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Abstract. This paper analytically investigates global and local instability in sandwich columns with
monolithic aluminium facesheets and Face-Centered Body-Centered Cubic (FBCC) lattice cores pro-
duced by additive manufacturing. To account for core transverse compressibility and its influence on
face local instability characterized by wrinkling, a higher-order solution is developed. Finite Element
simulations using 3D solid elements for the facesheets and beam elements for the core under vari-
ous boundary conditions validate the model. Analytical and numerical results show close agreement,
accurately predicting global (in-plane/out-of-plane) and local (intracell/wrinkling) modes. Boundary
conditions strongly affect global instability, whereas local instability depends mainly on geometric
parameters. The proposed method offers an efficient and accurate tool for predicting instability in
lattice-core sandwich columns for lightweight structural applications.

1 INTRODUCTION

Additive manufacturing (AM) enables the production of lightweight lattice-core sandwich struc-
tures with tunable mechanical properties. These configurations offer high stiffness-to-weight ratios
and design flexibility, allowing control over strength and energy absorption through unit cell geome-
try. Using Selective Laser Melting (SLM), fully integrated sandwich columns can be fabricated with-
out adhesive bonding, ensuring uniform load transfer and defect-free interfaces. Previous studies on
various lattice topologies, including BCC, FCC, and FBCC, have examined global and local buckling
behavior, highlighting the strong influence of geometry and boundary conditions.*™> However, only a
limited number of analytical studies have addressed local instability phenomena in additively manu-
factured lattice-core sandwich structures. The developed model introduces a higher-order analytical
framework for lattice-core sandwich columns to accurately predict both global and local instabilities.
The proposed model, validated through FEM simulations, provides improved accuracy and computa-
tional efficiency for design applications.
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2 MATERIALS AND DESIGN

The sandwich column was designed for additive manufacturing from AISi10Mg using the Laser
Selective Melting (LSM) process. As shown in Fig. [T} the facesheets and FBCC lattice core were
considered to be printed simultaneously, ensuring a continuous, defect-free interface without adhesive
bonding. The effective core properties were evaluated using the analytical model of Xia et al.,® which
links the equivalent elastic moduli and Poisson’s ratios to the strut-to-cell ratio and base material
properties, and validated by FEM.”
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Figure 1: Geometry of the sandwich column with FBCC lattice core. All unit cells have dimensions
of 4 x 4 x 4 mm and strut diameter d;, = 0.4 mm.

3 ANALYTICAL METHODS FOR BUCKLING PREDICTIONS

Global buckling represents the overall instability of a sandwich column under axial compression,
where deformation occurs along the weaker bending axis, while local buckling (face instability) is
confined to limited regions such as the faces or core. Depending on the stiffness distribution, ei-
ther out-of-plane or in-plane global buckling may dominate, as described by Allen’s thin—thick face
model,® which accurately incorporates facesheet bending stiffness and shear deformation effects. Lo-
cal modes include intracell buckling and wrinkling; the former occurs within individual lattice cells,
and the latter develops over longer wavelengths along the face—core interface. Analytical approaches
for these buckling modes are primarily based on the formulations by Allen® for global buckling and
Zenkert” for intracell buckling, both providing reliable predictions of critical loads for lattice-core
sandwich structures. The wrinkling solution is addressed in the following section within the scope of
this study.

4 HIGHER-ORDER APPROACH FOR FACE WRINKLING
4.1 Model Simplifications

This section presents an energy-based higher-order analytical framework for predicting wrinkling
in sandwich columns with FBCC lattice cores. Unlike conventional models assuming uniform trans-
verse displacement, the proposed formulation employs fourth-order axial and third-order transverse
variations to capture the core’s compressibility and shear effects. This refined representation improves
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the accuracy of instability predictions. A closed-form expression for the symmetric wrinkling load is
derived using the Ritz method, based on the following key assumptions:

