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Abstract. Tuned mass dampers, consisting of a mass, spring, and damper, are widely used for 
vibration suppression in structures. Despite being small and lightweight, these dampers exhibit 
excellent damping effectiveness. However, there are issues such as performance degradation 
due to the aging of the spring and damper, as well as the need for frequent maintenance. 
Therefore, as an alternative vibration control device that does not rely on these components, a 
rolling-ball damper is proposed. This damper consists of a container with a lid and multiple 
enclosed particles on its curved surface. By utilizing the contact between particles and the 
friction between particles and the container, the rolling-ball damper can absorb and suppress 
the vibration energy imposed on the structure to which the container is attached. In this study, 
we investigated the characteristics of the rolling-ball damper in a horizontal vibration system. 
We experimentally verified the effects of the size and number of enclosed particles on damping 
performance. Furthermore, numerical simulations were conducted by the discrete element 
method using EDEM® software and the multibody dynamics simulation method using 
MotionSolve® software. A comparison between experimental and numerical simulation results 
demonstrated the effectiveness of numerical calculations in predicting the amplitude response. 
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1 INTRODUCTION 

Vibration in machinery and structures can lead to failures and collapse. Resonance 
phenomena, particularly when the natural frequency of a structure is close to the vibration 
frequency, can cause intense vibrations that result in significant damage to structures and 
machinery. Therefore, vibration control is of utmost importance. To address these issues, 
various damping devices are commonly employed. Among them, tuned mass dampers (TMDs) 
are the most widely used vibration control devices, consisting of a mass, spring, and damper. 
Despite being compact and lightweight, it exhibits a higher damping effectiveness than other 
damping devices. TMDs are widely utilized in a range of applications, from residential 
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structures to pedestrian bridges and chimneys. However, issues such as performance 
degradation due to the aging of the spring and damper, as well as the need for frequent 
maintenance, are associated with TMDs. 
Komatsuzaki et al. have conducted research on the damping performance of a cycloid pendulum 
dynamic absorber. This damper has a simple structure with a cycloid-shaped surface and does 
not require frequent maintenance. However, in these dampers, adjusting the damping is 
challenging as it relies on varying the friction coefficient between the rolling body and the 
rolling surface. Tsuda et al. investigated the damping performance of a tuned rolling cylinder 
damper. This damper, which consists of multiple cylindrical rolling bodies loaded on a curved 
container, achieves good damping through the friction between the container and the rolling 
bodies. Chen et al. have experimentally demonstrated that a rolling-ball damper (RBD), in 
which multiple particles roll inside a spherical container, can effectively suppress the dynamic 
response of a wind turbine. Although they investigated in detail the damping effect, they 
focused on the motion of particles of the same size. Therefore, in this study, we investigated 
the characteristics of the RBD in a horizontal vibration system. This damper consists of a 
container with a curved surface and a lid, loaded with multiple particles. We experimentally 
verified the effects of the size and number of enclosed particles on damping performance. 
Additionally, numerical simulations were conducted using EDEM®-discrete element method 
(DEM) software and MotionSolve®-multibody dynamics simulation software. A comparison 
between the experimental and numerical simulation results confirmed the effectiveness of 
numerical calculations in predicting the amplitude response. 

2 ROLLING-BALL DAMPER 

 
Figure 1: Model of experimental apparatus 

 

 
Figure 2: Analysis Model 
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Table 1: Parameters 

Primary mass 

𝑀𝑀 Mass 𝑥𝑥 Displacement 
𝑐𝑐 Viscosity 

𝑓𝑓𝑖𝑖𝑖𝑖 
Contact force between the 

Primary mass and the 
Rolling element 𝑘𝑘 Spring constant 

𝑅𝑅 Radius   

Particles 

𝑚𝑚𝑖𝑖 Mass 𝐼𝐼𝑖𝑖 Inertia moment 

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 Displacement 𝜃𝜃𝑖𝑖 
Revolving angle of rolling 

element 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 Contact force of Rolling 
elements 𝑀𝑀𝑖𝑖 Contact torque 

