent the original data with lower dimensionality, which facilitates 

classification through other methods. Figure 1 shows the structure of the autoencoder applied 

in the present work: The input layer is composed of vectors x containing 2500 time steps of 

displacements; the hidden layer is formed by vectors h with 15 or 25 elements (n=15 or 25), 

depending on the analyzed case, used in the classification process (damage scenario 

identification). 

A Sparse Autoencoder (SAE) is a type of autoencoding neural network that includes a 

sparsity penalty term at its training function. It is particularly useful to represent large datasets 

with a small number of h components. The function that calculates the error between the input 

and the output is minimized in the training process (see reference [10]). In the present work, 

the chosen cost function for the SAE was the mean squared error with sparsity regularizers, 

and the training algorithm was the scaled conjugate gradient backpropagation. There are a few 

hyperparameters that must be optimized for SAE models to be able to represent the training 

data while still being able to generalize. In this work, those hyperparameters are the Sparsity 

Proportion, the L2 Weight Regularization, and the Sparsity Regularization. The optimization 

was performed empirically through a grid search process, as described in [9]. Table 1 presents 

general characteristics of the SAE applied in this work. 
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Figure 1: Basic structure of the autoencoder neural network used in this work 

Table 1: Characteristics of the SAE model 

Activation function - encoder Logarithmic sigmoid 

Activation function - decoder Linear 

Training algorithm Scaled conjugate gradient 

Sparsity ratio 0.4 

Regularization term 0.001 

Sparsity control term 4 

Maximum number of epochs 1000 

 

In this work, the vectors h with dimension n=15 or n=25, resulting from the application of 

SAE to the data coming from the structural instrumentation, are used as input data of a Multi-

Layer Perceptron (MLP) network for supervised classification of each tested structural 

damage scenario. From this point in the text, the MPL mentioned above will be referred to as 

the shallow network.  

Autoencoders are usually used as unsupervised classifiers. However, the objective here 

was to evaluate their capacity as dimensionality reducers, leaving the classification of input 

data to be performed by an MLP network, in a more comparable way as to what is done with 

the CNNs, which facilitates performance comparison between the two analyzed techniques. 

2.2 Shallow neural network 

The shallow neural network architecture used in this work to classify the monitoring data 

treated through SAE algorithm is shown in Figure 2. For each monitored structure signal (x), 

the output of the shallow network provides a vector (y) that is associated with each of the 

eight experimentally tested structural damage scenarios. For example, for y={1 0 0 0 0 0 0 0}, 
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it means that the first damage scenario has been identified. Table 2 presents general 

characteristics of the shallow network applied in this work. 

 

Figure 2: Structure of the shallow network 

Table 2: Characteristics of the shallow network used in this work. 

Activation function – hidden layer Logarithmic sigmoid 

Activation function – output layer Softmax 

Training algorithm Scaled conjugate gradient 

Number of neurons in hidden layer 10 

Maximum number of epochs 1000 

 

2.3 Convolutional neural network - CNN 

CNNs [11] are biologically inspired neural networks widely used and have become the 

standard in many systems for recognizing objects and events in an image or video. Although 

almost 30 years have passed since the first CNN was proposed, its modern architectures still 

share common features with the first, such as convolutional and clustering layers. 

Furthermore, the most used training method is still the backpropagation technique [12].  

The popularity and wide range of application domains of deep CNNs can be attributed to 

the following advantages: 

 

- CNN models can merge the processes of parameter extraction and feature 

classification into a single body of learning; 

- Since CNN neurons are sparsely connected, they can process large inputs with high 
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computational efficiency compared to conventional fully connected Multi-Layer 

Perceptron (MLP) networks; 

- CNNs are invariant to minor transformations on the input data, including translation, 

scaling, skewing, and skew; 

- CNN can adapt to different input sizes 

 

Classically applied to image data (two-dimensional), the use of CNN in problems where 

the inputs have only one dimension (time series) can be interpreted as applying the technique 

to an image with a width of one pixel. 