1. The faces are considered relatively thin and follow the Kirchhoff-Love assumption.
2. The core is compressible in the transverse and axial directions.
3. The core displacements must satisfy the following symmetric deformation criteria:

u’(z > 0) =u(z <0) (la)
w(z > 0) = —w(z <0) (1b)

4. The face sheets and the core are assumed to be perfectly bonded.

5. Taking into account the symmetry of wrinkling mode, only the structure lying above the mid-
plane is considered for calculating the wrinkling load.
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Figure 2: Sandwich Construction

4.2 Kinematic Relations

A sandwich column of length a, core thickness 2c¢, and face sheet thickness f is analyzed (Fig.[2)).
A Cartesian coordinate system is defined at one end with its origin at the core mid-plane. The column
is loaded in the 2—= plane, inducing displacements « and w in the respective directions. Quantities
with subscript 0 refer to the mid-surfaces, and all stiffness and loads are expressed per unit width.

Assuming the face sheets follow Kirchhoff-Love kinematics and are thin compared to the total
section, the displacement field for the upper face sheet (¢ < z < ¢+ f)is:

ul(z,2) = ub(z) — (z —c— g) wg () (2a)
w'(x, z) = wh(z) (2b)

The only non-zero strain in the face sheet is the axial strain, which is written as

Etx:p(‘raz) - UTI<I,Z) - Ug’m(ﬂf) + (C + g - Z) wé,zm(‘r) (3)

3
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In sandwich structures, core transverse deformation is often neglected in classical first-order mod-
els but becomes significant for compliant cores or under extreme loads such as blasts'¥ To account
for this, a higher-order displacement expansion in the transverse coordinate is employed, allowing ac-
curate representation of in-plane and out-of-plane responses. The core displacement field is expressed
as:

22 z
(o9 = (1= 5 ) i) +us ) (o)
3
w(z, z) = wg(a:)g + ﬁgi—B (4b)

In these equations, w? and ! are the transverse and in-plane displacement of the middle plane of
the core, while 3; (¢ = 2 and 3) are unknown functions that are to be determined from displacement
continuity, as follows:

For the top-face-sheet/core interface, z = c,

ul(x, Z)‘(z:c) = u'(z, z)‘(zzc) (5a)
w(x, z)‘(zzc) = w'(x, Z)|(z=c) (5b)

Substitution of Eqs. (4) into the two continuity equation (10) leads to:

2uf(r) — 2up(z) — fwp,(z) + 2uwf,(z)
Ba = o (6a)

ug(z)
Bs = wi(x) — wy() (6b)
The in-plane displacement in the core is (fourth order in 2):
c c 22 c fw(t):c(x) 24 (ng(x) _wéx(x>)

u(z, 2) = uf(z) + = (ué(x) —ug(z) + 2 ) — : - - (7a)

Thus, the transverse displacement in the core in this new higher-order core theory can be expressed
as follows (third order in 2):

awj(z) 2% (wh(z) — wy(x))

(7b)

C
w(z, z) = . 3
Accordingly, the formulation involves four generalized variables: the upper facesheet displace-
ments (uf, wf) and the core displacements (uf, wg). Using linear strain—displacement relations, the
core deformation is expressed through three strain components: axial €5, transverse €, and shear
Vs> representing in-plane extension, thickness compression, and shear distortion, respectively. These
strains form the basis for the total strain energy of the sandwich column.

4.3 Constitutive Framework

The derived formulations apply to materials of any type. For the following analysis, the facesheets
are assumed isotropic and the core transversely isotropic. The notation 1 = z, 3 = 2, and 55 = zx is
used. Under these assumptions, the constitutive relations for the facesheets are expressed as:
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t t t
Oz = C’11 €ra (83)

0., = Clz€y,. (8b)

Note that o, is excluded from the variational formulation, as its associated strain €, equals zero.
The constitutive relation for the core is then expressed as:

O-;:c Clcl ClcS 0 6;:1:
O-gz = Cﬂ1:3 C§3 O Eiz (9)

The stiffness matrix C; in Eq. (O) can be also defined as the inverse of the compliance matrix,
whose coefficients depend on the elastic and shear moduli and the Poisson’s ratios of the core material.