𝑟𝑟𝑖𝑖 Radius   
Excitation 

section 𝑢𝑢0 Vibration amplitude 𝜔𝜔 Frequency 

 
Figure 1 shows a model of the RBD. The RBD consists of a curved surface incorporated into 

the primary mass, which contains enclosed particles. As the primary mass moves, the particles 
also move, and the contact force exerted by particles on the primary mass suppresses its 
vibration. Figure 2 shows the analysis model. The container consists of a curved surface with 
the radius of curvature 𝑅𝑅 and a lid, where 𝑁𝑁 particles are loaded on the arc. The primary mass 
with the mass 𝑀𝑀 is connected to the excitation part through a tensile spring with the elastic 
constant 𝑘𝑘 and a dashpot with the damping coefficient 𝑐𝑐. The primary mass is subjected to a 
sinusoidal displacement excitation 𝑢𝑢0 cos𝜔𝜔𝜔𝜔 in the excitation part. The equation of motion for 
the primary mass is as follows. 

𝑀𝑀�̈�𝑥𝑟𝑟 + 𝑐𝑐�̇�𝑥𝑟𝑟 + 𝑘𝑘𝑥𝑥𝑟𝑟 + �𝑓𝑓𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 𝑀𝑀𝑢𝑢0𝜔𝜔2 cos𝜔𝜔𝜔𝜔 (1) 

The translational and rotational equations of motion for the 𝑖𝑖-th particle are as follows. 

⎩
⎪
⎨

⎪
⎧ 𝑚𝑚𝑖𝑖�̈�𝑥𝑖𝑖 = −𝑓𝑓𝑖𝑖𝑖𝑖 + �𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=2

𝑚𝑚𝑖𝑖�̈�𝑦𝑖𝑖 = −𝑓𝑓𝑖𝑖𝑖𝑖 + �𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=2

− 𝑚𝑚𝑖𝑖𝑔𝑔

 (2) 

𝐼𝐼𝑖𝑖�̈�𝜃𝑖𝑖 = 𝑀𝑀𝑖𝑖 (3) 

Here, the particles are spherical with radii 𝑟𝑟𝑖𝑖, masses 𝑚𝑚𝑖𝑖, and moments of inertia 𝐼𝐼𝑖𝑖 about 
their center of mass. The contact force exerted by the 𝑖𝑖-th particle on the primary mass is 
�𝑓𝑓𝑖𝑖𝑖𝑖,𝑓𝑓𝑖𝑖𝑖𝑖�, and the contact force between the 𝑖𝑖-th and 𝑗𝑗-th particles is �𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖,𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖�. The motion of 
the particles is analyzed by the DEM. The parameters are listed in Table 1. 
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3 EXPERIMENTAL APPARATUS 

 
(a) Schematic of the experimental apparatus 

 

 
(b) CAD view of the experimental apparatus 

Figure 3: Ezperimental apparatus 

Table 2: Values of the system parameters 

Frequency 0.57 - 2.08 Hz 
Amplitude 8 mm 
Arc radius 97 mm 

Sampling time 1 msec 
 

Figure 3 shows the experimental setup used in this study. The base oscillates the primary 
mass by receiving a sinusoidal excitation motion from a crank mechanism. The tensile spring 
is connected to the primary mass, providing a restoring force. A low-friction linear guideway 
is employed for the rectilinear motion of the primary mass, ensuring smooth translation. The 
linear guideway incorporates ball bearings attached to the slider, enabling smooth motion along 
the rail. Additionally, Table 2 shows the value of the system parameters. 
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4 EXPERIMENTS 

4.1 Parameter estimation 
The parameter estimation results for the vibration system without enclosing particles were 

obtained during the experiment. The equation of motion for the case without particle enclosure 
is presented below. 

