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ABSTRACT

Modern high-reliability products fail rarely, so researchers rely on accel-
erated life testing to obtain failure information within practical time
limits. This study presents a useful framework integrating constant-stress
accelerated life tests with an improved adaptive progressive Type-II cen-
soring plan to estimate the reliability function under normal operating
conditions of the Hjorth model. The Hjorth model is chosen because its
hazard rate can be constant, increasing, decreasing, or bathtub-shaped,
which reduces errors due to incorrect hazard assumptions. Stress affects
lifetime through a log-linear relationship applied to the scale and the
shape parameter. We derive the full likelihood for the proposed censoring
plan across several stress levels, obtain maximum likelihood estimates
with confidence intervals based on the observed information matrix, and
develop a Bayesian analysis with informative prior distributions and sam-
pling by Markov chain Monte Carlo technique. We then estimate reliability
at normal operating conditions together with its interval estimates by
both approaches. Extensive Monte Carlo simulations demonstrate the
superior accuracy of the Bayesian estimators, especially when the number
of observed failures is small or censoring is heavy, while maintaining
interval coverage close to the nominal level. The practical utility of the pro-
posed methodology is demonstrated through its application to real-world
accelerated lifetime data sets. Applications to real-world data sets show
that the proposed model fits the data well and yields reliable estimates of
reliability at normal operating conditions.

OPEN ACCESS

Received: 26/07/2025

Accepted: 28/10/2025

Published: 23/01/2026

DOI
10.23967/j.rimni.2025.10.70878

Keywords:
Reliability metrics
hjorth constant-stress
new improved adaptive progressive
censoring
posterior analysis
high voltage transformer
insulating liquid oil

1 Introduction

Many products are engineered to function for years, but testing their lifespan under normal
conditions is difficult because failures rarely occur within a limited testing period. To address this,
accelerated life tests (ALTs) are used. In ALTs, products are exposed to higher stress levels (e.g.,
increased heat, voltage, or pressure) than normal to cause failures more quickly. Engineers then use
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statistical models to extrapolate the data from these extreme conditions and estimate how the products
would perform under regular use. This includes predicting key metrics like the reliability function (RF)
and hazard rate function. Escobar and Meeker [1] provide a detailed review of ALTs and explain how
different stress factors relate to accelerated failure times. ALTs typically follow two methods: constant-
stress ALTS (CSALTs), where products are tested at a fixed high-stress level until failure or the test
ends, and step-stress testing, where stress is increased gradually at predefined times during the test to
induce failures faster. The CSALTs plans have been considered for numerous lifetime distributions.,
see for example, Guan et al. [2] for generalized exponential distribution, Dey and Nassar [3] for
exponentiated Lindley distribution, Wu et al. [4] for two-parameter exponential distribution under
Type-II censoring, Du and Gui [5] for Gompertz distribution, and Feng and Tang [6] for Weibull
distribution. On the other hand, one may refer to the works of Lee and Pan [7], and Kateri and Nikolov
[8], among others, for more detail about the step-stress ALTs.

In reliability studies, the integration of ALTs with censoring plans has become a widely adopted
practice. This approach allows experiments to conclude more quickly, avoiding the need to observe
failures in all test units. Various censoring methods are employed in reliability studies, each offering
distinct advantages. Traditional approaches include Type-I (time-based), Type-II (failure-based), and
hybrid censoring schemes, where no units are removed until the conclusion of the test, see for more
detail Balakrishnan and Kundu [9]. In contrast, modern reliability experiments often utilize multi-
stage censoring methods that permit the removal of units at different stages. Notable examples
include progressive Type-II censoring (PTIIC) plan, in which test units are systematically withdrawn
during the experiment, and adaptive PTIIC (APTIIC) plan, introduced by Ng et al. [10], which
dynamically adjusts the removal process based on real-time observations. These flexible methods
improve efficiency by reducing test duration and resource use while retaining statistical accuracy. In
recent years, these censoring plans have been extensively utilized by researchers. For instance, Wu
and Gui [11], El-Sherpieny et al. [12], and Yao and Gui [13] have conducted significant work on the
PTIIC plan, while Elshahhat and Nassar [14], Dutta et al. [15], and Anakha and Chacko [16] have
concentrated on the APTIIC plan.

The APTIIC scheme is designed to ensure a predetermined number of failures by the conclusion
of the test while permitting researchers to cease the removal of operational units once a specified time
limit is reached. Ng et al. [10] observed that the APTIIC plan is most effective in scenarios where strict
time constraints on testing are not imposed. Nevertheless, in the context of highly reliable products,
this methodology may result in excessively lengthy testing durations. To address this limitation,
Yan et al. [17] proposed an enhanced version referred to as the Improved APTIIC (IAPTIIC) scheme.
This approach integrates concepts from PTIIC, APTIIC, and various other censoring methodologies,
ensuring that the test is completed within a defined deadline while still achieving the target number
of failures. Several studies that have considered the IAPTIIC scheme include Dutta and Kayal [18],
who explored it within the context of a competing risks model; Zhang and Yan [19], who examined
its application to the Chen distribution; Swaroop et al. [20], who investigated its relevance to the
generalized inverted exponential distribution; and Irfan et al. [21], who analyzed its implications
for the Kumaraswamy-G family of distributions. See also for more detail Swaroop et al. [20] and
Alotaibi et al. [22]. In the following section, we detail the operational framework of the IAPTIIC
scheme within the context of the CSALTs, which constitutes the primary focus of this study.

In this study, we apply the IAPTIIC plan under CSALTs to analyze failure times modeled using
the Hjorth distribution proposed by Hjorth [23]. To our knowledge, this distribution has rarely been
studied in ALTs, especially in CSALTs. The Hjorth distribution is uniquely flexible, modeling four
hazard rate trends: constant, decreasing, increasing, and bathtub-shaped. Despite having only two
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parameters, a scale and a shape, it outperforms other two-parameter models like the Weibull and
gamma in flexibility. Hjorth [23] showed that its RF equals the product of the RFs of the Rayleigh and
Lomax distributions, making it ideal for scenarios where multiple failure causes compete. However,
few works explore its use in reliability analysis, particularly for estimating parameters or metrics like
RF and the hazard rate function. Exceptions include Yadav et al. [24], Elshahhat and Nassar [14] and
Alotaibi et al. [25]. In the following section, we define the key functions of the Hjorth distribution.
This study is driven by three primary motivations:

1. The integration of the IAPTIIC scheme with CSALTs: This combination allows earlier
test termination while still delivering accurate estimates of reliability at normal operating
conditions. This is valuable when failures are rare, as is typical for modern high-reliability
products.

2. The flexibility of the Hjorth distribution in modeling lifetime data: The Hjorth distribution
can represent constant, decreasing, increasing, and bathtub-shaped hazards using only two
parameters. This flexibility reduces the risk of model misspecification and supports more
reliable extrapolation from accelerated stress to normal use.

3. The lack of prior applications of the IAPTIIC scheme in CSALT settings: Despite its advan-
tages, only one known study by Nassar et al. [26] has been employed, who used it for the Weibull
distribution. This gap highlights the novelty of applying the IAPTIIC plan to the Hjorth model
in the presence of CSALTs.

These points emphasize the originality and real-world value of our work. This paper aims to
develop methods to estimate the Hjorth distribution’s parameters as well as the reliability under normal
operating conditions under the IAPTIIC plan in CSALTs. We assume the Hjorth distribution’s scale
and shape parameters vary with stress levels and follow a log-linear relationship with stress. The
contributions of this study are:

1. Formulation of CSALTs with the IAPTIIC plan, and derivation of the full joint likelihood
across multiple stress levels.

2. Development of classical maximum likelihood estimates (MLEs) because it is consistent,
asymptotically efficient, and enables direct construction of confidence intervals from the
observed information; interval estimates for both parameters and use-level reliability are
derived via the delta method.

3. Derivation of maximum likelihood estimators (MLEs) together with approximate confidence
intervals (ACIs) for the unknown parameters and the reliability at normal operating conditions.
The Maximum likelihood estimation is developed because it yields consistent, asymptotically
efficient estimates and a direct route to confidence intervals via the observed information.

4. Development of a Bayesian estimation framework because it handles small samples and heavy
censoring, allows incorporation of prior information, and provides full posterior uncertainty
through Bayes credible intervals (BCIs). The Bayes estimates (BEs) are acquired using the
squared error loss function and the Markov Chain Monte Carlo (MCMC) technique.

5. Comparative evaluation of estimators efficiency in a simulation study, and demonstration of
practical relevance through two real-world applications.

The paper is organized as follows: Section 2 introduces the Hjorth distribution model and key
assumptions. Section 3 details the process of obtaining the MLEs and constructing ACIs for the
parameters and RF under normal operating conditions. Section 4 discusses the BEs and BCIs using
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the MCMC procedure. Section 5 describes the simulation study designed to test the accuracy of the
proposed methods. Section 6 applies the methods to two real-world data sets. Some practical and
theoretical implications are presented in Section 7, while final remarks are given in Section 8.

2 Model Description and Assumptions

In this study, we assume product lifetimes follow the Hjorth distribution. This study is conducted
under two key assumptions:

1. Under the stress level si, i = 1, . . . , k, the lifetimes of the test units are modeled using the Hjorth
distribution, with the following probability density function (PDF) and cumulative distribution
function (CDF):

gi(y; θi, μi) = (1 + y)−(μi+1)[μi + θiy(1 + y)]e−0.5θiy
2
, y > 0, θi, μi > 0, (1)

and

Gi(y; θi, μi) = 1 − (1 + y)−μi e−0.5θiy
2
, (2)

respectively, where θi and μi are the scale and shape parameters, respectively.

2. We assume that the scale parameter θi and shape parameter μi follow a log-linear relationship
with stress. This means their natural logarithms are modeled as linear functions of the applied
stress level si, expressed as:

log(θi) = a0 + a1si and log(μi) = b0 + b1si, i = 1, . . . , k, (3)

here, a0, a1, b0, and b1 are unknown coefficients parameters. These parameters depend on the
product’s characteristics and the testing conditions.

Under the CSALTs, consider k increasing stress levels s1 < s2 < . . . < sk with a normal-use stress
level su, where su < s1. A total of N identical test units are divided into k groups of sizes n1, n2, . . . , nk,
with

∑k

i=1 ni = N. Before testing, the following quantities are predetermined for each stress level si,
i = 1, . . . , k:

• The desired number of failures mi < ni.

• The progressive censoring plan (Qi1, . . . , Qimi) satisfying ni = mi + ∑mi
j=1 Qij.

• Two time thresholds Ti1 and Ti2 (0 < Ti1 < Ti2 < ∞).

The IAPT2C procedure under CSALTs operates as follows: At each stress level si, where
i = 1, . . . , k, upon the occurrence of the first failure, denoted by Yi1, Qi1 surviving units are randomly
removed from the test. Similarly, at the time of the second failure Yi2, Qi2 units are randomly withdrawn
from the remaining survivors, and this process continues. In this context, we consider three distinct
cases, which are outlined as follows:

1. Case I: If the mi-th failure occurs before Ti1 (Yimi < Ti1), terminate the test at Yimi and remove
all remaining Qimi = ni − mi − ∑mi−1

j=1 Qij units.

2. Case II: If Ti1 falls between the ri-th and (ri + 1)-th, i.e., Yiri < Ti1 < Yiri+1, and Yimi < Ti2, then
removals are suspended after Ti1 by setting Qiri+1 = · · · = Qimi−1 = 0. The test is then terminated
at Yimi , and the final removal is set as Qimi = ni − mi − ∑ri

j=1 Qij.

3. Case III: If the mi-th failure occurs after Ti2, i.e., Yimi > Ti2, then testing is stopped at Ti2 with
r∗

i < mi observed failures, with the understanding that no units will be discarded from the
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experiment when the test time passes the threshold Ti1. Then, at Ti2, all remaining units are
removed, where Q∗

i = ni − r∗
i − ∑ri

j=1 Qij.

