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Abstract

This work reports an experimental and numerical analysis of the sloshing of a squared tank partially �lled

with a domestic vegetable oil. The tank is subjected to controlled motions with a shake table. The free-

surface evolution is captured using two experimental techniques: ultrasonic sensors and an image capturing

method. The data obtained using these two techniques are compared between them and used to con�rm the

measurements. Only con�rmed data within the error range are reported. Filling depth, imposed amplitude

and frequency e�ects on the sloshing wave pattern are speci�cally evaluated. The experiments also reveal

the nonlinear wave behavior. The material properties of the oil are also determined. The numerical model

is based on a stabilized �nite element method of the Variational Multi-Scale (VMS) type. The free-surface

is captured using a level set technique particularly developed to be used with adaptive meshes in Arbitrary

Eulerian Lagrangian reference frameworks. The experimental and numerical results are compared for di�erent

sloshing conditions near the �rst sloshing mode. The simulations satisfactorily match the experiments,

providing a reliable tool for the analysis of this kind of problems.

Keywords: Sloshing, Experimental Validation, Arbitrary Lagrangian-Eulerian (ALE), Stabilized �nite

element methods, Adaptive Mesh
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1. Introduction

Due to the importance of free-surface and two-�uid problems in many physical situations and engineering

applications, such as, ship hydrodynamics, dam break, sloshing in tanks, shallow water, mold �lling, or ink-jet

analyses [1, 2, 3, 4], among others, the development of e�cient and accurate numerical schemes capable of

representing these types of phenomena is of major importance.

Interface problems, either, free-surface [5, 6], a thermally coupled analysis considering phase-change [7, 8],

or even, solid mechanics problems with stresses location, damage or plasticity [9, 10, 11], are promising cases

where the use of adaptivity is relevant because thin layers of the full domain contains the most important

information of the global behavior of the problem. In this work an adaptive �xed-mesh ALE method is used

to numerically approximate the sloshing of a rectangular tank partially �lled with a domestic oil subjected to

a controlled movement generated by a shake table. Numerical results are compared with experimental data

obtained via image processing and the use of ultrasonic sensors.

Several approaches to study moving interfaces have been proposed over the years, and therefore, devising a

single classi�cations that covers all of them is not an easy task. However, one of the most general classi�cations

depends on the nature of the mesh used, which can be �xed or moving. A complete review of numerical

methods used to solve free surface �ow problems including experimental validation can be found in [4] and

references therein.

In the computational �uid dynamics framework, the classical ALE approach has been proposed as a

method where the computational mesh that covers the solved domain is deformed following the �ow [12, 13].

In any moving discretization method, the accuracy of the method depends on the mesh distortion, which can

be large in the type of sloshing problems dealt with in this paper, particularly when the excitation frequency

is close to the natural frequency. Several methods have been devised to address this situation. The most

common approach when an excessively distorted mesh is reached consists in computing a new mesh that

ensures good quality form, and later, project the results from the deformed mesh to the new mesh [14, 15].

In [16], a �xed-mesh ALE approach for the numerical approximation of �ows in moving domains was

proposed. The key idea of this method consists in projecting the results of the ALE deformed mesh onto

a �xed background mesh at each time step, prior to solving the �ow equations. This procedure is known

as a �xed mesh-ALE method, and in fact the ALE deformed mesh does not need to be explicitly solved.

This �xed-mesh ALE approach was used satisfactorily both in free surface problems [17] as in the numerical

simulation of �oating solids [18], appearing as a powerful tool for the numerical approximation of moving

domains. In [5], the �xed-mesh ALE method was coupled with an adaptive mesh algorithm giving place to

a highly e�cient and robust method. In that work, several numerical aspects were discussed in detail, such

as, the global stabilization method used to ensure bounded pressure and to solve convective dominated �ows
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for equal interpolation spaces between velocity and pressure, and additionally, the stability terms designed

to stabilize the ill-conditioning introduced by the cuts on the background �nite element mesh.

Currently, big e�orts are devoted to experimentally validate numerical models. To this end, controlled

experiments are proposed to provide valuable data to be used for comparison with numerical results. In the

present work, a novel sloshing experiment is reported and its numerical analysis is performed. The experiment

consists of a square tank �lled with a commercial vegetable oil and subjected to controlled imposed motion

via a shake table. Sloshing experiments performed in water and their simulations were reported in [19, 20]

using a similar layout. Those papers report experiments in rectangular tanks for a water �lling depth of

100mm and the numerical modelling performed with �xed-mesh stabalised �nite element formulations using

free surface tracking and capturing techniques. In the present work, oil is used and di�erent �lling depths

are investigated. The aim of this study is to measure wave height evolution during sloshing of square-section

tank and evaluate its dependence on the �lling depth. The measurements are made using two techniques to

con�rm and verify the experimental data. The modelling is performed with a VMS �nite element adaptive

level set formulation.

This work encompasses experimental and numerical analysis of an oil sloshing problem and its main

contributions are:

• new experimental data are reported.

• a novel VMS �nite element numerical model is presented and veri�ed.

• comprehensive analysis of an oil sloshing problem is made.