In this paper, the architectures of the CNNs used are shown in Figure 3. The input layer 

has 2500 neurons with the respective 2500 time steps of each monitored response. The next 

layer is a convolution layer, where 10 convolution filters, with 50 positions, are used.  Then, 

batch normalization and ReLU1 activation function are applied to the convolution layer. The 

padding technique is used here to keep the ReLU's outputs the same size as the inputs. The 

next layer is a pooling layer: clusters with 100 and 125 positions were evaluated and the 

highest values (maxpool) were adopted as the result of each grouping. It leads to 25 or 20 

(respectively associated to p=100 or p=250 positions of each cluster) in the pooling layer. 

Softmax activation function is finally applied to the outputs of pooling layer (fully connected) 

leading to classification vector (y) associated with damage scenarios (identical to the output of 

the shallow network). 

The CNNs are trained in a supervised way via the backpropagation algorithm [12]. During 

each iteration, the gradient magnitude (or sensitivity) of each network parameter, such as the 

weights of convolution layers and fully connected layers, is calculated. The parameter 

sensitivities are then used to iteratively update the CNN parameters until a given stopping 

criterion is reached. There are several optimization methods that can be used to calculate the 

CNN parameters, similarly to what happens with the SAE. In this work, the Adam Stochastic 

Optimization algorithm was applied [13]. 

 

Figure 3: Architecture of the CNN adopted in this paper 

                                                 
1 A rectified linear unit - ReLU is an activation function that introduces the property of non-

linearity to a deep learning model and solves the vanishing gradients issue. 
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3 EXPERIMENTAL PROGRAM 

The methodology is demonstrated through an experimental example which includes some 

laboratory-conditions and some field-conditions. Figure 4 displays a photograph of the 

experimental setup. The healthy specimen under test was new, and the damage was artificially 

induced. This ensures the damage scenarios can be accurately identified to provide a good 

reference for assessing the performance of the methodology. Natural daylight was used to 

illuminate the scene, and the background was not specially prepared; resembling imperfect 

situations that are common in field test programs. 

   

Figure 4: Experimental setup. On the left: (1) beam (specimen), (2) high-speed camera, (3) lens, (4) background, 

(5) fixed support, (6) line of sight. On the right: Zoom of the specimen in the damaged region. References: (a) 

clamped zone, (b) free span 

The beam specimen under test, (1) in Figure 4, consisted of a 1 m long straight beam made 

of polypropylene with a 25.4x25.4 mm squared cross-section. The beam was free in the left 

end and fixed at the right end. The resulting free span was 0.8 m long and the first natural 

frequency in the healthy state was 7.69 Hz. 

The beam was artificially damaged by producing vertical and rectangular Mode I (opening) 

cracks on its upper face using a steel saw. The actual widths of the cracks were between 0.5 

and 1 mm. As a combination of crack locations and depths, eight successive damage scenarios 

were defined, all of which are summarized in Table 3. Cracks were produced at 100, 200 and 

300 mm from the fixed end of the beam. 

Two videos were recorded for each damage scenario (16 runs in total) with a Chronos 2.1-

HD high-speed camera, (2) in Fig. 4, at a frame rate of 1000 fps, with an exposure time of 

100% (1/1000 s), and a resolution of 1280 columns by 1024 rows. In this work, only 1200 

columns where in the region of interest for measurement. Columns were grouped into 60 

horizontal windows (of 20 columns each), one for each space sample point. The optical setup 

resulted in a pixel scale of ≈ 0.6 mm/px. 

The video records were taken during free vibration, after imposing the following initial 
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conditions: a displacement of 0.05 m at the beam free end, with a velocity of 0 m/s in the 

whole length. 

Table 3: Damage scenarios 

Scenario name 
Depth (mm) at 

100 mm 200 mm 300 mm 

Scenario #0 (no damage) 0 0 0 

Scenario #1 5 0 0 

Scenario #2 10 0 0 

Scenario #3 13 0 0 

Scenario #4 13 5 0 

Scenario #5 13 5 5 

Scenario #6 13 10 5 

Scenario #7 13 10 11 

4 SIGNAL PROCESSING 

For extracting displacements from video, in the particular case of a straight beam, an axial 

edge is a good natural feature if the background is uniform and of a different color/intensity 

than the beam [14]. An additional requirement is that the face corresponding to the selected 

edge is always hidden from the camera perspective. In this work, the method described in [14] 

for a single image, which uses the beam edge as natural feature, was applied to each video 

frame to obtain displacement records. The main steps of the method are detailed below for 

completeness of the present manuscript. 