Let a = (a0, a1) and b = (b0, b1), then based on the observed IAPTIIC data, denoted by y, we can
write the likelihood function of a and b as given below, without constant terms,

L(a, b; y) =
k∏

i=1

{
Ji∏

j=1

gi(yij)

Di∏
j=1

[
1 − Gi(yij)

]Qij [1 − Gi(τi)]
Q∗

i

}
, (4)

where

Ji =
{

mi, for Cases I and II;
r∗

i , for Case III,
Di =

{
mi − 1, for Case I;
ri, for Cases II and III,

Q∗
i =

⎧⎪⎨
⎪⎩

ni − mi − ∑mi−1

j=1 Qij, for Case I;
ni − ri − ∑ri

j=1 Qij, for Case II;
ni − r∗

i − ∑ri
j=1 Qij, for Case III,

and τi = ximi for Cases I and II, and Ti2 for Case III.

3 Likelihood Inference

In this section, we discuss the MLEs of the parameters a and b using IAPTIIC in conjunction
with CSALT data. Under normal operating conditions su, the MLEs for the scale parameter θu, shape
parameter μu and the RF at time t, denoted by Ru(t), are also derived. Furthermore, interval bounds
for the various parameters are constructed based on the asymptotic properties of the MLEs.

3.1 Point Estimation
Let y∗

ij = 1 + yij, τ ∗
i = 1 + τi, then the likelihood function can be obtained using (1)–(4), as

L(a, b; y) = exp

[
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ψieb0+b1si −
k∑

i=1

ϕiea0+a1si

]
, (5)

where

ψi =
Ji∑

j=1

log(y∗
ij) +

Di∑
j=1

Qij log(y∗
ij) + Q∗

i log(τ ∗
i )

and

ϕi = 0.5

(
Ji∑

j=1

y2
ij +

Di∑
j=1

Qijy2
ij + Q∗

i τ
2
i

)
.

Using (5), the associated log-likelihood function, denoted by L(a, b; y), is given by

L(a, b; y) =
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ψieb0+b1si −
k∑

i=1

ϕiea0+a1si . (6)
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To obtain the MLEs of the parameters a, b, denoted by â = (â0, â1) and b̂ = (b̂0, b̂1), we compute
the partial derivatives of (6) with respect to each parameter. These derivatives are then set to zero, and
the resulting system of equations is solved as follows

∂L(a, b; y)

∂a0

=
k∑

i=1

Ji∑
j=1

yijy∗
ije

a0+a1si

eb0+b1si + yijy∗
ijea0+a1si

−
k∑

i=1

ϕiea0+a1si = 0, (7)

∂L(a, b; y)

∂a1

=
k∑

i=1

Ji∑
j=1

siyijy∗
ije

a0+a1si

eb0+b1si + yijy∗
ijea0+a1si

−
k∑

i=1

siϕiea0+a1si = 0, (8)

∂L(a, b; y)

∂b0

=
k∑

i=1

Ji∑
j=1

eb0+b1si

eb0+b1si + yijy∗
ijea0+a1si

−
k∑

i=1

ψieb0+b1si = 0 (9)

and

∂L(a, b; y)

∂b1

=
k∑

i=1

Ji∑
j=1

sieb0+b1si

eb0+b1si + yijy∗
ijea0+a1si

−
k∑

i=1

siψieb0+b1si = 0. (10)

Eqs. (7)–(10) do not have closed-form solutions. To solve them numerically, iterative methods like
the Newton-Raphson algorithm can be applied. Once the MLEs â and b̂ of the parameters a and
b are obtained, the MLE of the RF Ru(t) under normal conditions su can be calculated using the
invariance property of MLEs. Specifically, for a given time t, the MLE of Ru(t) is derived as follows:
First, compute the MLEs of the scale and shape parameters under normal conditions, respectively, as

θ̂u = eâ0+â1su and μ̂u = eb̂0+b̂1su .

Then, the MLE of Ru(t) under normal operating settings is given by

R̂u(t) = (1 + t)−μ̂ue−0.5θ̂ut2 .

3.2 Interval Estimation
To construct the ACIs for the unknown parameters or any function of them, we rely on the

asymptotic properties of the MLEs. As the sample size increases, the MLEs exhibit asymptotic
normality, implying that they approximately follow a normal distribution. This property enables
the construction of confidence intervals and the performance of hypothesis testing using normal
distribution theory. However, because the exact distributions of the MLEs are generally intractable,
we approximate the required variance-covariance matrix by inverting the observed Fisher information
matrix, as follows
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�(â, b̂) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂2L(a, b; y)

∂a2
0

−∂2L(a, b; y)

∂a0∂a1

−∂2L(a, b; y)

∂a0∂b0

−∂2L(a, b; y)

∂a0∂b1

−∂2L(a, b; y)

∂a2
1

−∂2L(a, b; y)

∂a1∂b0

−∂2L(a, b; y)

∂a1∂b1

−∂2L(a, b; y)

∂b2
0

−∂2L(a, b; y)

∂b0∂b1

−∂2L(a, b; y)

∂b2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(a,b)=(â,b̂)

=

⎡
⎢⎢⎣

�̂11 �̂12 �̂13 �̂14

�̂22 �̂23 �̂24

�̂33 �̂34

�̂44

⎤
⎥⎥⎦ , (11)

where, the second derivatives of the log-likelihood function are as follows

∂2L(a, b; y)

∂a2
0

= −
k∑

i=1

Ji∑
j=1

yijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 −

k∑
i=1

ϕiea0+a1si ,

∂2L(a, b; y)

∂a2
1

= −
k∑

i=1

Ji∑
j=1

s2
i yijy∗

ije
a0+b0+(a1+b1)si(

eb0+b1si + yijy∗
ijea0+a1si

)2 −
k∑

i=1

s2
i ϕiea0+a1si ,

∂2L(a, b; y)

∂b2
0

= −
k∑

i=1

Ji∑
j=1

yijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 −

k∑
i=1

ψieb0+b1si ,

∂2L(a, b; y)

∂b2
1

= −
k∑

i=1

Ji∑
j=1

s2
i yijy∗

ije
a0+b0+(a1+b1)si(

eb0+b1si + yijy∗
ijea0+a1si

)2 −
k∑

i=1

s2
i ψieb0+b1si ,

while the mixed partial derivatives are given by

∂2L(a, b; y)

∂a0∂a1

= −
k∑

i=1

Ji∑
j=1

siyijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 −

k∑
i=1

siϕiea0+a1si ,

∂2L(a, b; y)

∂a0∂b0

= −
k∑

i=1

Ji∑
j=1

yijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 ,

∂2L(a, b; y)

∂a0∂b1

= ∂2L(a, b; y)

∂a1∂b0

= −
k∑

i=1

Ji∑
j=1

siyijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 ,

∂2L(a, b; y)

∂a1∂b1

= −
k∑

i=1

Ji∑
j=1

s2
i yijy∗

ije
a0+b0+(a1+b1)si(

eb0+b1si + yijy∗
ijea0+a1si

)2 ,

∂2L(a, b; y)

∂b0∂b1

= −
k∑

i=1

Ji∑
j=1

siyijy∗
ije

a0+b0+(a1+b1)si(
eb0+b1si + yijy∗

ijea0+a1si
)2 −

k∑
i=1

siψieb0+b1si .
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Employing the asymptotic property of the MLEs that (â, b̂) asymptotically follow the normal
distribution with mean (a, b) and estimated variance-covariance matrix �(â, b̂), as given by (11). The
100(1 − α)% ACIs for a and b are given by

â0 ± zα/2

√
�̂11, â1 ± zα/2

√
�̂22 b̂0 ± zα/2

√
�̂33, b̂1 ± zα/2

√
�̂44,

where zα/2 is the upper (α/2)-th percentile of the standard normal distribution.

Constructing the ACI for the RF under normal operating conditions requires estimating the
variance of the associated MLE R̂u(t). A practical solution is the delta method, which approximates
this variance using the following steps:

1. Compute the first-order partial derivatives of the RF with respect to the various parameters,
evaluated at their MLEs as

	Ru =
(

∂Ru(t)
∂a0

,
∂Ru(t)
∂a1

,
∂Ru(t)
∂b0

,
∂Ru(t)
∂b1

) ∣∣∣∣
(a,b)=(â,b̂)

2. Apply the delta method formula to estimate the variance as follows

�̂Ru ≈ 	Ru�(â, b̂)	�
Ru

,

where �(â, b̂) is given by (11).

The first-order partial derivatives of Ru(t) are given by

∂Ru(t)
∂a0

= −0.5t2ea0+a1su(1 + t)−eb0+b1su
e−0.5t2ea0+a1su ,

∂Ru(t)
∂a1

= −0.5t2suea0+a1su(1 + t)−eb0+b1su
e−0.5t2ea0+a1su ,

∂Ru(t)
∂b0

= − ln(1 + t)eb0+b1su(1 + t)−eb0+b1su
e−0.5t2ea0+a1su ,

∂Ru(t)
∂b1

= − ln(1 + t)sueb0+b1su(1 + t)−eb0+b1su
e−0.5t2ea0+a1su .

Accordingly, the 100(1 − α)% ACI for the RF under the designed stress su is then calculated as

R̂u(t) ± zα/2

√
�̂Ru .

Likelihood-based inference for model parameters and the RF at normal operating conditions may
have important limitations. The MLEs may be unstable and imprecise in small samples or under heavy
progressive censoring, which increases uncertainty. Misspecification of the Hjorth distribution or of
the life–stress relationship can introduce systematic bias in use-level reliability. Moreover, the ACIs
based on large-sample theory for both the model parameters and the RF may not perform well and
can exhibit poor coverage.

4 Bayesian Estimation

Classical estimation methods often produce accurate results when dealing with large data sets or
complete data. However, in scenarios with small sample sizes or censored observations, these methods
can become unreliable. Bayesian estimation addresses these limitations by integrating prior knowledge
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into the analysis. This approach improves estimation accuracy, especially under challenging scenarios.
In this section, we present Bayesian methods to estimate: (1) The model parameters a and b, (2) The
RF under the designed stress level. The Bayesian framework provides both BEs and BCIs for these
quantities.

4.1 Prior Knowledge and Posterior Distribution
The parameters a and b are assumed to be independent. Since the likelihood function in (5) has

a complex form, there are no natural conjugate priors for these parameters. Additionally, deriving
Jeffrey’s priors is impractical due to the complicated structure of the Fisher information matrix. Given
these challenges, we assign gamma prior distributions to the parameters a1 and b1. The choice of
gamma priors is motivated by their flexibility, which allows them to accommodate a wide variety of
prior beliefs. Moreover, gamma priors typically do not introduce significant computational complexity
in posterior evaluations or calculations, especially when utilizing the MCMC procedures. On the other
hand, the parameters a0 and b0 may take positive or negative values, depending on the characteristics
of the product under consideration. To reflect this, we assume that a0 and b0 follow normal prior
distributions. This choice aligns with the nature of these parameters and ensures compatibility with
their potential range of values. Based on the above assumptions, the joint prior distribution of a and
b can be expressed as:

w(a, b) ∝ ac1−1
1 bc2−1

1 exp
[
−v1a1 − v2b1 − (a0 − ϑ1)

2

2σ 2
1

− (b0 − ϑ2)
2

2σ 2
2

]
, a1, b1 > 0, −∞ < a0, b0 < ∞, (12)

where ch, vh, σh > 0 and −∞ < ϑh < ∞, h = 1, 2, are the hyper-parameters.

Combining the observed data represented by the likelihood function in (5) with prior information
given by the joint prior distribution in (12), the posterior distribution of the unknown parameters (a, b)

can be written as

W(a, b|y) = 1
A

ac1−1
1 bc2−1

1 exp
[ k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ψieb0+b1si

−
k∑

i=1

ϕiea0+a1si − v1a1 − v2b1 − (a0 − ϑ1)
2

2σ 2
1

− (b0 − ϑ2)
2

2σ 2
2

]
, (13)

where A is given by

A =
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
w(a, b)L(a, b; y)da0db0da1db1.