The remainder of this work is organized as follows. Section 2 presents the governing equations and

some general aspects of the numerical strategies used. In Section 3, the speci�c aspects of the stabilized

�nite element method used to solve free-surface problems using the level set method and the adaptive mesh

approach are presented. The experimental study of an oil sloshing problem in square tanks is reported in

Section 4, where the material properties are also determined. The modeling of the problem is presented in

Section 5, comparison with experimental data validates the numerical model. Finally, conclusions are drawn

in Section 6.

2. Problem statement and Galerkin �nite element discretization

2.1. Boundary value problem

The conservation equations for momentum and mass in di�erential form for incompressible Newtonian

�uids may be expressed for a �xed domain as:

ρ
∂u

∂t
+ ρu · ∇u−∇ · (2µ∇su) +∇p = f , in Ω, t ∈ ]0, tf [ , (1)

∇ · u = 0, in Ω, t ∈ ]0, tf [ , (2)

where Ω is the computational domain of Rd occupied by the �uid, d = 2 or 3 are the space dimensions, ]0, tf [

is the time interval in which the problem is solved, ρ and µ denote the density and kinematic viscosity of the

�uid, p : ]0, tf [→ R is the pressure �eld, u : ]0, tf [→ Rd is the vector of velocity components, and f = ρg is
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the gravity force vector, g is the gravity acceleration. As notation, ∇su represents the symmetrical gradient

of the velocity
(
∇su = 1

2

(
∇u+ (∇u)

T
))

.

The above equations need to be solved together with initial and appropriate boundary conditions. We

de�ne the �uid stresses as

σ = 2µ∇su− pI,

where I is the identity tensor. Usually boundary conditions in free-surface problems can be subdivided into

Neumann and Dirichlet boundary conditions:

u =uD on ΓD,

σ · n =h on ΓN ,

where n represents the outward unit normal vector, ΓD is the Dirichlet boundary, and ΓN is the Neumann

boundary. When considering free-surface �ows, the e�ect of any �uid outside the free-surface interface is

neglected. Another usual assumption consists in neglecting the surface tension e�ects, which is reasonable in

most engineering application. Under this assumption, the boundary condition we enforce in the free-surface

interface, referred as Γfree (t), is a traction-free condition:

σ · n = 0 on Γfree (t) .

2.2. Fixed-Mesh ALE formulation

In free surface problems, the full domain represented by Ω can be split in two parts, the part of the

domain e�ectively occupied by the �uid Ω1 (t) and the remaining Ω\Ω1 (t). The moving boundary of Ω1 (t)

is known as the free surface, and it will be represented by Γfree (t). Note that both Ω1 (t) and Γfree (t) are

time-dependent and can change in time. This movement of the domain can be represented using an ALE

domain velocity uΩ (x, t) ∈ Rd, where x ∈ Ω are the spacial coordinates. Formally speaking, we can de�ne

the bijective mapping λ, so that, for every point X ∈ Ω and time instant t returns a point x = λ (X, t).

Under this de�nition, the domain velocity can be de�ned as

uΩ (x, t) =
∂λ (X, t)

∂t
. (3)

For an ALE approach, the domain velocity does not coincide in general with the velocity of the �uid in

Ω1 (t). The e�ective conditions between domain velocity and velocity are de�ned by

n · uΩ = n · u in Γfree ∪ ∂Ω,

where n represents the outward normal of the point. In the rest of the domain, a smooth velocity consistent

with these boundary conditions is de�ned.Under these de�nitions, the incompressible Navier-Stokes problem

in the ALE frame of reference can be written as
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ρ
∂u

∂t

∣∣∣∣
λ

+ ρ (u− uΩ) · ∇u−∇ · (2µ∇su) +∇p = f , in Ω, t ∈ ]0, tf [ , (4)

∇ · u = 0, in Ω, t ∈ ]0, tf [ . (5)

More details of this approach can be found in [21, 12, 16], where di�erent ALE methods have been

proposed for moving domains. In this work a Fixed-Mesh ALE method is used. The particularity of this

method is that, after each discrete time integration scheme, the results are projected from the deformed

mesh to the initially undeformed mesh, from which the simulation is continued. Thus, the method falls in

the �xed-mesh method family, but it allows to properly track the movement of the domain using an ALE

approach.

2.3. Variational form

Let us now consider the �nite element approximation of the problem de�ned by (1)-(2). We de�ne V =(
H1 (Ω)

)d
and Q = L2 (Ω) /R, the interpolation spaces of the velocity and the pressure, respectively, H1 (Ω)

is the space of functions whose distributional derivatives of order equal to one belong to L2 (Ω) vanishing on

∂Ω. If we denote X := V ×Q, the weak form of the problem consists in �nding U = [u, p] : ]0, tf [→ X such

that the initial conditions are satis�ed and

ρ

(
∂u

∂t

∣∣∣∣
λ

,v

)
+ 〈ρa · ∇u,v〉+ 2µ (∇su,∇sv)− (p,∇ · v) = 〈f ,v〉 , (6)

(∇ · u, q) = 0, (7)

for all V = [v, q] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well de�ned and a = u− uΩ is the

advective velocity. Here (·, ·) stands for the L2 (Ω) inner product and 〈·, ·〉 for the integral of the product of
two functions, not necessarily in L2 (Ω)

In compact form, the problem (6)-(7) can be written as:

ρ

(
∂u

∂t

∣∣∣∣
λ

,v

)
+B (a;U ,V ) = 〈f ,v〉 , (8)

where

B (a;U ,V ) = (2µ∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v) + (∇ · u, q) .