4.4 Governing Formulation

The governing equation for the buckling of the sandwich column is derived from the principle of
minimum potential energy and solved using the Ritz method. The total potential energy II in the
buckled configuration is expressed as the sum of the internal strain energy II; and the external load
potential I1,:

=1+ 11, (10)

The internal and external potentials were substituted into the total potential energy expression
in Eq. (I0) to evaluate the critical buckling load. The Ritz method was then applied to minimize the
total potential energy and obtain an approximate solution 2 Simply supported shape functions were
adopted because wrinkling is effectively independent of boundary constraints, as Allen® assumed an
infinitely long column. This variational expression represents the equilibrium criterion for the onset
of buckling. The strain energy or inner potential stored in the buckled column can be calculated as
follows:

L ct+f c
= [T [ ohdndet [t v ot 4 iz s as (an
0 c 0

At the onset of buckling, the applied load P produces a lateral displacement w. The total load is
divided between the face sheet and the core as F"* P and F*°P, such that both layers undergo the same
axial strain €/, = €¢_.

The facesheets and the core are aligned longitudinally in parallel, ensuring consistent strain distri-
bution across both elements. The mathematical expressions explicating this correlation are presented

subsequently. Taking into account Hook’s law ¢ = Fe and 0 = % and taking into account the forces
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and interactions of the isolated system :

P=FtP 4 Fep (12a)
- E%ZEW (12b)
c_ ﬁ (12¢)

1, = —g/OL (Ft <%)2 4 pe (dg>2> dx (12d)
I, = _2(Efc—]:2Eff) /OL <2Eff (%)2+Efc (dd“;c>2) dx (12¢)

The internal and external potential expressions were substituted into the variational form of the
total potential energy given in Eq. (I0) to compute the critical buckling load. The Ritz method,
which minimizes the total potential energy, was employed to obtain an approximate solution "2
Since wrinkling occurs as if it were infinitely far from the edges, it is considered insensitive to end
constraints; therefore, simply supported shape functions were adopted.

nmwxr

wl)(z, z) = U7 cos — (13a)
wi(z, 2) = WY sin$ (13b)

where j denotes either ¢ or c¢. The shape functions given in Eq. (13) are substituted into the total
elastic potential of the column. The remaining variables subject to variation are the Ritz constants U/
and W7, Accordingly, the first variation of the total potential energy becomes:

o, oo oo, 9l
Ol = =i 0U" o = 0U oy W o = OWE = 0 (14)

Because the variations of the constants are independent, Eq. (I4) is satisfied when
oIl oIl oIl oIl
out ouc  IOWt oW« (15)
These are the Ritz equations—a homogeneous system from which the unknown constants U7 and
W7 are obtained. For the critical buckling load P, the equations can be written in matrix form as

KU =0 (16)
where K is a 4 x 4 stiffness matrix depending on P and the sandwich parameters,
and U = [U* U° W W¢]T is the vector of Ritz constants.

det |[K| =0 (17)

This eigenvalue problem yields multiple buckling loads, with the smallest eigenvalue representing
the critical buckling load P.
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S FINITE ELEMENT ANALYSIS

Finite element analyses were performed in ABAQUS/CAE to validate the analytical buckling pre-
dictions. A 3D linear perturbation buckling study using the subspace algorithm was conducted, mod-
eling the facesheets with quadratic solid (C3D20R) and the lattice core with beam (B31) elements.
Tie constraints ensured continuous bonding, replicating the monolithic structure. Boundary condi-
tions constrained both ends, and compressive loading was applied through reference nodes for uni-
form load transfer. Mesh refinement continued until critical load convergence. The final model, with
a 20mm core and 3 mm facesheets (6—12 elements through thickness), accurately captured global
buckling and local wrinkling under various end conditions, as shown in Fig.