Under the squared error loss function, the BE of a parameter (or function of parameters)
corresponds to the posterior mean. Let �(a, b) denote any function of the unknown parameters (a, b),
such as a parameter itself, e.g., a0, a0, b0, or b1, as well as the RF under normal operating conditions.
The BE of �(a, b) is given by the expectation of �(a, b) with respect to its posterior distribution

�̃ (a, b) =
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
�(a, b)W(a, b|y)da0db0da1db1. (14)

The BE cannot be derived directly due to the complexity of the posterior distribution, making
it necessary to apply the MCMC techniques to approximate BEs and construct credible intervals.
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The MCMC methods are fundamental to Bayesian analysis, providing a practical means for numer-
ically approximating and sampling from complex posterior distributions. Among these methods, the
Metropolis-Hastings (MH) algorithm plays a key role by using a proposal distribution to efficiently
explore the posterior space. The following subsection details the use of the MCMC procedures to
generate samples from the posterior distribution and to obtain the required BEs and BCIs.

4.2 MCMC Procedures and Posterior Analysis
To apply MCMC methods, we first need to derive the full conditional distributions for each

parameter. These distributions are derived directly from the joint posterior distribution defined in
(13) as given below

W(a0|a1, b, y) ∝ exp

[
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ϕiea0+a1si − (a0 − ϑ1)
2

2σ 2
1

]
, (15)

W(a1|a0, b, y) ∝ ac1−1
1 exp

[
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ϕiea0+a1si − v1a1

]
, (16)

W(b0|a, b1, y) ∝ exp

[
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ψieb0+b1si − (b0 − ϑ2)
2

2σ 2
2

]
, (17)

and

W(b1|a, b0, y) ∝ bc2−1
1 exp

[
k∑

i=1

Ji∑
j=1

log
(
eb0+b1si + yijy∗

ije
a0+a1si

) −
k∑

i=1

ψieb0+b1si − v2b1

]
. (18)

Examining the conditional distributions in (15)–(18), we find they do not follow standard
probability forms. This lack of conjugate priors makes direct sampling methods (e.g., inverse transform
sampling) impractical. To overcome this challenge we use the MH algorithm to iteratively generate
samples from these complex posterior distributions. This algorithm utilizes a proposal distribution
to produce candidate samples. In this analysis, the proposal distribution is taken to be a normal
distribution, with its mean and variance initialized using the MLEs of the parameters. Through an
iterative process, a sequence of dependent samples is generated, which asymptotically converges to the
target posterior distribution. Below are the detailed steps for generating the MCMC samples:

Step 1: Set (a(0), b(0)) = (â, b̂).

Step 2: Put ν = 1.

Step 3: Derive a(ν)

0 from (15) based on the following MH algorithm:

(i) Obtain a proposal value a∗
0 using N(â0, �̂11).

(ii) Obtain:

ζa0
= min

{
1,

W(a∗
0|a(ν−1)

1 , b(ν−1), y)

W(a(ν−1)

0 |a(ν−1)

1 , b(ν−1), y)

}
.

(iii) Simulate u from unit uniform distribution.

(iv) Put a(ν)

0 = a∗
0 if u ≤ ζa0

; and set a(ν)

0 = a(ν−1)

0 , otherwise.

Step 4: Generate a(ν)

1 from (16) using the MH algorithm in step 3.
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Step 5: Obtain b(ν)

0 from (17) using the MH algorithm in step 3.

Step 6: Simulate b(ν)

1 from (18) using the MH algorithm in step 3.

Step 7: At iteration ν, obtain the RF under the designed stress level as:

R(ν)

u = (1 + t)−μue−0.5θut2 ,

where

θ (ν)

u = ea(ν)
0 +a(ν)

1 su and μu = eb(ν)
0 +b(ν)

1 su .

Step 8: Set ν = ν + 1.

Step 9: Carry out Steps 3–8 for N iterations to generate the MCMC samples:{
a(ν)

0 , a(ν)

1 , b(ν)

0 , b(ν)

1 , R(ν)

u

}
, ν = 1, . . . ,N .

Once MCMC samples are generated, calculating BEs and BCIs becomes straightforward. Under
the squared error loss function, the BEs of the unknown parameters a, b and the RF under normal
operating settings are

ã0 = 1
N − M

N∑
ν=M+1

a(ν)

0 , ã1 = 1
N − M

N∑
ν=M+1

a(ν)

1 , b̃0 = 1
N − M

N∑
ν=M+1

b(ν)

0 ,

b̃1 = 1
N − M

N∑
ν=M+1

b(ν)

1 , and R̃u(t) = 1
N − M

N∑
ν=M+1

R(ν)

u ,

where M is the burn-in period. To compute the BCIs, we first sort the acquired MCMC samples in
ascending order as:{
a[M+1]

0 < . . . < a[N ]
0

}
,

{
a[M+1]

1 < . . . < a[N ]
1

}
,

{
b[M+1]

0 < . . . < b[N ]
0

}
,{

b[M+1]
1 < . . . < b[N ]

1

}
, and

{
R[M+1]

u < . . . < R[N ]
u

}
.

The 100(1 − α)% BCIs are obtained by computing the α/2 and (1 − α/2) percentiles from the
sorted samples as{
a[α(N−M)/2]

0 , a[(1−α/2)(N−M)]
0

}
,
{
a[α(N−M)/2]

1 , a[(1−α/2)(N−M)]
1

}
,
{
b[α(N−M)/2]

0 , b[(1−α/2)(N−M)]
0

}
{
b[α(N−M)/2]

1 , b[(1−α/2)(N−M)]
1

}
, and

{
R[α(N−M)/2]

u , R[(1−α/2)(N−M)]
u

}
.

Finally, it is important to mention that the Bayesian estimation method can be computationally
expensive and time-consuming, especially with Markov chain Monte Carlo, which often requires long
runs and substantial memory to stabilize estimates. Results are sensitive to prior specification; with
small samples or heavy censoring the prior can materially affect parameter and use-level reliability
estimates. In addition, the MCMC technique may exhibit poor mixing, convergence failures, or
multimodality.

5 Monte Carlo Comparisons

To comprehensively assess and compare the efficiency of the proposed estimation techniques
for the model parameters ai, bi (for i = 0, 1), and Ru(t), we conduct several setups of a Monte
Carlo simulation study. To achieve this goal, a total of 1000 IAPT2C samples using CSALTs from
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Hjorth’s lifespan model when (a0, a1, b0, b1) = (0.2, 0.5, 0.4, 0.3) are generated. At the same time, when
su(= t) = 0.1, we evaluate all estimates of Ru(t) when its true value is set to be 0.87804. The evaluation
is performed under varying configurations of effective sample sizes ni(mi), dual inspection time points
Ti1 and Ti2, and a variety of progressive censoring patterns Qij for i = 1, 2, . . . , k and j = 1, 2, . . . , mi. To
perform a comprehensive numerical illustration, in Table 1, we present several experimental designs
to assess the associated behaviors of the offered estimation frameworks. To simplify notation, we
symbolize a censoring plane such as (2, 0, 0, 0, 5) by (2, 0 ∗ 3, 5).

Table 1: Various tests in Monte Carlo comparisons

(n1, m1) (n2, m2) (Q11, Q12, . . . , Q1m1
) (Q21, Q22, . . . , Q2m2

) Design

(30, 15) (40, 20)
(3 ∗ 5, 0 ∗ 10) (4 ∗ 5, 0 ∗ 15) [1]
(0 ∗ 5, 3 ∗ 5, 0 ∗ 5) (0 ∗ 7, 4 ∗ 5, 0 ∗ 8) [2]
(0 ∗ 10, 3 ∗ 5) (0 ∗ 15, 4 ∗ 5) [3]

(30, 25) (40, 35)
(1 ∗ 5, 0 ∗ 20) (1 ∗ 5, 0 ∗ 30) [4]
(0 ∗ 10, 1 ∗ 5, 0 ∗ 10) (0 ∗ 15, 1 ∗ 5, 0 ∗ 15) [5]
(0 ∗ 20, 1 ∗ 5) (0 ∗ 30, 1 ∗ 5) [6]

(50, 20) (60, 30)
(5 ∗ 6, 0 ∗ 14) (5 ∗ 6, 0 ∗ 24) [1]
(0 ∗ 7, 6 ∗ 5, 0 ∗ 7) (0 ∗ 12, 6 ∗ 5, 0 ∗ 12) [2]
(0 ∗ 10, 3 ∗ 5) (0 ∗ 15, 4 ∗ 5) [3]

(50, 40) (60, 50)
(1 ∗ 10, 0 ∗ 30) (1 ∗ 20, 0 ∗ 30) [4]
(0 ∗ 15, 1 ∗ 10, 0 ∗ 15) (0 ∗ 15, 1 ∗ 20, 0 ∗ 15) [5]
(0 ∗ 30, 1 ∗ 10) (0 ∗ 30, 1 ∗ 20) [6]

(90, 50) (80, 40)
(5 ∗ 8, 0 ∗ 42) (5 ∗ 8, 0 ∗ 32) [1]
(0 ∗ 21, 5 ∗ 8, 0 ∗ 21) (0 ∗ 16, 5 ∗ 8, 0 ∗ 16) [2]
(0 ∗ 42, 5 ∗ 8) (0 ∗ 32, 5 ∗ 8) [3]

(90, 80) (80, 60)
(1 ∗ 10, 0 ∗ 70) (1 ∗ 20, 0 ∗ 40) [4]
(0 ∗ 35, 1 ∗ 10, 0 ∗ 35) (0 ∗ 20, 1 ∗ 20, 0 ∗ 20) [5]
(0 ∗ 70, 1 ∗ 10) (0 ∗ 40, 1 ∗ 20) [6]

Briefly, to conduct a life-test study using an improved adaptive progressive Type-II censored
Hjorth constant-stress model, we offer the following methodology:

Step 1. Assign values of k, ni, mi, Ti1, Ti2, and Qij for i = 1, 2, . . . , k, and j = 1, 2, . . . , mi.

Step 2. Assign values of ai, bi, θi, μi (for i = 0, 1).

Step 3. Generate k independent Uniform (0, 1) samples: Uij for j = 1, . . . , mi.

Step 4. Compute Wij (for i = 1, . . . , k, j = 1, . . . , mi) as:

Wij = U
(

j+∑mi
�=mi−j+1 Qi�

)−1

ij .
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Step 5. Compute

U ∗
ij = 1 −

[∏mi

Q=mi−j+1
Wi�

]
.

Step 6. Generate IAPT2C observations from the Hjorth (θi, μi) model of size mi as

Yij = G−1
i (Uij; θi, μi), i = 1, 2, . . . , k, j = 1, 2, . . . , mi.

Step 7. Use Step 6, determine the number of observed failures ri and r∗
i at Ti1 and Ti2, respectively.

Step 8. At Ti1, remove the remaining sample Yij, i = 1, 2, . . . , k, j = ri + 2, . . . , mi.

Step 9. Generate the first mi − ri − 1 order statistics as Yri+2, . . . , Ymi from a truncated distribution
gi (y)/

[
1 − Gi

(
yri+1

)]
, i = 1, 2, . . . , k.

Step 10. Specify the case type of the proposed scheme such that

a. If Yimi < Ti1 (Case I), the experiment stops at mth
i failure. Here, the remaining live units

Qimi = ni − mi − ∑mi−1

j=1 Qij are removed.

b. If Yiri < Ti1 < Yiri+1 (Case II), the experiment stops at Yimi with failure data Yij for
i = 1, . . . , k, j = 1, . . . , mi and progressive censoring (Qi1, Qi2, . . . , Qiri , 0, . . . , 0, Qimi). Here,
the remaining live units Qimi = ni − mi − ∑ri

j=1 Qij are removed.

c. If Yimi > Ti2 (Case III), the experiment stops at T2 with failure data Yij for i = 1, . . . , k,
j = 1, . . . , r∗

i , where r∗
i < mi, with the same progressive censoring of Case II. Here, the remaining

live units Q∗
i = ni − r∗

i − ∑ri
j=1 Qij are removed.