Equation (8) needs to be complemented with appropriate initial and boundary conditions.

2.4. Galerkin �nite element discretization and time discretization

The standard Galerkin approximation for the variational problem can be performed by considering a �nite

element partition Th of the domain Ω. The diameter of an element domain K ∈ Th is denoted by hK and the

diameter of an element partition is de�ned by h = max {hK | K ∈ Th}. Under the above considerations, we
can construct conforming �nite element spaces, Vh ⊂ V and Qh ⊂ Q in the usual manner. If X h := Vh×Qh,

and Uh = [uh, ph], the Galerkin �nite element approximation consists in �nding Uh : ]0, tf [→ X h such that
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ρ

(
∂uh

∂t

∣∣∣∣
λ

,vh

)
+B (ah;Uh,V h) = 〈f ,vh〉 , (9)

for all V h ∈ X h, and satisfying the appropriate initial and boundary conditions.

To discretize in time we use the second order backward di�erence scheme, de�ned as

∂uj+1
h

∂t
=

3uj+1
h − 4uj

h + uj−1
h

2δt
+O

(
δt2
)
, (10)

where δt corresponds to the size of a uniform partition of the time interval [0, T ], while O (·) represents

the approximation order of the scheme. The superscript indicates the time step where the variable is being

approximated, so that uj is an approximation to u at time tj = jδt. Note that this time marching scheme

is independent of the method for spatial discretization.

With respect to the spacial discretization, it is well known that the standard Galerkin method fails when

the nonlinear convective term dominates the viscous term. Another drawback is related to the discrete

compatibility or inf-sup condition that must be satis�ed by the Vh ×Qh pair in order to have a well-posed

problem with bounded pressure. These di�culties are overcome by using a stabilized formulation, as shown

below.

3. Stabilized �nite element method and adaptive mesh re�nement approach

In this section we summarize the key ingredients of the adaptive �xed-mesh ALE approach used to solve

the free surface problem. A more detailed description of the method can be found in [5].

3.1. Stabilized formulation

An equal order approximation for velocity and pressure does not yield a stable scheme even in a single

�uid problem with �xed domain. A possible remedy to this situation is to enrich the �nite element spaces

for the velocity in order to satisfy the compatibility condition that de�nes the Navier-Stokes or even the

Stokes problem. Another possibility consists in using stabilized formulations permitting any interpolation

of the unknowns, which is the approach used in this work to ensure global stability. In short, a stabilized

formulation consists in replacingB in (9) by another bilinear formBh possibly mesh dependent, with enhanced

stability properties.

The stabilized method used in this work is based on the variational multi-scale (VMS) approach introduced

in [22]. The basic idea is of this method is to approximate the e�ect of the components of the solution of the

continuous problem that cannot be solved by the �nite element mesh, called the sub-scale components. In

the end, the problem can be written only in terms of the �nite element component, maintaining the number

of the unknowns of the Galerkin case with the possibility to solve convective dominant cases with equal

order interpolation for velocity and pressure. A detailed derivation of the method can be found in [23] for

the Navier-Stokes problem. Here we just state the method for the problem de�ned by (6)-(7). After some

approximations, this method consists in �nding Uh : ]0, tf [→ X h such that

ρ

(
∂uh

∂t
,vh

)
+B (ah;Uh,V h) + S1 (ah;Uh,V h) + S2 (Uh,V h) = 〈f ,vh〉 , (11)

for all V h ∈ X h, where
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S1 (ah;Uh,V h) =
∑
K

α1

〈
f − ρ∂uh

∂t
− ρah · ∇uh + µ4uh −∇ph,

−ρah · ∇vh − µ4vh −∇qh〉K ,

S2 (Uh,V h) =
∑
K

α2 〈∇ · uh,∇ · vh〉K ,

are the stabilization terms added to the Galerkin formulation and α is a matrix computed within each

element, called matrix of stabilization parameters, which among other things gives dimensional consistency

to the added terms. Note that both terms are residual based; the �rst term depends on the residual of the

momentum equation and the second one on the continuity equation, and therefore, the stabilized method is

consistent by construction. Based on [24, 25], we de�ne

α = diag (α1Id, α2) , (12)

with Id the identity on vectors of Rd and the parameters αi, i = 1, 2, are computed as

α1 =

[
c1
µ

h2
1

+ c2
ρ |ah|
h2

]−1

, (13)

α2 =
h2

1

c3α1
, (14)

In these expressions, h1 corresponds to a characteristic element length calculated as the square root of the

element area in a two-dimensional case and the cubic root of the element volume in 3D, and h2 corresponds

to another characteristic length calculated as the element length in the streamline direction. The constants

ci, i = 1, 2, 3 are algorithmic parameters in the formulation. The values used in this work are c1 = 12,

c2 = 2, and c3 = 4, which can be derived from the numerical analysis of the one-dimensional convection-

di�usion-reaction problem. These values have proven to be robust in di�erent problems and for di�erent

applications.