 

1. For each video frame: 

a. The image is converted to grey-scale by combining the three 8-bit color 

channels into a single double-precision matrix of intensity values. 

b. The horizontal edge is detected using the smooth gaussian gradient calculated 

along the vertical direction with a 15 px long vertical gaussian window of ±3 

standard deviations. 

c. image gradient is binarized using a threshold and, then, the largest connected 

component is identified using the flood-fill algorithm. This component is a 

region of the image that will be used as a mask. 

d. For each horizontal window: 

i. For each column: 

A. Where the mask is active: Sub-pixel resolution gradient peaks 

are estimated and located by using cubic splines. 

ii. A linear function is fitted using the peak locations as sample points and 

their amplitudes as weights in a weighted least squares linear fitting.2 

                                                 
2 Weighted fitting is advantageous because image columns where, accidentally, the beam and 

the background are of similar intensities are penalized. On the contrary, zones of high contrast 

are emphasized. 
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iii. The vertical positions are estimated as the y-intercepts of each fitted 

straight line (assuming the y-axis is at the middle of each horizontal 

window). 

2. Time history records of vertical positions are low-pass filtered in time, using a first 

order Butterworth filter with a cut-off frequency of approximately two times the first 

natural frequency of the beam. 

3. Transverse displacements are finally estimated as the differences between filtered 

positions and the mean filtered positions over the whole video duration. 

 

To illustrate the data obtained with this signal processing method, Figure 5 is presented. 

 

Figure 5: Typical time history of displacements obtained from video records 

5 RESULTS 

Two configurations of SAE (15 and 25 neurons in the hidden layer) and two configurations 

of CNN (p=250 and p=100 elements to construct the pooling layer) were tested in this paper. 

The ability of each neural network to distinguish data from each structural damage scenario 

was evaluated. Considering the eight damage scenarios, with displacements measured at 40 

points in 2 test series, there are 640 signals (80 signals for each damage scenario). In each 

analysis, the respective confusion matrix obtained for a 5-fold cross-validation was calculated. 

The results are presented in Figure 6 and 7, for SAE and CNN, respectively.  

     

Figure 6: Confusion matrices obtained by SAE. On the left for 15 hidden layer neurons. On the right for 25 

hidden layer neurons 
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Figure 7: Confusion matrices obtained by CNN. On the left for 250 elements to construct the pooling layer. On 

the right 100 elements to construct the pooling layer 

Upon analyzing these figures, it can be observed that the two algorithms utilized in the 

study yielded a 100% accuracy rate in one of the analyses, while all other results 

demonstrated hit rates greater than 70%. It is important to note that, in terms of processing 

time, the CNN algorithm achieved 100% hit efficiency in approximately half of the time 

required by the SAE algorithm, using the parameters that were adopted.  

It is pertinent to acknowledge that the selection of various parameters for each algorithm 

directly impacts the results obtained. Nevertheless, it can be concluded that both techniques 

are highly efficient in addressing problems related to Structural Health Monitoring (SHM), 

once the algorithms are properly calibrated. 

6 CONCLUSIONS 

This article presents comparisons between the performance of AI algorithms - SAE and 

CNN - in identifying eight controlled damage scenarios. The analyzed structure was a beam 

monitored through image processing. The results obtained showed that, for the tests carried 

out, SAEs required a longer processing time than CNNs. It was observed that both analyzed 

techniques presented exceptional performance, correctly classifying the signals from all 

evaluated damage scenarios, since the parameters inherent to their respective operations are 

correctly calibrated. The optimization of these parameters was not the target of this article. 

Although the article used a cantilever beam as an example, which is a bit far from applications 

in real structures, it is observed that the presented methodology can be extended to more 

complex problems. In other words, the article's example may not directly apply to real-world 

structures, but the methodology described can be adapted and used for more complex 

problems involving structural health monitoring. A positive outcome of this work is that both 

methods can take the displacements regardless of the position in the beam they have been 

acquired from. Therefore, both methods are robust with respect to camera relative position, 

which is not common in camera-based damage identification methods. 
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