In a Bayesian protocol, the major challenge is specifying hyperparameter values. It is well known
that if inadequate prior information on the unknown parameters ai and bi (for i = 0, 1) is given,
the objective posterior distribution diminishes to its likelihood function. As a result, while the Bayes
technique is computationally exhausting, it is better to figure out the unknown parameters using any
frequentist approach. The values of ci and vi for i = 1, 2 are chosen so that the means of previous
distributions are precisely identical to the true values of the parameters. Without loss of generality,
we pick (c1, c2) = (5, 3) and vi = 10, i = 1, 2, for a1 and b1. We also take (ϑ1, ϑ2) = (0.2, 0.4) and
σi = 1, i = 1, 2, for a0 and b0.

In Bayesian settings, specifying hyperparameters is crucial. Improper priors lead to posteriors
coinciding with the likelihood function, encouraging frequentist methods. To maintain consistency,
hyperparameters (c1, c2) = (8, 2) and wi = 10 are chosen such that prior means equal the true values.
For β0, a normal prior with (μ, σ) = (0.5, 1) is used. Alternative prior settings may be guided by
historical data. We now run the MH algorithm in MCMC with N = 12,000 draws (the first M = 2000
discarded), initialized using the corresponding frequentist estimates of ai and bi (for i = 0, 1), in turn to
obtain the Bayes point and credible estimates. All required computational procedures are encoded in
R (version 4.2.2) through three packages, namely, ‘maxLik’, ‘coda’, and ‘GoFKernel’ by Henningsen
and Toomet [27], Plummer et al. [28], and Pavia [29], respectively.

Computationally, the average point estimates (APEs) of ai, bi (for i = 0, 1), or Ru(t) (say) is given by

APE(�̌ι) = 1
1000

1000∑
j=1

�̌(j)
ι

, ι = 1, . . . , 5,

where �̌(j)
t denotes the calculated estimate of ωt at the jth dataset, and (�1, �2, �3, �4, �5) =

(a0, a1, b0, b1, Ru(t)).
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For the performance of point estimators, the RMSE and MAB are given by

RMSE(�̌ι) =
√√√√ 1

1000

1000∑
j=1

(�̌(j)
ι

− �ι)2, ι = 1, . . . , 5,

and

MRAB(�̌ι) = 1
1000

1000∑
j=1

|�̌(j)
ι

− �ι|, ι = 1, . . . , 5,

respectively.

To assess interval estimates, we calculate:

ACL�ι(1 − α)% = 1
1000

1000∑
j=1

(
U(�̌(j)

ι
) − L(�̌(j)

ι
)
)

, ι = 1, . . . , 5,

and

CP�ι(1 − α)% = 1
1000

1000∑
j=1

1
(
�ι ∈ (L(�̌(j)

ι
),U(�̌(j)

ι
))
)

, ι = 1, . . . , 5,

respectively.

Simulation outcomes for all considered parameters are summarized in Tables 2 and 11. Specif-
ically, Tables 2–6 display the APEs, RMSEs, and MABs in the first, second, and third columns,
respectively, whereas Tables 7–11 summarize AILs and CPs (at α = 5%) in the first and second
columns, respectively.

Table 2: Point estimates of a0.

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.3068 1.1838 0.3883 0.3834 0.1753 0.1701 0.2130 0.1588 0.1546 0.2098 0.1269 0.0573
[2] 0.2077 1.0646 0.3363 0.2596 0.1609 0.1550 0.2601 0.1555 0.1511 0.3118 0.1157 0.0520
[3] 0.0901 0.9715 0.3134 0.1126 0.1555 0.1529 0.2376 0.1487 0.1437 0.3766 0.0994 0.0333
[4] 0.1352 0.8267 0.3047 0.1690 0.1517 0.1463 0.2713 0.1465 0.1418 0.3380 0.0861 0.0283
[5] 0.2824 0.8520 0.3081 0.3530 0.1524 0.1489 0.1925 0.1465 0.1421 0.3400 0.0956 0.0310
[6] 0.1496 0.6993 0.2919 0.1870 0.1512 0.1438 0.2448 0.1435 0.1404 0.4832 0.0708 0.0275

(50, 60)

[1] 0.2056 0.6592 0.2816 0.2570 0.1512 0.1417 0.1615 0.1410 0.1386 0.4070 0.0689 0.0274
[2] 0.1405 0.6385 0.2641 0.1756 0.1468 0.1412 0.1744 0.1390 0.1369 0.4955 0.0666 0.0265
[3] 0.0854 0.5563 0.2382 0.1068 0.1463 0.1410 0.1893 0.1374 0.1369 0.5929 0.0642 0.0253
[4] 0.1366 0.5434 0.2302 0.1707 0.1418 0.1374 0.2146 0.1373 0.1345 0.6556 0.0634 0.0250
[5] 0.1316 0.5500 0.2304 0.1645 0.1460 0.1397 0.1642 0.1373 0.1365 0.6185 0.0637 0.0253
[6] 0.1569 0.5235 0.2201 0.1962 0.1412 0.1373 0.2331 0.1353 0.1338 0.6732 0.0616 0.0250

(90, 80)

[1] 0.1199 0.5068 0.2196 0.1499 0.1403 0.1366 0.1112 0.1351 0.1317 0.4889 0.0605 0.0244
[2] 0.0960 0.4788 0.2153 0.1200 0.1378 0.1358 0.1569 0.1310 0.1305 0.5692 0.0566 0.0234
[3] 0.0839 0.3246 0.2022 0.1049 0.1366 0.1355 0.1120 0.1299 0.1294 0.6019 0.0527 0.0232
[4] 0.1002 0.2689 0.1592 0.1252 0.1339 0.1323 0.1674 0.1277 0.1257 0.5844 0.0521 0.0207
[5] 0.1095 0.3088 0.1762 0.1369 0.1365 0.1335 0.1141 0.1297 0.1272 0.5257 0.0524 0.0209
[6] 0.1053 0.2162 0.1568 0.1317 0.1329 0.1311 0.1201 0.1255 0.1251 0.5844 0.0501 0.0206

(Continued)
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Table 2 (continued)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.3352 0.2153 0.1559 0.4190 0.1309 0.1304 0.5212 0.1220 0.1191 0.1949 0.0453 0.0199
[2] 0.2993 0.2134 0.1536 0.3742 0.1283 0.1277 0.3315 0.1195 0.1178 0.2750 0.0400 0.0188
[3] 0.3792 0.2053 0.1534 0.4740 0.1274 0.1249 0.2061 0.1194 0.1166 0.4393 0.0367 0.0186
[4] 0.2269 0.1914 0.1451 0.2836 0.1230 0.1217 0.2823 0.1109 0.1102 0.2850 0.0342 0.0181
[5] 0.2794 0.1997 0.1464 0.3493 0.1259 0.1222 0.3082 0.1152 0.1110 0.2595 0.0354 0.0184
[6] 0.3020 0.1846 0.1396 0.3776 0.1162 0.1141 0.2720 0.1107 0.1079 0.4258 0.0340 0.0174

(50, 60)

[1] 0.2298 0.1764 0.1391 0.2872 0.1150 0.1122 0.1751 0.1074 0.1052 0.3293 0.0313 0.0174
[2] 0.2077 0.1612 0.1287 0.2596 0.1146 0.1115 0.1573 0.1019 0.1014 0.4511 0.0211 0.0168
[3] 0.1904 0.1599 0.1265 0.2381 0.1129 0.1105 0.2210 0.0988 0.0953 0.5727 0.0198 0.0146
[4] 0.2293 0.1500 0.1217 0.2866 0.1107 0.1059 0.2385 0.0920 0.0876 0.5827 0.0191 0.0143
[5] 0.2652 0.1517 0.1221 0.3315 0.1107 0.1098 0.1930 0.0927 0.0880 0.6107 0.0192 0.0144
[6] 0.1482 0.1456 0.1175 0.1852 0.1076 0.1030 0.2140 0.0867 0.0859 0.6090 0.0189 0.0141

(90, 80)

[1] 0.1422 0.1453 0.1166 0.1778 0.1050 0.1010 0.1303 0.0864 0.0824 0.4549 0.0183 0.0139
[2] 0.1325 0.1430 0.1099 0.1656 0.1017 0.0981 0.1199 0.0816 0.0770 0.5283 0.0178 0.0135
[3] 0.0693 0.1411 0.1040 0.0866 0.0996 0.0949 0.1224 0.0790 0.0750 0.5585 0.0169 0.0133
[4] 0.1000 0.1278 0.0938 0.1250 0.0890 0.0844 0.1323 0.0666 0.0620 0.5361 0.0163 0.0130
[5] 0.1150 0.1308 0.1018 0.1438 0.0921 0.0873 0.1294 0.0764 0.0719 0.5523 0.0166 0.0132
[6] 0.1036 0.1030 0.0729 0.1295 0.0816 0.0768 0.1304 0.0638 0.0590 0.5469 0.0155 0.0126

Table 3: Point estimates of a1

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.6428 1.0977 0.7299 0.5563 0.2634 0.2567 0.7915 1.8891 1.1334 0.5367 0.2749 0.2695
[2] 0.7748 0.9478 0.3476 0.5147 0.2580 0.2519 0.7995 1.8181 1.0685 0.5270 0.2634 0.2577
[3] 0.8155 0.9550 0.4730 0.5573 0.2606 0.2539 0.8376 1.8813 1.1148 0.5585 0.2669 0.2610
[4] 0.6301 0.8251 0.3395 0.4229 0.2530 0.2468 0.6438 1.7484 1.0029 0.4032 0.2579 0.2521
[5] 0.8341 0.8127 0.3164 0.4173 0.2424 0.2112 0.4172 1.3000 0.9832 0.3981 0.2469 0.2178
[6] 0.7354 0.7530 0.2958 0.5614 0.2240 0.1804 0.4619 1.2050 0.9185 0.5554 0.2232 0.1860

(50, 60)

[1] 0.5643 0.7513 0.2874 0.6935 0.2131 0.1734 0.5941 1.1839 0.9171 0.6716 0.2231 0.1809
[2] 0.5697 0.6606 0.2336 0.7324 0.2123 0.1668 0.6820 1.1284 0.8780 0.6554 0.2179 0.1733
[3] 0.5607 0.6614 0.2658 0.6738 0.2125 0.1692 0.4170 1.1761 0.8947 0.6843 0.2192 0.1789
[4] 0.5370 0.5657 0.2274 0.7163 0.2115 0.1656 0.5378 1.0771 0.8640 0.6963 0.2122 0.1719
[5] 0.6964 0.5375 0.2240 0.6850 0.2084 0.1644 0.6930 1.0638 0.8572 0.6973 0.2050 0.1711
[6] 0.7402 0.5166 0.2134 0.6942 0.2047 0.1599 0.5411 1.0265 0.8551 0.6954 0.2050 0.1643

(90, 80)

[1] 0.4404 0.5011 0.2110 0.6067 0.2035 0.1572 0.8864 1.0041 0.7762 0.5891 0.2038 0.1636
[2] 0.4179 0.4842 0.1729 0.5812 0.1892 0.1548 0.7119 0.9250 0.7594 0.4411 0.2003 0.1618
[3] 0.4951 0.4948 0.2057 0.5844 0.1931 0.1568 0.7126 0.9256 0.7644 0.5735 0.2030 0.1624
[4] 0.4304 0.4646 0.1639 0.6649 0.1880 0.1529 0.8850 0.8912 0.7298 0.6023 0.1972 0.1536
[5] 0.5204 0.4614 0.1606 0.6557 0.1880 0.1504 0.7165 0.8874 0.7287 0.5667 0.1967 0.1528
[6] 0.4425 0.4606 0.1578 0.6557 0.1877 0.1502 0.7336 0.8522 0.6851 0.5863 0.1943 0.1511