The above stabilized formulation ensures global stability except for the ill-conditioning and unstable

behavior caused by the sub-integration in the elements cut by the free surface. In order to overcome this

local instability a method known as the ghost penalty stabilization is used. This method ensures the control

of a given �eld in the cut elements without harming the convergence rate of the numerical formulation. See

[26] and [27]where the method was �rst applied for �uid �ow problems. It is important to note that the

ghost penalty stabilization method a�ects only the part of the domain in the layers of elements cut by the

free surface. In short, the terms added to 3.1 are

Sghost (ah;Uh,V h) =
∑
K

(
c4h

2
1α
−1
1

) 〈
∇vh, P⊥u (∇uh)

〉
K(Ωcut(t))

(15)

+
∑
K

(c5α2)
〈
∇qh, P⊥p (∇ph − f)

〉
K(Ωcut(t))

,

where Ωcut (t) represents the domain of theK element cut by the free surface Γfree (t), c4 and c5 are algorithmic
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constants, both taken as 0.1 in this work, and P⊥ represents the orthogonal projections in the cut elements,

that are de�ned as

P⊥u (∇uh) =∇uh − Pu (∇uh) ,

P⊥p (∇ph − f) = (∇ph − f)− Pp (∇ph − f) ,

where Pu represents the L2 (Ω) projection onto Vh, and Pp the L2 (Ω) projection onto Qh. Note that the

L2 (Ω) projection is not the only possibility (see [28] for other options of interpolators used in the ghost

penalty method). A more detailed description of this stabilization technique can be found in [5]

3.2. Tracking of the interface

The common option to solve free surface problems using �xed mesh approaches is to solve a two-�uid �ow

problem. However, in a water-air (or oil-air) interaction problem, the e�ect of air on water can be neglected,

and thus air does not need to be modelled. This allows one to solve a single �uid �ow problem. The key

point to do this is to disconnect both domains, which is achieved by imposing a traction-free condition over

the interface. Using this approach, the Navier-Stokes problem is solved only for the water or oil domain. In

the air domain, any smooth extrapolation function can be used for the velocity and pressure �elds. In this

work, a Stokes problem is used in the air domain.

For the tracking of the two �uids interface, the level set method is used. It is based on the pure advection

of a smooth function, commonly de�ned as φ (x, t), over the whole domain Ω. This function allows one to

de�ne the position of the front of the interface, by the isovalue φ (x, t) = φc, usually taken as φc = 0.

The conservation of φ in any control volume Vt ⊂ Ω which is moving with a divergence free velocity �eld

u, can be de�ned in an Arbitrary-Lagrangian-Eulerian (ALE) frame by the following equation

∂φ

∂t
+ a · ∇φ = 0, in Ω, t ∈ ]0, tf [ , (16)

with the corresponding initial and boundary conditions, and the advection velocity de�ned as a = u− uΩ.

For the numerical solution of the level set equation, standard numerical techniques are used. In this work,

the level set equation (16) is solved by using the classical SUPG method [29] to stabilize the convective nature

of the equation. The time derivative is discretized in the same way as in the momentum equation described

in subsection 2.4.

As the level set interface evolves in time, it will intersect the elements of the �nite element mesh in an

arbitrary manner. To properly integrate the physical properties in the computational domain, a modi�ed

integration rule is used in the elements cut by the interface [6, 5]. The use of the enhanced integration allows

to impose the zero traction boundary condition correctly at the exact position of the interface.

The advection of the level set function does not guarantee global mass conservation. Depending on the

space-time discretization employed, the amount of volume loss of the solved �uid can be important. In a

sloshing problem thousands of time steps needs to be solved, and therefore, the use of a mass conservation

scheme is convenient. In the present work, we use a very simple method to ensure the global mass conser-

vation,which consists in measuring the total mass at the end of each time step and compute the amount of

mass lost, and then accordingly displace the level set function in a uniform, global manner in the direction

orthogonal to the free-surface in order to recover the lost mass (see [5] for more details)
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3.3. Adaptive approach

A key ingredient in the numerical simulations presented in this work is an adaptive mesh re�nement

strategy that tracks the position of the free surface, and allows one to achieve accurate solutions by using

reasonably small number of elements. For this, the Fixed-Mesh ALE method is coupled with the parallel

adaptive mesh re�nement library RefficientLib [30]. The particularity of applying adaptive re�nement

approaches to free surface problems is that in many cases, the precision of the numerical simulation depends

mostly on the accuracy with which the interface between the two materials is tracked [5]. Thus, an adaptive

mesh re�nement criterion based on layers of elements around the �uids interface is used in this work.