𝑀𝑀�̈�𝑥𝑟𝑟 + 𝑐𝑐�̇�𝑥𝑟𝑟 + 𝑘𝑘𝑥𝑥𝑟𝑟 = 𝑀𝑀𝑢𝑢0𝜔𝜔2 cos𝜔𝜔𝜔𝜔 (4) 

We define the solution of the equation as 𝑥𝑥𝑟𝑟 = 𝑋𝑋𝑟𝑟 cos(𝜔𝜔𝜔𝜔 − 𝜑𝜑). When we consider the 
natural frequency 𝜔𝜔𝑛𝑛, the damping ratio 𝜁𝜁, and the frequency ratio 𝜆𝜆, the amplitude ratio 𝑋𝑋𝑟𝑟 𝑢𝑢0⁄  
can be determined as follows. 

𝑋𝑋𝑟𝑟
𝑢𝑢0

=
𝜆𝜆2

�(1 − 𝜆𝜆2)2 + (2𝜁𝜁𝜆𝜆)2
 

tan𝜑𝜑 =
2𝜁𝜁𝜆𝜆

1 − 𝜆𝜆2
 

(5) 

𝜔𝜔𝑛𝑛 = �𝑘𝑘
𝑀𝑀

 , 𝜁𝜁 =
𝑐𝑐

2√𝑀𝑀𝑘𝑘
 , 𝜆𝜆 =

𝜔𝜔
𝜔𝜔𝑛𝑛

 (6) 

By using the Levenberg–Marquardt method, we performed an approximation for equation 
(4) based on the experimental results of the amplitude ratio without enclosing particles. The 
natural frequency 𝜔𝜔𝑛𝑛 and the damping ratio 𝜁𝜁 were estimated. Furthermore, the value of each 
parameter was determined on the basis of the measured spring constant 𝑘𝑘, and the results are 
presented in Table 3. Figure 4 shows the amplitude response curve obtained from the estimated 
values in the table and the experimental results. As shown in the figure, the estimated values 
obtained by parameter estimation closely match the experimental values, indicating the validity 
of the results. 

 

Table 3: Estimation Results 

Primary mass 𝑀𝑀 2.94 kg 
Natural frequency 𝜔𝜔𝑛𝑛 1.46 Hz 

Attenuation ratio 𝜁𝜁 0.0443 
Attenuation coefficient 𝑐𝑐 2.39 N s m⁄  

Spring constant 𝑘𝑘 248 N m⁄  
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Figure 4: Amplitude response 

4.2 Experimental results 
In this section, we investigated the effects of the diameter of the enclosed particles and the 

ratio of the mass of the enclosed particles to the primary mass on the damping performance. 

4.2.1 Effect of particle diameter 
In this section, we examine the effect of the diameter of the enclosed particles on the 

damping performance. The mass ratio in all cases was set to 10%. Figure 5 presents the 
experimental results obtained. From the results, it can be observed that for a diameter of 𝜑𝜑10, 
the maximum amplitude ratio is 5.4, indicating the highest damping performance. Furthermore, 
the maximum amplitude ratio is around 7.5 for all particle sizes larger than 𝜑𝜑15. 
 

  
(a) < 𝜑𝜑25 mm (b) ≥ 𝜑𝜑25 mm 

Figure 5: Frequency response curve with various particle diameters (Mass ratio:10%) 
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4.2.2 Effect of mass ratio 
In this section, we examine the effect of the mass ratio on damping performance. The 

particles used in the experiments have a diameter of 𝜑𝜑10. Figure 6 presents the experimental 
results obtained. From the results, it can be observed that for a mass ratio of 8%, the maximum 
amplitude ratio is 5.2, indicating the highest damping effectiveness. However, even at a mass 
ratio of 10%, a maximum amplitude ratio of 5.4 is obtained, indicating no significant difference. 
On the other hand, for a mass ratio of 13%, the maximum amplitude ratio is 7.3, indicating a 
significant decrease in damping performance. Therefore, it can be inferred that a mass ratio of 
8–10% exhibits high damping effectiveness. 