(Continued)
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Table 3 (continued)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.6065 0.4555 0.1517 0.5100 0.1840 0.1501 0.4898 0.8446 0.6412 0.4948 0.1901 0.1509
[2] 0.5941 0.4266 0.1487 0.4576 0.1779 0.1369 0.6554 0.8051 0.2430 0.5276 0.1857 0.1491
[3] 0.7452 0.4287 0.1487 0.4980 0.1790 0.1462 0.5761 0.8400 0.3112 0.4958 0.1884 0.1498
[4] 0.6360 0.4159 0.1486 0.4140 0.1776 0.1322 0.6250 0.7320 0.2203 0.3961 0.1846 0.1476
[5] 0.6109 0.3389 0.1473 0.4055 0.1770 0.1314 0.4531 0.5406 0.2114 0.3933 0.1832 0.1471
[6] 0.5995 0.3210 0.1412 0.5642 0.1766 0.1286 0.7819 0.5250 0.2113 0.5946 0.1809 0.1464

(50, 60)

[1] 0.4900 0.2329 0.1393 0.6637 0.1755 0.1251 0.4747 0.5176 0.1931 0.6478 0.1727 0.1462
[2] 0.5424 0.1755 0.1381 0.7663 0.1253 0.0961 0.7331 0.4505 0.1840 0.5986 0.1723 0.1445
[3] 0.4555 0.1755 0.1385 0.6623 0.1306 0.0987 0.5985 0.4601 0.1879 0.6591 0.1727 0.1457
[4] 0.5112 0.1749 0.1374 0.6736 0.1247 0.0889 0.6154 0.4236 0.1804 0.6857 0.1700 0.1407
[5] 0.5578 0.1748 0.1369 0.6852 0.1196 0.0857 0.6529 0.4227 0.1769 0.6795 0.1678 0.1377
[6] 0.5608 0.1682 0.1367 0.6846 0.1140 0.0857 0.8830 0.4189 0.1687 0.7299 0.1645 0.1368

(90, 80)

[1] 0.4293 0.1600 0.1364 0.5983 0.1111 0.0838 0.8420 0.3614 0.1486 0.5577 0.1639 0.1335
[2] 0.4036 0.1531 0.1295 0.5690 0.1036 0.0817 0.4824 0.2741 0.1369 0.6078 0.1573 0.1300
[3] 0.4045 0.1599 0.1306 0.6108 0.1102 0.0817 0.7927 0.3513 0.1474 0.5861 0.1607 0.1321
[4] 0.4253 0.1492 0.1267 0.6351 0.1020 0.0804 0.7515 0.2648 0.1356 0.5571 0.1555 0.1287
[5] 0.4258 0.1444 0.1227 0.6307 0.1017 0.0784 0.6287 0.2312 0.1353 0.5491 0.1434 0.1223
[6] 0.4261 0.1443 0.1197 0.6162 0.1003 0.0751 0.5901 0.2098 0.1257 0.5453 0.1284 0.1063

Table 4: Point estimates of b0

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.4217 2.4907 2.8235 0.4286 1.2660 1.4484 0.5170 1.5878 2.0746 0.4920 1.1378 1.2693
[2] 0.5193 2.2505 2.2188 0.3780 1.2169 1.4205 0.6057 1.4062 1.8945 0.5891 1.0067 1.0954
[3] 0.4987 2.2144 2.1604 0.2260 1.1763 1.4116 0.4992 1.3872 1.6872 0.5745 0.8699 0.9858
[4] 0.4486 1.8979 1.8627 0.4589 1.0100 1.3743 0.5381 1.1002 1.0769 0.5381 0.7948 0.8476
[5] 0.4806 1.9611 1.9314 0.4763 1.1024 1.3976 0.5049 1.2106 1.1959 0.6177 0.8208 0.9190
[6] 0.5058 1.8604 1.8207 0.4220 0.9347 1.3122 0.4954 1.0783 1.0639 0.6072 0.7554 0.8469

(50, 60)

[1] 0.4627 1.8064 1.7864 0.3234 0.9283 1.2636 0.5296 1.0708 1.0326 0.5546 0.7289 0.8045
[2] 0.7625 1.7923 1.7559 0.1691 0.9135 1.2306 0.4774 1.0383 1.0269 0.4949 0.7186 0.7114
[3] 0.6338 1.6186 1.5920 0.0980 0.8963 1.1847 0.4439 0.9794 0.9573 0.5845 0.7064 0.6688
[4] 0.4144 1.5340 1.5086 0.1691 0.8532 1.1576 0.4460 0.9695 0.9354 0.6172 0.6669 0.6257
[5] 0.6355 1.5791 1.5636 0.2320 0.8601 1.1670 0.4384 0.9726 0.9573 0.4810 0.6707 0.6452
[6] 0.3802 1.5093 1.4890 0.1377 0.8443 1.0277 0.4594 0.9674 0.9157 0.5602 0.6542 0.6143

(90, 80)

[1] 0.4698 1.4752 1.4376 0.3207 0.8355 1.0263 0.4713 0.9205 0.9065 0.4832 0.6245 0.6116
[2] 0.5731 1.4589 1.4335 0.1928 0.8347 1.0024 0.5389 0.8942 0.8792 0.7123 0.6143 0.5774
[3] 0.5948 1.3685 1.3396 0.0546 0.8011 0.9820 0.4465 0.8870 0.8574 0.5920 0.6071 0.5069
[4] 0.4940 1.3406 1.3123 0.2945 0.7333 0.9616 0.4401 0.8560 0.8307 0.5574 0.5724 0.5019
[5] 0.5691 1.3685 1.3396 0.3138 0.7674 0.9735 0.4462 0.8757 0.8490 0.5687 0.5990 0.5066
[6] 0.5900 1.2977 1.2886 0.2595 0.7069 0.9607 0.4240 0.8359 0.8196 0.4808 0.5667 0.4666
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Table 4 (continued)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.5343 1.2228 1.2126 0.4556 0.7023 0.9243 0.5701 0.8238 0.8074 0.5984 0.5302 0.3818
[2] 0.0084 1.2137 1.1811 0.4688 0.6692 0.9176 0.5344 0.7971 0.7856 0.5343 0.5193 0.3407
[3] 0.6041 1.0910 1.0763 0.3284 0.6505 0.8705 0.5294 0.7941 0.7522 0.6090 0.4411 0.3252
[4] 0.4202 0.9414 0.8987 0.3883 0.5712 0.8259 0.5205 0.7483 0.7432 0.5741 0.3999 0.2997
[5] 0.3632 1.0565 0.9851 0.4692 0.6297 0.8701 0.5264 0.7653 0.7460 0.5295 0.4039 0.3078
[6] 0.5920 0.8933 0.8806 0.3424 0.5453 0.7672 0.5090 0.7430 0.7338 0.5741 0.3903 0.2721

(50, 60)

[1] 0.4207 0.8914 0.8486 0.3410 0.5364 0.7104 0.4967 0.7194 0.7040 0.4736 0.3759 0.2571
[2] 0.5314 0.8636 0.8228 0.2919 0.5357 0.7095 0.4871 0.7142 0.6919 0.4931 0.3634 0.2366
[3] 0.4235 0.8625 0.8202 0.2657 0.4991 0.7016 0.4828 0.7082 0.6867 0.6326 0.3634 0.2347
[4] 0.5851 0.8285 0.7802 0.1296 0.4323 0.5220 0.4706 0.6298 0.6048 0.5573 0.3205 0.2265
[5] 0.6155 0.8346 0.8144 0.2310 0.4601 0.5705 0.4778 0.6974 0.6845 0.6269 0.3575 0.2325
[6] 0.4228 0.8216 0.7632 0.1268 0.4287 0.5151 0.5204 0.5838 0.5787 0.5354 0.3011 0.2123

(90, 80)

[1] 0.6763 0.7784 0.7549 0.3083 0.4260 0.4329 0.5092 0.5767 0.5706 0.5157 0.2980 0.2117
[2] 0.6380 0.6401 0.5927 0.3259 0.4204 0.3980 0.5086 0.5757 0.5678 0.4307 0.2668 0.1995
[3] 0.8886 0.6330 0.5597 0.0674 0.3765 0.3959 0.5057 0.5725 0.5653 0.3522 0.2056 0.1989
[4] 0.7081 0.4396 0.3910 0.4483 0.2467 0.1896 0.4833 0.5293 0.4697 0.0640 0.1874 0.1692
[5] 0.7811 0.4600 0.4087 0.4470 0.2891 0.3235 0.5008 0.5703 0.5330 0.1330 0.1952 0.1744
[6] 0.6123 0.3285 0.2737 0.3288 0.1879 0.1773 0.4767 0.4527 0.4029 0.0027 0.1830 0.1480

Table 5: Point estimates of b1

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.4164 0.6188 0.4554 0.3690 0.2943 0.2300 0.4270 0.5372 0.4124 0.4153 0.2912 0.2158
[2] 0.4207 0.5262 0.4162 0.3479 0.2555 0.1979 0.4323 0.4414 0.2461 0.4813 0.2519 0.1963
[3] 0.3804 0.5747 0.4358 0.4165 0.2819 0.2156 0.5104 0.4516 0.3318 0.4160 0.2614 0.2025
[4] 0.4785 0.5037 0.4091 0.4117 0.2420 0.1943 0.4452 0.4055 0.2408 0.3200 0.2426 0.1885
[5] 0.4689 0.4958 0.4087 0.3711 0.2403 0.1865 0.3751 0.3630 0.2043 0.3939 0.2424 0.1874
[6] 0.4112 0.4651 0.4004 0.4376 0.2364 0.1865 0.3305 0.2803 0.1865 0.3830 0.2339 0.1794

(50, 60)

[1] 0.3743 0.4593 0.3914 0.4316 0.2206 0.1741 0.3142 0.2786 0.1861 0.4376 0.2030 0.1737
[2] 0.5112 0.4412 0.3584 0.4875 0.2081 0.1641 0.3152 0.2557 0.1679 0.3443 0.1922 0.1526
[3] 0.4278 0.4555 0.3819 0.4057 0.2198 0.1721 0.3820 0.2762 0.1813 0.4729 0.1973 0.1703
[4] 0.5037 0.4391 0.3565 0.3269 0.2073 0.1629 0.5122 0.2433 0.1646 0.3514 0.1911 0.1510
[5] 0.4257 0.4375 0.3533 0.3375 0.1930 0.1569 0.4498 0.2386 0.1638 0.3332 0.1908 0.1485
[6] 0.4197 0.4356 0.3517 0.3515 0.1871 0.1552 0.4862 0.2343 0.1548 0.3026 0.1849 0.1336

(90, 80)

[1] 0.3840 0.4199 0.3317 0.4403 0.1828 0.1506 0.6976 0.2289 0.1540 0.4668 0.1794 0.1303
[2] 0.0768 0.4089 0.3242 0.4468 0.1721 0.1466 0.6040 0.2085 0.1469 0.3530 0.1761 0.1255
[3] 0.3241 0.4167 0.3245 0.4302 0.1750 0.1505 0.6655 0.2279 0.1511 0.4325 0.1787 0.1264
[4] 0.5242 0.3978 0.3104 0.3305 0.1693 0.1414 0.3603 0.2073 0.1452 0.2901 0.1660 0.1194
[5] 0.4794 0.3905 0.3022 0.3214 0.1645 0.1389 0.3189 0.2053 0.1418 0.2953 0.1658 0.1128
[6] 0.4400 0.3845 0.3001 0.3214 0.1561 0.1379 0.4931 0.1954 0.1414 0.2879 0.1628 0.1127