In the present work, the mesh re�nement algorithm proposed in [30, 5] is used to validate the numerical

results with the experimental data also proposed in this work. The adaptive mesh re�nement algorithm used

in the work is based on layers of elements of di�erent size. In general, a free surface problem could be divided

into four zones: the most important one is the region (a layer) close to the free surface that contains elements

occupied by the �uid as well as elements outside of the �uid. A second layer could be a region located neither

so far nor so close to the free surface and adjacent to the �rst layer. A third zone is represented by the region

far away from the free surface, but inside of the �uid, and �nally, a fourth zone is represented by the region

far away from the free surface but outside the �uid.

The adaptive mesh re�nement algorithm for free surface problems proposed in this work is based on three

positive integers parameters that refer to the level of re�nement in each of these layers. Calling the parameters

as a, b and c, we show as the algorithm work for a sloshing case. Figure 1 shows the �rst eight time steps of

a sloshing case, starting from an extremely coarse mesh (left top) called M0 composed of elements of size h0.

Figure 1: Adaptive mesh re�nement initialization for a free surface problem.

For the case shown in Fig. 1, the integer parameters were set as a = 2, b = 2 and c = 8. The �rst value

refers to the level of re�nement taking as reference the original mesh M0. The value a = 2 means that the
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elements far away from the free surface, but inside of the region occupied by the �uid have two levels of

re�nement, and therefore, the element size is a quart of the originals (he = 1
4h0). The value b = 2 refers to

the level of re�nement of the elements cut by the �uid interface and very close to the free-surface both out

as in of the �uid, giving place to elements of size equal to 1/16 of the originals. The c parameter allows us

to de�ne the number of element layers that conform the zone where the �nest mesh is used (he = 1/16). For

c = 8 layers of, we have 8 elements of size he = 1
16h0 of the original one associated to M0.

In Fig. 2, an example of the adaptive mesh re�nement algorithm is presented for a sloshing case. In this

�gure the capability of the algorithm for re�ning and coarsening the mesh in a time dependent problem is

shown.

Figure 2: Free surface evolution using the adaptive mesh approach for a case near to the �rst mode.

In this work, we make a mesh convergence study using a �xed mesh size, but changing the thickness of

the region of smallest elements. In other words, we leave the values of a and b �xed, and change the value of

the parameter c, as will be described in Section 5.

4. Experimental work

An acrylic tank �lled with commercial vegetable oil is mounted on a shake table to be subjected to

controlled vibrations. The experimental setup is shown in Figure 4. The dimensions of the square section

tank are shown in Figure 3, where H is the oil depth. The shake table is actuated by a motor that makes a

screw rotate, producing a one-dimension time-varying motion. The amplitude and frequency of the imposed

motion can be set by a user interface tool (see Quanser User Manual [31] for further details). An experimental

study of water sloshing in a rectangular tank has been also presented in [19]. In such a work, experiments

using only one water depth were reported, using a unique procedure to measure wave heights. The present

work studies the e�ect of the �lling depth on the wave heights for the sloshing of oil in square tanks. Moreover,

two di�erent techniques for measuring wave heights are used with the aim to con�rm and to complete the

experimental data.

The wave height is measured at four control points (CP in Figure 3) using ultrasonic sensors. According to

the output con�guration used, this instrument has a resolution of 1mm for the adopted output response time

of 2.5ms [32]. The readings made by the ultrasonic sensors, based on the wave-beam's transit time, can be

distorted due to the shape of the free surface, e.g., a surface with high slope can not be correctly recognized.

Other facts also a�ects the interface detection. The ultrasonic beam can not be interfered by the walls of the
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container. In addition, the sensors have a distance range from the emitting point and the surface where the

surface can be detected. These facts are taken into account to de�ne the sensors' location in the experiment.

Because of these aspects, under certain experimental conditions, the water level can not be measured using

the ultrasonic sensors, or the quality of the obtained data can not be assured. It could typically happen when

sharp waves or strong 3D e�ects evolves and the free surface is highly distorted (even when not separation

is obtained). However, the ultrasonic sensors provides information for long terms analyses. The experiments

are also recorded using a high speed camera (AOS [33]). This procedure is limited to the total time that can

be registered. In the present study 10s during the steady state time-periodic regime were recorded with a

resolution of 800× 800 pixels at 120 frames per second. To process the videos a Python home-made code has

been developed using the OpenCV library [34]. This code handles a video �le and treats it frame-by-frame,

taking two regions of interest (ROI) coherent with the ultrasonic sensors positions. The horizontal center of

these ROIs is the control line (CL) where the wave height is measured, and its position changes restricted to

the tank's marker. Then, a color mask is applied to distinguish the �uid from the background and so �nd

the pixel correspondence with the free surface. A scheme of the procedure is shown in the Figure 5. The

error bound in the measurements is 1.1mm. The measurements obtained using this procedure help to verify

and to complete the experimental data.