 
Figure 6:Frequency response curve with various mass rations (𝜑𝜑 = 10 mm) 

4.3 Enclosing particles of different materials and diameters 
In this section, we present the experimental results obtained when enclosing particles of 

different materials and diameters. We experimentally investigated the combinations that result 
in higher damping performance under the current experimental conditions, and we present the 
combination that showed the most significant effect. The enclosed particles were glass balls 
with a diameter of φ25 and steel balls with a diameter of φ10. The mass ratio was set to 10%, 
and the ratio of the enclosed particles was 1 glass ball to 2 steel balls. Figure 7 illustrates the 
experimental results. From the results, it can be observed that a maximum amplitude ratio of 
4.2 is achieved. This indicates that approximately 65% of the vibration is reduced compared 
with the maximum amplitude ratio without enclosing particles. 
 

0
2
4
6
8

10
12
14

0.5 0.75 1 1.25 1.5

A
m

pl
itu

de
 ra

tio
 [-

]

Frequency ratio [-]
No particle 8%
10% 13%



K. Nagashima and M. Saeki 

 8 

 
Figure 7: Frequency response curve with different size particles 

5 NUMERICAL SIMULATION METHOD 

5.1 DEM 
In this study, contact force analysis between particles and between the container wall and 

particles was conducted by DEM. The method is a simulation technique for particles, in which 
the behavior of individual particles and their interactions, such as contact, collision, friction, 
and rotational motion, are considered. 

5.1.1 Contact detection 
It is necessary to define a contact detection equation for the determination of contact between 

particles and between the container wall and particles. In this section, we describe the contact 
criteria for both cases. In the formula, the proximity 𝛿𝛿𝑛𝑛 of two objects is used, and contact is 
considered to exist between two objects when 𝛿𝛿𝑛𝑛 > 0. 

(a) Particle to particle 
The proximity 𝛿𝛿𝑛𝑛 is expressed as follows using the distance 𝐿𝐿𝑖𝑖𝑖𝑖 between the centers of the 

particles and the radius 𝑟𝑟𝑖𝑖 of the particles. 

𝛿𝛿𝑛𝑛 = �𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑖𝑖� − 𝐿𝐿𝑖𝑖𝑖𝑖 (7) 

𝐿𝐿𝑖𝑖𝑖𝑖 = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖�
2

+ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖�
2

+ �𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖�
2
 (8) 

(b) Container wall to particle 
The proximity 𝛿𝛿𝑛𝑛 is expressed as follows using the distance 𝑑𝑑 from the center of the particle 

to the wall and the radius 𝑟𝑟 of the particle. 

𝛿𝛿𝑛𝑛 = 𝑟𝑟𝑖𝑖 − 𝑑𝑑 (9) 
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5.1.2 Contact force calculation 
The calculation of contact forces utilizes a method using the voigt model. This method is 

used to approximate the forces that occur during contact between particles and between the 
container wall and particles, using elastic and viscous forces. The contact forces are calculated 
individually for the normal directions and the tangential direction with respect to the contact 
surface. In this section, we will discuss the method for calculating contact forces separately in 
the normal and tangential directions. 
(a) Normal direction 

The calculation of contact forces in the normal direction is based on Hertz's contact theory 
and expressed as follows. 

𝐹𝐹𝑛𝑛 = −𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛
3
2 − 𝑐𝑐𝑛𝑛�̇�𝛿𝑛𝑛𝛿𝛿𝑛𝑛

1
2 (10) 

In the above equation, the spring constant 𝑘𝑘𝑛𝑛  varies depending on the contact between 
particles and the contact between the container wall and particles. It can be expressed by 
equations (11) and (12). Additionally, the damping coefficient can be represented by equation 
(13). 