(Continued)

https://www.scipedia.com/public/Alotaibi_et_al_2026 17

https://www.scipedia.com/public/Alotaibi_et_al_2026


R. Alotaibi, M. Nassar and A. Elshahhat,

Advanced reliability analysis with applications of hjorth constant-stress

normal-operating setting using newly progressive censored data,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 16

Table 5 (continued)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.4174 0.3784 0.2947 0.3851 0.1530 0.1372 0.3696 0.1921 0.1409 0.3285 0.1602 0.1097
[2] 0.4878 0.3742 0.2831 0.4084 0.1510 0.1295 0.6527 0.1894 0.1389 0.2875 0.1562 0.0937
[3] 0.3784 0.3771 0.2864 0.3834 0.1515 0.1337 0.3721 0.1900 0.1394 0.3753 0.1574 0.0963
[4] 0.5046 0.3599 0.2804 0.1975 0.1502 0.1281 0.5562 0.1720 0.1327 0.3177 0.1556 0.0913
[5] 0.4080 0.3491 0.2587 0.1848 0.1475 0.1226 0.5895 0.1593 0.1300 0.3277 0.1528 0.0708
[6] 0.5077 0.3375 0.2468 0.3412 0.1475 0.1213 0.5193 0.1498 0.1213 0.3329 0.1338 0.0613

(50, 60)

[1] 0.5347 0.3339 0.2404 0.3820 0.1450 0.1189 0.2420 0.1440 0.1146 0.4588 0.1266 0.0543
[2] 0.4527 0.3279 0.2161 0.3861 0.1444 0.1158 0.5933 0.1408 0.1107 0.3313 0.1189 0.0514
[3] 0.4974 0.3317 0.2344 0.3782 0.1445 0.1158 0.2302 0.1421 0.1115 0.4409 0.1225 0.0519
[4] 0.5139 0.3145 0.2085 0.3355 0.1443 0.1135 0.3767 0.1397 0.1104 0.4391 0.1148 0.0509
[5] 0.4830 0.3108 0.1833 0.3054 0.1437 0.1124 0.3378 0.1397 0.1098 0.3348 0.1137 0.0488
[6] 0.5146 0.3005 0.1749 0.3308 0.1406 0.1115 0.4110 0.1392 0.1085 0.3318 0.1115 0.0488

(90, 80)

[1] 0.4934 0.2601 0.1681 0.4134 0.1387 0.1115 0.4399 0.1365 0.1075 0.3856 0.0869 0.0465
[2] 0.6531 0.1986 0.1063 0.3928 0.1275 0.1026 0.4515 0.1324 0.0967 0.3471 0.0737 0.0442
[3] 0.5345 0.2138 0.1127 0.4147 0.1312 0.1051 0.3173 0.1364 0.1070 0.4292 0.0827 0.0464
[4] 0.4693 0.1892 0.1015 0.3137 0.1257 0.1010 0.2923 0.1272 0.0944 0.4274 0.0702 0.0420
[5] 0.4496 0.1414 0.0998 0.3533 0.1235 0.0977 0.3741 0.1204 0.0692 0.4082 0.0645 0.0263
[6] 0.5295 0.1299 0.0981 0.3060 0.1206 0.0919 0.2790 0.1122 0.0619 0.3695 0.0280 0.0206

Table 6: Point estimates of Ru(t)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.8558 0.6750 0.5547 0.9168 0.5906 0.4854 0.9390 0.5697 0.4289 0.9586 0.4985 0.3753
[2] 0.9789 0.6525 0.5263 0.9789 0.5709 0.4605 0.9366 0.5214 0.3730 0.9579 0.4562 0.3264
[3] 0.9300 0.6529 0.5315 0.9542 0.5713 0.4650 0.8637 0.5296 0.3780 0.9211 0.4634 0.3307
[4] 0.8411 0.6118 0.4815 0.9099 0.5353 0.4213 0.8655 0.4807 0.3306 0.9221 0.4206 0.2893
[5] 0.8757 0.5755 0.4379 0.9272 0.5035 0.3831 0.9379 0.3854 0.2424 0.9583 0.3372 0.2121
[6] 0.8735 0.5583 0.4050 0.9265 0.4885 0.3543 0.9235 0.3792 0.2374 0.9514 0.3318 0.2077

(50, 60)

[1] 0.7822 0.5330 0.3808 0.8807 0.4664 0.3332 0.8484 0.3500 0.2189 0.9137 0.3062 0.1915
[2] 0.9207 0.4933 0.3419 0.9503 0.4317 0.2991 0.9210 0.3053 0.1867 0.9503 0.2671 0.1634
[3] 0.7385 0.5164 0.3585 0.8591 0.4518 0.3137 0.8200 0.3213 0.2006 0.8996 0.2811 0.1755
[4] 0.8170 0.4925 0.3401 0.8983 0.4309 0.2976 0.9617 0.3021 0.1846 0.9705 0.2644 0.1615
[5] 0.7983 0.4810 0.3259 0.8890 0.4209 0.2852 0.9720 0.3015 0.1820 0.9756 0.2638 0.1592
[6] 0.8944 0.4408 0.2871 0.9371 0.3857 0.2512 0.9695 0.2914 0.1737 0.9744 0.2549 0.1520

(90, 80)

[1] 0.6834 0.4339 0.2851 0.8314 0.3797 0.2494 0.8972 0.2837 0.1729 0.9383 0.2482 0.1513
[2] 0.9413 0.3791 0.2377 0.9605 0.3317 0.2080 0.6803 0.2723 0.1624 0.8299 0.2383 0.1421
[3] 0.6647 0.3902 0.2492 0.8222 0.3414 0.2181 0.8618 0.2798 0.1655 0.9205 0.2448 0.1448
[4] 0.4272 0.3562 0.2204 0.7034 0.3117 0.1929 0.8021 0.2663 0.1616 0.8908 0.2330 0.1414
[5] 0.4825 0.3528 0.2172 0.7311 0.3087 0.1900 0.7937 0.2654 0.1586 0.8865 0.2322 0.1388
[6] 0.5389 0.3511 0.2162 0.7593 0.3073 0.1892 0.9183 0.2569 0.1564 0.9488 0.2248 0.1368
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Table 6 (continued)

(s1, s2) (n1, n2) Design MLE Bayes MLE Bayes

(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.8249 0.3456 0.2113 0.9013 0.3024 0.1849 0.8765 0.2379 0.1468 0.9272 0.2082 0.1285
[2] 0.8590 0.3356 0.2072 0.9192 0.2937 0.1813 0.6097 0.2275 0.1410 0.7941 0.1991 0.1234
[3] 0.9093 0.3358 0.2082 0.9438 0.2938 0.1822 0.8729 0.2356 0.1456 0.9255 0.2061 0.1274
[4] 0.8221 0.3199 0.1959 0.9002 0.2799 0.1714 0.9289 0.2215 0.1407 0.9536 0.1938 0.1231
[5] 0.8103 0.3180 0.1918 0.8943 0.2783 0.1679 0.9162 0.2173 0.1389 0.9474 0.1901 0.1215
[6] 0.8113 0.2961 0.1796 0.8953 0.2591 0.1572 0.9402 0.2146 0.1371 0.9597 0.1878 0.1200

(50, 60)

[1] 0.7308 0.2908 0.1780 0.8549 0.2544 0.1557 0.8732 0.2019 0.1298 0.9261 0.1766 0.1136
[2] 0.9063 0.2672 0.1628 0.9431 0.2338 0.1424 0.6220 0.1941 0.1276 0.8005 0.1699 0.1117
[3] 0.6365 0.2805 0.1708 0.8080 0.2455 0.1494 0.8925 0.1979 0.1294 0.9358 0.1732 0.1132
[4] 0.8678 0.2507 0.1579 0.9237 0.2193 0.1382 0.9806 0.1842 0.1240 0.9800 0.1611 0.1085
[5] 0.9110 0.2388 0.1477 0.9453 0.2089 0.1293 0.9801 0.1809 0.1211 0.9796 0.1583 0.1060
[6] 0.9369 0.2254 0.1453 0.9583 0.1972 0.1272 0.9794 0.1803 0.1173 0.9793 0.1578 0.1026

(90, 80)

[1] 0.6565 0.2252 0.1398 0.8179 0.1970 0.1223 0.9072 0.1413 0.1138 0.9432 0.1236 0.0996
[2] 0.9127 0.2131 0.1326 0.9461 0.1865 0.1161 0.5374 0.1211 0.1073 0.7584 0.1059 0.0939
[3] 0.5689 0.2188 0.1394 0.7742 0.1915 0.1220 0.9039 0.1336 0.1090 0.9416 0.1169 0.0954
[4] 0.3895 0.1825 0.1244 0.6846 0.1597 0.1089 0.8998 0.1026 0.1026 0.9395 0.0897 0.0897
[5] 0.4186 0.1816 0.1208 0.6991 0.1589 0.1057 0.8733 0.1021 0.1021 0.9263 0.0893 0.0893
[6] 0.6047 0.1010 0.1009 0.7921 0.0883 0.0883 0.9168 0.1014 0.1013 0.9481 0.0888 0.0887

Table 7: Interval estimates of a0

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 2.216 0.868 1.395 0.876 1.915 0.878 1.350 0.882
[2] 2.020 0.869 1.349 0.877 1.821 0.879 1.271 0.882
[3] 1.907 0.869 1.323 0.879 1.795 0.881 1.264 0.885
[4] 1.817 0.871 1.210 0.880 1.706 0.885 1.208 0.891
[5] 1.903 0.870 1.312 0.881 1.714 0.882 1.251 0.889
[6] 1.776 0.871 1.201 0.883 1.679 0.888 1.164 0.893

(50, 60)

[1] 1.527 0.872 1.104 0.882 1.471 0.884 1.097 0.894
[2] 1.480 0.873 1.097 0.885 1.357 0.883 1.086 0.899
[3] 1.376 0.874 1.089 0.888 1.354 0.887 1.076 0.904
[4] 1.292 0.875 1.056 0.895 1.257 0.891 0.978 0.911
[5] 1.358 0.875 1.075 0.891 1.335 0.890 1.032 0.908
[6] 1.276 0.877 1.042 0.899 1.133 0.889 0.907 0.912

(90, 80)

[1] 1.121 0.878 0.905 0.894 1.017 0.886 0.848 0.914
[2] 1.099 0.879 0.886 0.898 0.993 0.889 0.846 0.923
[3] 1.089 0.882 0.886 0.904 0.960 0.891 0.710 0.917
[4] 1.044 0.891 0.821 0.911 0.933 0.899 0.647 0.927
[5] 1.047 0.885 0.873 0.909 0.947 0.895 0.675 0.921
[6] 0.996 0.894 0.814 0.919 0.930 0.905 0.613 0.933
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Table 7 (continued)

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(1.0, 1.5)

(30, 40)

[1] 0.987 0.901 0.814 0.923 0.924 0.912 0.565 0.937
[2] 0.974 0.907 0.810 0.926 0.920 0.921 0.479 0.932
[3] 0.863 0.909 0.794 0.928 0.833 0.921 0.456 0.940
[4] 0.830 0.925 0.741 0.933 0.787 0.928 0.393 0.952
[5] 0.846 0.915 0.755 0.930 0.794 0.926 0.412 0.942
[6] 0.814 0.927 0.674 0.936 0.785 0.930 0.387 0.939

(50, 60)

[1] 0.653 0.933 0.453 0.941 0.621 0.933 0.367 0.944
[2] 0.612 0.934 0.444 0.942 0.557 0.937 0.349 0.947
[3] 0.546 0.937 0.440 0.945 0.504 0.938 0.277 0.948
[4] 0.432 0.942 0.367 0.951 0.431 0.942 0.256 0.951
[5] 0.514 0.939 0.435 0.948 0.461 0.940 0.272 0.949
[6] 0.428 0.944 0.240 0.953 0.428 0.945 0.172 0.955

(90, 80)