The experimental work is focused on the wave height evolution for di�erent oil �lling depths, and en-

compass experimental sweep analyses. In particular, four oil depths H have been used: 100mm, 150mm,

200mm and 250mm. The imposed motions have amplitudes A of 5mm, 7.5mm and 10mm, while the imposed

frequency f has been de�ned in terms of the analytic �rst natural frequency for non-viscous �uids [35], the

geometry of the tank. and the liquid's depth (see Table 1). In this work, the values of the imposed frequency

goes from 0.55×fn, up to 1.45×fn. The �rst natural frequency of the oil sloshing has also been determined

experimentally by examination of the damped decaying regime via a Fast Fourier Transform. From these

analyses, the natural frequencies coincide with the analytic expression, showing its independence from the

�uid's viscosity for the studied cases, see Figure 6.

H[mm] 100 150 200 250
fn,a[Hz] 1.46998 1.58511 1.62962 1.62962

where fn,a = (g/(4πl) tanh(πH/l))1/2 with l = 288mm

Table 1: Analytic �rst natural frequencies.

To illustrate the typical free surface responses, the wave height evolution at CP1 for the entire analysis

using H = 100mm, A = 7.5mm and f = 1.69Hz (1.15 × fn, fn = 1.469Hz) is presented in Figure 7. The

initial transient, time-periodic and damped decaying regimes can be clearly seen. It should be noted that

the steady state time-periodic regime is reached 20s after starting the motion. Figure 8 reports the wave

evolution during the time-periodic regime for the same case. The ultrasonic sensors and image capturing

measurements practically coincide.

As already mentioned, in some cases there are di�culties to capture the free surface evolution using

sensors. The wave evolution during the time-periodic regime for H = 100mm, A = 7.5mm and f = 1.25Hz

(0.85 × fn, fn = 1.469Hz) is plotted in Figure 9. The signals of the sensor are discontinuous in time.

These signals can be con�rmed only by parts using the motion capturing measurements. In this case, only

signals obtained from images will be used to evaluate maximum and minimum wave amplitudes during the
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time-periodic regime.

Moreover, sensors located at CP3 and CP4 helps to detect the evolution of 3D e�ects when signals at CP1

and CP3 (or CP2 and CP4) are di�erent, while for 2D motions CP1 and CP3 (or CP2 and CP4) practically

coincide.

Figure 10 presents the maximum and minimum wave amplitudes η+/− during the time-periodic regime

for the studied cases. The amplitudes are presented organised by H. From these data di�erent aspects can be

observed. Maximum and minimum amplitudes of the waves are not symmetric, i.e., the absolute maximum is

higher than the absolute minimum, denoting the nonlinear behaviour in the wave pattern. Smaller imposed

amplitudes promote lower wave amplitudes. Although wave amplitudes can not be measured during �rst

resonance, the e�ect that the �rst natural frequency increases with depth is apparent.

Figure 11 reproduces the same previously reported data, but organized by the imposed amplitude and

referred to the relative imposed frequency fr = f/fn. This �gure shows that the wave amplitudes tends to

be similar when the liquid depth increases.

The ratio between maximum and minimum wave height is plotted in Figure 12. The error bars are

also included, showing the in�uence of the low wave amplitudes measured with the declared error in the

computation of the ratio. The nonlinear behaviour, represented by ratios not equal to one, is apparent in the

�gure. High nonlinearities are found near the �rst resonant frequency and at low �lling depth. The ratios

increase when the imposed amplitude increases. It can also be seen that near the resonant frequency the

ratios remain practically constant. The ratios decrease when the �lling depth increases, and they tend to be

similar when the �lling depth increases, denoting that the wave patter is practically invariant at large �lling

depths.

Numerical and experimental results are presented in Section 5 to validate the proposed methodology for

analyzing free surface �ow problems. On the contrary, numerical solutions con�rm image measurements.

Figure 3: Isometric view of the tank used, with its internal dimensions and the four control points (left) and top view of the
same tank, where the distances from the control points to the tank walls are shown (right). The dimensions are in mm.
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Figure 4: Experimental setup of the shake table loaded with the tank partially �lled with vegetable oil, and the ultrasonic
sensors installed at the speci�ed control points (left) and overall view (right).

Figure 5: Scheme of the procedure of the developed code to process the high-FPS recorded videos. On the left side the input
frame is shown, while on the right side shows the output frame with the wave height and tank markers.
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Figure 8: Experimental data, wave evolution during steady-state time-periodic regime at CP1 (left) and CP2 (right), comparison
between sensors and image capturing measurements for H=100 mm, A= 7.5 mm and f=1.69 Hz.
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Figure 9: Experimental data, wave evolution during steady-state time-periodic regime at CP1 (left) and CP2 (right), comparison
between sensors and image capturing measurements for H=100 mm, A= 7.5 mm and f=1.25 Hz.