Figure 3: Representative meshed section of the sandwich column.

6 RESULTS

This section presents the global and local buckling results of lattice-core sandwich columns. A
higher-order analytical model, derived from wrinkling analysis, is validated through FEM simulations
for core thicknesses of 8—24 mm and facesheet thicknesses of 0.25—-4 mm, with fixed cell size (4 mm)
and strut diameter (0.4 mm). The analytical predictions are consistent with FEM results under various
boundary conditions, demonstrating the robustness of the proposed model.

6.1 Comparison of the Comprehensive Analytical Model

A unified analytical framework is established by integrating the proposed wrinkling formulation
with the classical theories of Allen® and Zenkert,? which describe global and intracell buckling, re-
spectively. The combined model evaluates the critical loads of all potential instability modes and
determines the dominant one corresponding to the lowest critical value.

Once the formulation is established, it enables the calculation of the critical buckling load for a
given sandwich structure configuration. Additionally, it determines the failure mode associated with
the lowest critical load among the following types: out-of-plane buckling (Fp), in-plane buckling
(Py), intracell buckling (Pp), and wrinkling (P ). The critical load for the structure is given by the
following:

Pgmin[Po,PI,PD,Pw] (18)
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Figure 4: Comparison of final analytical solution for FBCC with FEM results for each boundary
condition.

Fig. ] presents a comparative analysis between the proposed analytical model and FEM results
under various boundary conditions. For each case, a representative core thickness was selected to
capture the range of buckling modes observed.

Intracell buckling was identified for thin facesheets (0.25—0.5 mm) under all boundary conditions
except fixed—free, as shown in Figs.[da] fc| and{4d] The corresponding deformation mode is illustrated
in Fig. [5b] confirming that this instability occurs only when the facesheets are sufficiently thin.

Wrinkling, on the other hand, is primarily governed by the material and geometric characteristics
of the faces and core rather than by boundary conditions. The deformation pattern for a column
with a 20mm core and 2 mm facesheets under fixed—fixed supports is shown in Fig. [5al As seen
in Figs. wrinkling occurs at relatively low L /¢, ratios and remains almost unaffected by the
applied boundary conditions. The analytical predictions closely follow the FEM results, confirming

that the proposed higher-order formulation accurately captures the wrinkling response across different
configurations.
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Figure 5: (a) Wrinkling, (b) Intracell buckling, (c) Out-of-plane buckling, and (d) In-plane buckling
in sandwich columns.

Global buckling was observed in the form of out-of-plane and in-plane buckling as shown in Fig.
and[5d| In-plane buckling primarily occurs when the stiffness about the z-axis is weaker than that
of the y-axis. However, stiffness is not the sole governing parameter. In the current configuration,
in-plane buckling was observed only under Fixed-Free and Pinned-Pinned boundary conditions. In
some instances like Fig. 4c|, the buckling mode transitioned from in-plane buckling to wrinkling. This
observation highlights that both the stiffness characteristics of the sandwich column and the boundary
conditions significantly influence the buckling mode. While it is commonly assumed that buckling
is more likely to occur along the axis with weaker stiffness, the results indicate that this assumption
does not always hold.

7 CONCLUSIONS

A comprehensive investigation was conducted on the overall and localized buckling behavior of
sandwich columns with FBCC lattice cores. Global instability was assessed using classical formu-
lations, while a refined higher-order analytical approach was developed to predict wrinkling, con-
stituting the main contribution of this work. The global response, analyzed in both in-plane and
out-of-plane directions, followed the weaker stiffness axis, and Allen’s formulation® was adopted for
its effective treatment of thin and thick core configurations. Local instabilities, namely intracell buck-
ling and wrinkling, were assessed using Zenkert’s relation” and the proposed higher-order wrinkling
model. Finite element comparisons confirmed strong agreement, accurately capturing the shift be-
tween global and local modes. The proposed formulation provided results consistent with FEM in a
fraction of the computational time, emphasizing its suitability for efficient design analyses.
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