[1] 0.411 0.947 0.210 0.956 0.401 0.948 0.153 0.958
[2] 0.401 0.950 0.204 0.958 0.399 0.952 0.134 0.961
[3] 0.401 0.952 0.152 0.961 0.391 0.955 0.082 0.964
[4] 0.387 0.957 0.096 0.966 0.372 0.959 0.077 0.969
[5] 0.399 0.955 0.104 0.964 0.383 0.957 0.079 0.967
[6] 0.369 0.959 0.064 0.968 0.357 0.961 0.038 0.971

Table 8: Interval estimates of a1

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 1.097 0.910 0.855 0.912 1.069 0.910 0.923 0.918
[2] 0.960 0.912 0.791 0.916 0.900 0.914 0.873 0.920
[3] 1.004 0.911 0.812 0.914 0.971 0.912 0.886 0.919
[4] 0.882 0.913 0.787 0.918 0.836 0.915 0.854 0.920
[5] 0.868 0.914 0.766 0.919 0.801 0.918 0.815 0.922
[6] 0.845 0.914 0.736 0.922 0.799 0.920 0.757 0.923

(50, 60)

[1] 0.733 0.917 0.713 0.922 0.705 0.921 0.674 0.926
[2] 0.694 0.920 0.656 0.924 0.643 0.923 0.622 0.927
[3] 0.717 0.919 0.700 0.923 0.671 0.922 0.650 0.926
[4] 0.685 0.921 0.625 0.925 0.634 0.923 0.611 0.927
[5] 0.644 0.922 0.608 0.926 0.626 0.923 0.510 0.928
[6] 0.638 0.922 0.527 0.926 0.622 0.923 0.488 0.928
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Table 8 (continued)

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(90, 80)

[1] 0.635 0.922 0.480 0.927 0.616 0.925 0.485 0.929
[2] 0.619 0.924 0.461 0.928 0.603 0.926 0.431 0.929
[3] 0.635 0.923 0.473 0.927 0.608 0.925 0.460 0.929
[4] 0.607 0.924 0.460 0.928 0.599 0.926 0.425 0.930
[5] 0.584 0.924 0.452 0.928 0.592 0.926 0.407 0.930
[6] 0.584 0.924 0.428 0.929 0.577 0.927 0.404 0.930

(1.0, 1.5)

(30, 40)

[1] 0.574 0.925 0.396 0.930 0.576 0.927 0.379 0.931
[2] 0.568 0.926 0.386 0.932 0.552 0.928 0.379 0.932
[3] 0.573 0.925 0.389 0.931 0.564 0.928 0.379 0.931
[4] 0.562 0.926 0.386 0.932 0.546 0.928 0.365 0.932
[5] 0.535 0.927 0.381 0.932 0.531 0.928 0.363 0.934
[6] 0.533 0.927 0.374 0.932 0.525 0.929 0.356 0.935

(50, 60)

[1] 0.531 0.927 0.366 0.935 0.498 0.929 0.346 0.935
[2] 0.507 0.930 0.341 0.939 0.486 0.930 0.318 0.941
[3] 0.521 0.928 0.360 0.938 0.487 0.929 0.334 0.936
[4] 0.483 0.930 0.340 0.941 0.483 0.930 0.315 0.941
[5] 0.458 0.931 0.292 0.943 0.473 0.931 0.297 0.942
[6] 0.414 0.932 0.270 0.943 0.451 0.933 0.289 0.944

(90, 80)

[1] 0.355 0.935 0.263 0.944 0.431 0.937 0.239 0.947
[2] 0.321 0.937 0.187 0.947 0.221 0.939 0.175 0.951
[3] 0.344 0.935 0.246 0.946 0.341 0.937 0.211 0.950
[4] 0.304 0.942 0.172 0.947 0.220 0.942 0.162 0.952
[5] 0.292 0.943 0.135 0.948 0.208 0.945 0.151 0.953
[6] 0.273 0.948 0.040 0.950 0.207 0.950 0.121 0.953

Table 9: Interval estimates of b0

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(30, 40)

[1] 2.065 0.900 1.620 0.915 2.588 0.883 1.831 0.898
[2] 2.000 0.900 1.569 0.915 2.479 0.883 1.736 0.898
[3] 1.962 0.901 1.539 0.916 2.398 0.884 1.658 0.899
[4] 1.871 0.902 1.467 0.916 2.232 0.884 1.508 0.899
[5] 1.926 0.901 1.511 0.916 2.271 0.884 1.517 0.899
[6] 1.768 0.902 1.386 0.916 2.023 0.884 1.311 0.899
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Table 9 (continued)

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(0.5, 1.0)

(50, 60)

[1] 1.708 0.903 1.340 0.917 1.981 0.885 1.302 0.900
[2] 1.666 0.904 1.307 0.918 1.916 0.888 1.248 0.903
[3] 1.620 0.905 1.270 0.919 1.882 0.889 1.239 0.904
[4] 1.488 0.907 1.167 0.921 1.794 0.890 1.225 0.906
[5] 1.513 0.906 1.186 0.920 1.813 0.889 1.231 0.904
[6] 1.422 0.908 1.116 0.922 1.753 0.891 1.221 0.906

(90, 80)

[1] 1.335 0.910 1.047 0.923 1.662 0.892 1.169 0.906
[2] 1.313 0.911 1.039 0.924 1.626 0.892 1.154 0.907
[3] 1.293 0.912 1.024 0.925 1.624 0.893 1.151 0.907
[4] 1.279 0.912 1.010 0.925 1.522 0.894 1.020 0.908
[5] 1.288 0.912 1.015 0.925 1.579 0.894 1.095 0.908
[6] 1.268 0.912 1.006 0.925 1.519 0.894 1.019 0.908

(1.0, 1.5)

(30, 40)

[1] 1.258 0.912 1.006 0.925 1.449 0.896 0.926 0.910
[2] 1.251 0.913 0.999 0.925 1.443 0.896 0.925 0.910
[3] 1.248 0.913 0.987 0.926 1.426 0.897 0.915 0.912
[4] 1.216 0.913 0.931 0.926 1.344 0.898 0.883 0.914
[5] 1.235 0.913 0.978 0.926 1.402 0.897 0.891 0.914
[6] 1.157 0.914 0.911 0.926 1.334 0.898 0.872 0.914

(50, 60)

[1] 1.082 0.916 0.849 0.928 1.282 0.900 0.861 0.916
[2] 1.008 0.917 0.791 0.929 1.238 0.901 0.860 0.916
[3] 0.964 0.918 0.756 0.929 1.162 0.901 0.793 0.916
[4] 0.887 0.921 0.696 0.932 1.079 0.903 0.743 0.917
[5] 0.922 0.920 0.723 0.931 1.132 0.902 0.787 0.916
[6] 0.827 0.922 0.649 0.933 0.949 0.904 0.617 0.918

(90, 80)

[1] 0.775 0.923 0.586 0.934 0.897 0.905 0.610 0.918
[2] 0.764 0.925 0.582 0.936 0.876 0.909 0.587 0.923
[3] 0.730 0.927 0.572 0.937 0.869 0.909 0.587 0.924
[4] 0.715 0.928 0.561 0.938 0.838 0.913 0.557 0.930
[5] 0.722 0.927 0.566 0.937 0.859 0.912 0.579 0.928
[6] 0.703 0.930 0.551 0.939 0.825 0.915 0.549 0.932

Table 10: Interval estimates of b1

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(0.5, 1.0) (30, 40) [1] 1.407 0.895 0.939 0.901 1.231 0.897 0.906 0.906
[2] 1.339 0.897 0.799 0.904 1.018 0.899 0.728 0.909
[3] 1.354 0.896 0.868 0.903 1.122 0.898 0.814 0.908
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Table 10 (continued)

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

[4] 1.287 0.897 0.749 0.905 0.983 0.900 0.725 0.910
[5] 1.255 0.898 0.731 0.905 0.967 0.901 0.719 0.910
[6] 1.225 0.898 0.727 0.907 0.946 0.903 0.717 0.912

(50, 60)

[1] 1.217 0.902 0.706 0.909 0.906 0.904 0.654 0.914
[2] 1.139 0.905 0.676 0.911 0.858 0.907 0.625 0.916
[3] 1.182 0.902 0.680 0.910 0.876 0.905 0.635 0.914
[4] 1.119 0.906 0.660 0.912 0.853 0.907 0.620 0.917
[5] 1.106 0.906 0.641 0.913 0.843 0.908 0.615 0.917
[6] 1.088 0.907 0.636 0.913 0.832 0.908 0.611 0.918

(90, 80)

[1] 1.066 0.907 0.632 0.914 0.826 0.908 0.607 0.918
[2] 1.043 0.908 0.623 0.915 0.817 0.909 0.602 0.919
[3] 1.059 0.908 0.623 0.914 0.818 0.909 0.605 0.919
[4] 1.034 0.909 0.617 0.915 0.807 0.910 0.594 0.920
[5] 1.023 0.912 0.611 0.915 0.800 0.912 0.590 0.920
[6] 1.009 0.913 0.602 0.917 0.783 0.914 0.571 0.920

(1.0, 1.5)

(30, 40)

[1] 0.940 0.913 0.561 0.918 0.748 0.916 0.561 0.921
[2] 0.818 0.914 0.489 0.920 0.653 0.917 0.492 0.925
[3] 0.894 0.914 0.534 0.919 0.729 0.916 0.559 0.922
[4] 0.790 0.915 0.472 0.921 0.637 0.917 0.484 0.926
[5] 0.783 0.915 0.468 0.921 0.627 0.917 0.473 0.926
[6] 0.766 0.915 0.453 0.922 0.608 0.918 0.458 0.926

(50, 60)

[1] 0.751 0.915 0.448 0.922 0.599 0.918 0.450 0.927
[2] 0.725 0.916 0.428 0.923 0.579 0.919 0.431 0.928
[3] 0.745 0.915 0.438 0.923 0.596 0.919 0.446 0.927
[4] 0.714 0.916 0.414 0.923 0.557 0.920 0.416 0.928
[5] 0.661 0.916 0.395 0.924 0.510 0.921 0.370 0.929
[6] 0.621 0.917 0.371 0.925 0.494 0.922 0.367 0.930

(90, 80)

[1] 0.499 0.921 0.298 0.927 0.398 0.922 0.291 0.932
[2] 0.481 0.921 0.287 0.928 0.370 0.924 0.267 0.933
[3] 0.489 0.921 0.292 0.927 0.389 0.923 0.279 0.932
[4] 0.468 0.921 0.277 0.929 0.365 0.926 0.260 0.934
[5] 0.415 0.926 0.266 0.930 0.341 0.926 0.245 0.935
[6] 0.317 0.931 0.237 0.933 0.284 0.928 0.219 0.938
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Table 11: Interval estimates of Ru(t)

(s1, s2) (n1, n2) Design 95% ACI 95% BCI 95% ACI 95% BCI
(T11, T12) (T21, T22)

(0.5, 1.0)

(30, 40)

[1] 0.856 0.900 0.300 0.907 0.470 0.910 0.277 0.913
[2] 0.739 0.902 0.272 0.909 0.427 0.910 0.264 0.915
[3] 0.784 0.902 0.297 0.907 0.467 0.910 0.266 0.914
[4] 0.592 0.903 0.270 0.909 0.404 0.911 0.242 0.916
[5] 0.484 0.904 0.255 0.910 0.348 0.911 0.236 0.917
[6] 0.440 0.904 0.249 0.910 0.336 0.912 0.232 0.918

(50, 60)

[1] 0.413 0.905 0.244 0.911 0.331 0.912 0.229 0.918
[2] 0.244 0.907 0.232 0.913 0.232 0.914 0.220 0.920
[3] 0.305 0.906 0.241 0.912 0.234 0.913 0.227 0.919
[4] 0.232 0.907 0.215 0.913 0.226 0.915 0.212 0.921
[5] 0.225 0.909 0.212 0.914 0.218 0.915 0.196 0.923
[6] 0.217 0.910 0.195 0.915 0.189 0.917 0.185 0.924