𝑘𝑘𝑛𝑛(𝑝𝑝−𝑝𝑝) =
√2𝑟𝑟𝐸𝐸𝑝𝑝

3(1 − 𝜈𝜈𝑝𝑝2)
 (11) 

𝑘𝑘𝑛𝑛(𝑝𝑝−𝑤𝑤) =
4√𝑟𝑟

3
1 − 𝜈𝜈𝑝𝑝2
𝐸𝐸𝑝𝑝

+ 1 − 𝜈𝜈𝑤𝑤2
𝐸𝐸𝑤𝑤

 (12) 

𝑐𝑐𝑛𝑛 = 𝛼𝛼�𝑚𝑚𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛
1 4⁄  (13) 

𝛼𝛼 =
−√5 ln 𝑒𝑒

�(ln 𝑒𝑒)2 + 𝜋𝜋2
 (14) 

(b) Tangential direction 
The calculation of contact forces in the tangential direction is determined as follows. 

𝐹𝐹𝑡𝑡 = −𝑘𝑘𝑡𝑡𝛿𝛿𝑡𝑡
3
2 − 𝑐𝑐𝑡𝑡�̇�𝛿𝑡𝑡𝛿𝛿𝑡𝑡

1
2 (15) 

In the above equation, the spring constant 𝑘𝑘𝑡𝑡  varies depending on the contact between 
particles and the contact between the curved container and particles. It can be expressed by 
equations (16) and (17). Additionally, the damping coefficient can be represented by equation 
(18). 

𝑘𝑘𝑡𝑡(𝑝𝑝−𝑝𝑝) =
√2𝑟𝑟𝐸𝐸𝑝𝑝

(2 − 𝜈𝜈𝑝𝑝)�1 + 𝜈𝜈𝑝𝑝�
 (16) 
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𝑘𝑘𝑡𝑡(𝑝𝑝−𝑤𝑤) =
4√𝑟𝑟

(2 − 𝜈𝜈𝑝𝑝)�1 + 𝜈𝜈𝑝𝑝�
𝐸𝐸𝑝𝑝

+
(2 − 𝜈𝜈𝑝𝑝)�1 + 𝜈𝜈𝑝𝑝�

𝐸𝐸𝑤𝑤

 (17) 

𝑐𝑐𝑛𝑛 = 𝛼𝛼�𝑚𝑚𝑘𝑘𝑡𝑡𝛿𝛿𝑡𝑡
1 4⁄  (18) 

5.2 Software 
In this study, numerical simulations were conducted using EDEM®-discrete element method 

software by Altair. Additionally, the method was combined with MotionSolve®-multibody 
dynamics simulation software. 

6 NUMERICAL SIMULATION RESULTS 
To assess the validity of the numerical simulation method described in the previous section, 

a comparison of its results with experimental results was conducted. Specifically, the 
comparison focused on the experimental results for the different enclosed particles discussed in 
Section 4.3. The parameters used in the analysis are presented in Table 4, and the analysis 
results are shown in Figure 8. From Figure 8, it can be observed that the maximum amplitude 
ratios obtained from the analysis closely match those obtained from the experiments. Although 
some discrepancies occur near the resonance points, the errors are minimal, suggesting that the 
analysis results are reasonable. From these findings, it can be concluded that EDEM enables 
the prediction of damping performance. 
 

Table 4: Analysis Parameters 

Particles 
Material Glass SUJ2 

Mass 100 g 200 g 
Diameter 25 mm 10 mm 

Frequency ratio range 1.22 ~ 1.81 Hz 
Analyze time 40 sec 

Calculation time step 1.5 μsec 
Sampling time 0.01 
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Figure 8: Experimental and numerical results 

7 CONCLUSIONS 
In this study, the damping performance of the rolling–ball damper was investigated by both 

experiments and numerical analysis. In the experiments, the effects of the diameter and mass 
ratio of the enclosed particles on the damping performance were examined. It was found that 
when using particles with a diameter of 𝜑𝜑10 and a mass ratio of 8%, approximately 55% of the 
vibration could be reduced. Furthermore, it was observed that the damping performance was 
improved by enclosing particles of different materials and diameters. 

For the numerical investigation, EDEM® and MotionSolve® were used to predict the 
damping performance of the rolling–ball damper, the results of which were compared with 
those of experiments conducted under the same conditions to validate the numerical approach. 
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