15



-4
0

-2
0 0

 2
0

 4
0

 6
0

 0
.8

 1
 1

.2
 1

.4
 1

.6
 1

.8
 2

 2
.2

η
+/-

 [mm]

f 
[H

z
]

H
 =

 1
0
0
m

m
S

e
n
s
o
r 

- 
A

 =
 5

 m
m

Im
a
g
e
 -

 A
 =

 5
 m

m
S

e
n
s
o
r 

- 
A

 =
 7

.5
 m

m
Im

a
g
e
 -

 A
 =

 7
.5

 m
m

S
e
n
s
o
r 

- 
A

 =
 1

0
 m

m
Im

a
g
e
 -

 A
 =

 1
0
 m

m

-4
0

-2
0 0

 2
0

 4
0

 6
0

 0
.8

 1
 1

.2
 1

.4
 1

.6
 1

.8
 2

 2
.2

η
+/-

 [mm]

f 
[H

z
]

H
 =

 1
5
0
m

m
S

e
n
s
o
r 

- 
A

 =
 5

 m
m

Im
a
g
e
 -

 A
 =

 5
 m

m
S

e
n
s
o
r 

- 
A

 =
 7

.5
 m

m
Im

a
g
e
 -

 A
 =

 7
.5

 m
m

S
e
n
s
o
r 

- 
A

 =
 1

0
 m

m
Im

a
g
e
 -

 A
 =

 1
0
 m

m

-4
0

-2
0 0

 2
0

 4
0

 6
0

 0
.8

 1
 1

.2
 1

.4
 1

.6
 1

.8
 2

 2
.2

η
+/-

 [mm]

f 
[H

z
]

H
 =

 2
0
0
m

m
S

e
n
s
o
r 

- 
A

 =
 5

 m
m

Im
a
g
e
 -

 A
 =

 5
 m

m
S

e
n
s
o
r 

- 
A

 =
 7

.5
 m

m
Im

a
g
e
 -

 A
 =

 7
.5

 m
m

S
e
n
s
o
r 

- 
A

 =
 1

0
 m

m
Im

a
g
e
 -

 A
 =

 1
0
 m

m

-4
0

-2
0 0

 2
0

 4
0

 6
0

 0
.8

 1
 1

.2
 1

.4
 1

.6
 1

.8
 2

 2
.2

η
+/-

 [mm]

f 
[H

z
]

h
 =

 2
5
0
m

m
S

e
n
s
o
r 

- 
A

 =
 5

 m
m

Im
a
g
e
 -

 A
 =

 5
 m

m
S

e
n
s
o
r 

- 
A

 =
 7

.5
 m

m
Im

a
g
e
 -

 A
 =

 7
.5

 m
m

S
e
n
s
o
r 

- 
A

 =
 1

0
 m

m
Im

a
g
e
 -

 A
 =

 1
0
 m

m

Figure 10: Experimental sweep analysis: maximum and minimum wave amplitudes at CP1 for each oil depth H, ultrasonic and
image data.

16



-40

-20

 0

 20

 40

 60

 0.4  0.6  0.8  1  1.2  1.4  1.6

η
+

/-
 [

m
m

]

fr

A=5mm
Sensor - H = 100 mm
Image - H = 100 mm

Sensor - H = 150 mm
Image - H = 150 mm

Sensor - H = 200 mm
Image - H = 200 mm

Sensor - H = 250 mm
Image - H = 250 mm

-40

-20

 0

 20

 40

 60

 0.4  0.6  0.8  1  1.2  1.4  1.6

η
+

/-
 [

m
m

]

fr

A=75mm
Sensor - H = 100 mm
Image - H = 100 mm

Sensor - H = 150 mm
Image - H = 150 mm

Sensor - H = 200 mm
Image - H = 200 mm

Sensor - H = 250 mm
Image - H = 250 mm

-40

-20

 0

 20

 40

 60

 0.4  0.6  0.8  1  1.2  1.4  1.6

η
+

/-
 [

m
m

]

fr

A=10mm
Sensor - H = 100 mm
Image - H = 100 mm

Sensor - H = 150 mm
Image - H = 150 mm

Sensor - H = 200 mm
Image - H = 200 mm

Sensor - H = 250 mm
Image - H = 250 mm

Figure 11: Experimental sweep analysis for each imposed motion amplitude: maximum and minimum wave amplitudes at CP1
vs. relative imposed frequencies, ultrasonic and image data.

17



 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

η
+
 /
 η

-

fr

H = 100mm
Image - A = 5 mm

Image - A = 7.5 mm
Image - A = 10 mm

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

η
+
 /
 η

-

fr

H = 150mm
Image - A = 5 mm

Image - A = 7.5 mm
Image - A = 10 mm

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

η
+
 /
 η

-

fr

H = 200mm
Image - A = 5 mm

Image - A = 7.5 mm
Image - A = 10 mm

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

η
+
 /
 η

-

fr

H = 250mm
Image - A = 5 mm

Image - A = 7.5 mm
Image - A = 10 mm

Figure 12: Experimental sweep analysis: ratio between maximum and minimum wave amplitudes at CP1 for each oil depth H,
image data.

4.1. Material characterization

The properties of the vegetable oil used are determined experimentally. Figure 13 reports the density and

the viscosity obtained. From the study reported in [36], the viscosity of vegetable oils depends on temperature

according to the expression summarized in Table 2. The experimentally determined coe�cients are reported

in Table 2. The obtained viscosity behaviours are similar to those obtained for sun�ower and corn oils in

[36].

µ(T ) = (a+ bT )ec+d/T+e/T 2

mPas
a b c d e

2.1665 4.1832E − 03 6.3958 −6.0213× 103 1.4937E × 106

Table 2: Temperature-dependent viscosity.

18



 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250

M
a
s
s
 [
1
0

−
3
 K

g
]

Volume [10
−6

 m
3
]

Experimental
Fitted

ρ = 912.4 [Kg/m
3
]

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20

V
is

c
o
s
it
y
 [
m

P
a
 s

]

Temperature [C]

Experimental
Fitted

Figure 13: Material properties.

5. Modelling the experiments

The present Section reports the numerical analyses made using the proposed fully formulation described

in Section 2. The numerically studied cases are those with H = 100mm and A = 7.5mm at di�erent imposed

frequencies. In all cases the properties of the �uid were set as ρ = 912.4kg/m3 and µ = 71mPas.

Figure 17 summarizes the numerical results computed using di�erent meshes and time step sizes in

comparison with experimental data. The three meshes used (named as M1, M2 and M3), are shown in

Figure 14. Note that the element size is the same in all the meshes, but the number of elements in the

layer of �nest elements changes between them. In this work we study the e�ect of this parameter on the

convergence of the results using the experimental data. In mesh M1 we set the c parameter described in

sub-Section 3.3 as c = 8. For mesh M2 the value was set at c = 10 and for M3 c = 12.

Figure 14: Meshes used for the sloshing problem: M1, M2 and M3 from left to right.

Simulations using M1 and time steps of 0.005s, 0.0025s and 0.00125s reveal practically independent time

step size results (see Figure 17, right). The mesh convergence analysis, made using a time step of 0.00125s,

presents improved results when �ner meshes are used (see Figure 17, left). Note that for M3 the numerical

results �t well with the experimental data in the zone near the �rst mode. These results corroborate that
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the most e�cient way to solve a problem of free surface is with adaptability. Additionally, it is evident that

the �xed mesh ALE approach is a robust method to solve cases even close to resonance.

Figures 15 and 16 report experimental data and numerical results during time-periodic and transient

regimes respectively. Figure 15 illustrates that wave height evolution at CP1 is in phase with shake table

motion for frequencies lower than the �rst natural frequency, while the phase is 2π at frequencies greater than

the �rst frequency. Moreover, as expected, the wave height evolution at CP2 has a 2π phase with respect to

wave height evolution at CP1.

Snapshots from the videos and simulations are also plotted in Figures 18 to 21 for imposed frequencies of

1.25 Hz, 1.32 Hz, 1.62 Hz, and 1.69 Hz.

Figure 18: Free surface evolution in a period for f = 1.25 Hz (fr = 0.85).

Figure 19: Free surface evolution in a period for f = 1.32Hz (fr = 0.9).
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Figure 15: Experimental data vs. numerical results for H=100 mm, A= 7.5 mm, f=1.25 Hz (top) and f=1.69 Hz (bottom)
during time-periodic regime.
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transient regime.
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Figure 20: Free surface evolution in a period for f = 1.62 Hz (fr = 1.1).

Figure 21: Free surface evolution in a period for f = 1.69 Hz (fr = 1.15)

In all these analyses, the simulations satisfactorily match the experiments.

In Table 3, the total CPU time used to solve all cases for fr = 0.9 are presented. All simulations were

solved using four processors, and the simulation time was 40s. Note that for M1 and dt = 0.005s, the 8000

time steps only require 192s of total CPU time with an acceptable solution even for a case near the �rst

mode.
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Total CPU time dt = 0.005s dt = 0.0025s dt = 0.00125s
M1 192s 387s 777s
M2 367s 705s 1400s
M3 390s 759s 1457s

Table 3: Total CPU time used in the case of f = 1.32Hz (fr = 0.9) to solve 40s of simulation.

6. Conclusions

An exhaustive experimental and numerical analysis of the sloshing of a squared tank partially �lled

with a domestic vegetable oil has been presented. Speci�cally, an oil sloshing of square tanks experiment is

reported. With the aim to con�rm the experimental data, free surface evolution has been measured using two

techniques: ultrasonic sensors and image capturing. Material properties are also experimentally determined.

From the numerical point of view, a variational multi-scale stabilized �nite element method with a level set

technique developed in an adaptive meshes using a Fixed-Mesh Arbitrary Eulerian Lagrangian method, has

been presented.

The experimental trends con�rm that maximum and minimum wave amplitudes:

• increase with the amplitude of the imposed motion for a given frequency of the imposed motion.

• increase with the �lling depth for a given imposed motion, and they tends to reach similar values for

the higher �lling depth, i.e., the wave pattern started to be independent of the �lling depth.

• nonlinearities, expressed by the ratio between maximum and minimum wave amplitudes, are strong at

the studied low �lling depth.

From the numerical analyses, the observed aspects can be summarized as:

• mesh and time step size re�nement reveal practically independent numerical behaviour, but better

results are computed with their small sizes near resonant conditions.

• the adaptivity procedure warrants good results also when relatively coarse meshes are used, on bene�t

of the computational time.

• the results obtained in the simulation satisfactory adjust the experimental data validating the proposed

numerical model.
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