(90, 80)

[1] 0.212 0.911 0.172 0.917 0.181 0.919 0.157 0.925
[2] 0.208 0.914 0.147 0.922 0.171 0.924 0.143 0.927
[3] 0.210 0.912 0.154 0.921 0.172 0.922 0.150 0.926
[4] 0.198 0.915 0.140 0.922 0.169 0.924 0.133 0.928
[5] 0.193 0.917 0.132 0.923 0.165 0.924 0.126 0.930
[6] 0.181 0.919 0.124 0.923 0.157 0.925 0.114 0.931

(1.0, 1.5)

(30, 40)

[1] 0.174 0.920 0.113 0.927 0.149 0.926 0.080 0.933
[2] 0.164 0.921 0.102 0.931 0.147 0.928 0.063 0.936
[3] 0.169 0.921 0.109 0.930 0.149 0.927 0.070 0.934
[4] 0.155 0.923 0.096 0.934 0.146 0.928 0.060 0.937
[5] 0.145 0.923 0.092 0.936 0.136 0.928 0.052 0.939
[6] 0.138 0.924 0.084 0.937 0.111 0.929 0.046 0.942

(50, 60)

[1] 0.127 0.926 0.080 0.944 0.100 0.931 0.042 0.947
[2] 0.099 0.931 0.066 0.950 0.085 0.936 0.032 0.953
[3] 0.099 0.930 0.076 0.946 0.089 0.935 0.037 0.950
[4] 0.088 0.932 0.061 0.952 0.080 0.937 0.029 0.956
[5] 0.083 0.933 0.054 0.954 0.072 0.937 0.025 0.958
[6] 0.081 0.947 0.051 0.954 0.068 0.952 0.021 0.958

(90, 80)

[1] 0.076 0.948 0.049 0.955 0.068 0.953 0.017 0.959
[2] 0.071 0.952 0.039 0.957 0.060 0.957 0.013 0.961
[3] 0.074 0.951 0.044 0.956 0.062 0.956 0.015 0.960
[4] 0.069 0.952 0.033 0.957 0.056 0.957 0.010 0.962
[5] 0.065 0.953 0.028 0.957 0.054 0.958 0.008 0.962
[6] 0.063 0.953 0.026 0.958 0.051 0.958 0.005 0.962
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By focusing on the lowest RMSE, MAB, and AIL values, as well as the highest CP values, several
assessments of ai, bi (for i = 0, 1), and Ru(t) are made as follows:

• The simulation outcomes reveal that both frequentist and Bayesian estimators of ai, bi

(for i = 0, 1), or Ru(t) exhibit satisfactory.

• Increasing the total number of observations, whether via
∑k

i=1 ni or
∑k

i=1 mi, leads to a reduction
in RMSEs and MABs, indicating consistency and improved efficiency of the estimators under
larger sample scenarios.

• Bayesian inference incorporating prior knowledge often yields more efficient estimates. Thus,
Bayes point (or 95% BCI) estimates of all unknown quantities outperform other competitive
frequentist (or 95% ACI) estimates.

• When the censoring times Ti1 and Ti2 are extended, it is noted that:
– The RMSE and MAB results associated with estimating a0, bi (for i = 0, 1), or Ru(t)

decrease except for a1.

– The AILs results associated with estimating ai, b1 (for i = 0, 1), or Ru(t) decrease except
for b0.

– The CPs results associated with estimating ai, b1 (for i = 0, 1), or Ru(t) increase except
for b0.

• Longer censoring durations (higher Ti1 and Ti2 values) yield the estimated CPs that closely
approximate the nominal level.

• When the stress levels si grow, the RMSEs and MABs associated with ai, bi (for i = 0, 1), or
Ru(t) decrease, demonstrating that higher stress magnitudes improve the information content
regarding these parameters. A similar pattern is observed for interval estimation of these specific
parameters, such that the AILs tend to narrow down and CPs improve.

• Comparing the proposed progressive censoring patterns (reported in Table 1), in terms of lower
RMSE, MAB, and AIL values and higher CP values, it is clear that:

– The estimates of a1, b1, and Ru(t) behaved better based on left censoring used in Design[i]
for i = 1, 4 than others;

– The estimates of a0 and b0 behaved better based on right censoring used in Design[i] for
i = 3, 6 than others.

• To summarize, simulation to compare the efficiency of the proposed estimation methods is
based on distinct precision criteria, namely, RMSE and MAB (for point estimate) and AIL and
CP (for interval estimate), demonstrating that the proposed Bayes framework via MH algorithm
sampler outperforms other competitive methods strongly.

The comparative study shows that Bayesian estimators consistently outperform maximum like-
lihood estimators in terms of several metrics of precision, especially under small-sample or heavily
censored scenarios. Increasing censoring thresholds and stress levels generally improve estimation
accuracy and coverage probabilities, highlighting the role of experimental design in reliability analysis.
Moreover, left-censoring designs provide more stable estimates for stress-related parameters and the
reliability function, while right-censoring designs perform better for baseline parameters.
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6 Accelerated Data Applications

To illustrate the practical adaptability of the proposed estimators, this section presents two real-
world applications from the engineering domain, utilizing actual data sets. The results indicate that
the estimation methods perform effectively under real-life conditions.

Before presenting the real data applications, it is important to emphasize the practical implications
of the proposed methodology. By integrating the Hjorth lifespan model with CSALT under the
IAPT2C plan, this study provides a flexible and efficient framework for analyzing the lifetimes
of highly reliable products. This approach broadens the applicability of the Hjorth model within
the reliability domain and equips practitioners with a robust tool to evaluate accelerated testing
experiments, even in the presence of heavy censoring or small sample sizes. The following subsections
illustrate these advantages through applications to actual industrial lifetime data sets.

6.1 High-Voltage Transformer Life-Testing
Analyzing the failure times of transformers under high-voltage life-testing (HVLT) offers valuable

insights into their durability and reliability when subjected to extreme operating conditions. This
information is essential for modeling failure behavior, and improving lifespan estimation. In this
example, to demonstrate the practical applicability and effectiveness of the proposed estimation
methods, we analyze the failure times (in hours) of HVLT using several stress conditions. For
additional details on this dataset, one can see Nelson [30]. In Table 12, the HVLT datasets under
two distinct increasing stress levels: 35.4 kV (normal-use condition) and 42.4 kV (stress condition)
are provided. For computational efficiency, each original failure time point is scaled by divided by
ten. Before addressing our inference, to check whether the Hjorth model provides a significant fit
to the HVLT data or not, the Kolmogorov–Smirnov (KS) statistics along its p-value (at α = 5%)
significance level are considered. Given that the time to failures follows the population, using the null
and alternative hypotheses, respectively, as

• H0: The HVLT dataset follows a Hjorth distribution;

• H1: The HVLT dataset does not follows a Hjorth distribution.

Table 12: Times to failures in HVLT datasets

Stress Failure times

35.4 kV 4.01 5.94 7.12 16.65 20.47 22.97 30.83 53.79
42.4 kV 0.06 1.34 1.52 1.99 2.50 3.02 3.28 4.44 5.62

Based on all given HVLT datasets, the MLEs (along with their standard errors (Std.Ers)) as well as
95% ACI bounds (along with their interval widths (IWs)) of μ and θ are calculated; see Table 13. Since
the fitted p-values of the normal-use and stress datasets are greater than the specified 5% significance
level, we cannot reject the null hypothesis that the Hjorth model fits the HVLT data adequately.

Again, from Table 12, four visualization fit tools of the Hjorth lispan model are utilized, namely
(i) probability-probability (PP), (ii) quantile-quantile (QQ), RF, and contour of the log-likelihood; see
Fig. 1. It reveals that (i) the PP points closely follow the diagonal line, indicating a good agreement
between the empirical and theoretical cumulative probabilities; (ii) the empirical quantiles align well
with the theoretical quantiles; (iii) the fitted RF line closely tracks its empirical curve; and (iv) the
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contour plot indicates stable and reliable frequentist estimates of μ and σ , and both exist and are
unique. As a result, Fig. 1 supports the adequacy of the Hjorth model fit.

Table 13: Fitting the Hjorth model from HVLT datasets

Stress Par. MLE (Std.Er) 95% ACI [IW] KS (p-value)

35.4 kV
μ 0.1805 (0.1861) (0.0041, 0.5452) [0.5411]

0.1497 (0.9698)
θ 0.1657 (0.0704) (0.0277, 0.3037) [0.2760]

42.4 kV
μ 0.0782 (0.1048) (0.0000, 0.2837) [0.2837]

0.1714 (0.9429)
θ 0.0025 (0.0010) (0.0005, 0.0045) [0.0040]

Figure 1: Fitting visualization tools of the Hjorth model from HVLT datasets. (a) Stress 35.4 kV,
(b) Stress 42.4 kV

Now, we examine the efficacy of the proposed point and interval estimators of ai and bi (for i =
1, 2) as well as of μi, θi (for i = u, 1, 2), and Ru(t) through the analysis of several IAPT2C samples using
CSALT gathered from the HVLT datasets. From Table 14, by selecting various configurations for the
effective sample sizes mi (for i = 1, 2) and corresponding censoring schemes (Qi1, Qi2, . . . , Qimi), three
censored datasets are constructed; see Table 14.

For each censored dataset, both offered point estimators—namely, the MLE and MCMC
estimates—and 95% interval estimators—including ACI and BCI estimates—are computed for each
unknown parameter. Specifically, all evaluations of Ru(t) are done at a specific time point t = 10 and
under the nominal operational stress level su = 25. Given the absence of informative prior knowledge
regarding ai and bi (for i = 1, 2), non-informative priors are adopted by setting hyperparameters
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ci = vi = ϑi = σi = 0.001 (for i = 1, 2). This ensures that the posterior distributions closely resemble
the likelihood functions. Taking N = 50,000 and M = 10,000, the Bayes’ calculations by MCMC
sampler are done. The initial values for ai and bi (for i = 1, 2) are set to their respective fitted frequentist
estimates to facilitate convergence. Results, summarized in Table 15, include the point estimates (along
with their Std.Ers) and 95% interval estimates (with corresponding IWs).

Table 14: Various IAPT2C samples using CSALT from HVLT data

Sample Scheme T11(r1) T12(r∗
1) τ1 Q∗

1 Censored Data ((n1, m1) = (8, 5)) at 35.4 kV

S1 (3, 0∗4) 5(1) 35(5) 30.83 0 4.01, 7.12, 16.65, 22.97, 30.83
S2 (0∗2, 3, 0∗2) 8(3) 25(5) 22.97 0 4.01, 5.94, 7.12, 20.47, 22.97
S3 (0∗4, 3) 10(3) 17(4) 17 4 4.01, 5.94, 7.12, 16.65

T21(r2) T22(r∗
2) τ2 Q∗

2 Censored Data ((n2, m2) = (9, 6)) at 42.4 kV

S1 (3, 0∗5) 0.5(1) 4.5(6) 4.44 0 0.06, 1.52, 1.99, 2.50, 3.02, 4.44
S2 (0∗2, 3, 0∗3) 1.6(3) 3.5(6) 3.5 0 0.06, 1.34, 1.52, 2.50, 3.02, 3.28
S3 (0∗5, 3) 2.1(4) 2.6(5) 2.6 4 0.06, 1.34, 1.52, 1.99, 2.50

Table 15: Point and 95% interval estimates from HVLT data

Sample Par. MLE Bayesian ACI BCI

Est. Std.Er Est. Std.Er Low. Upp. IW Low. Upp. IW

S1

a0 −59.233 13.198 −59.233 0.0010 −85.100 −33.366 51.734 −59.235 −59.231 0.0039
a1 1.3631 0.3136 1.3631 0.0050 0.7485 1.9778 1.2292 1.3532 1.3728 0.0195
b0 −23.890 3.8730 −23.890 0.0050 −31.481 −16.299 15.182 −23.900 −23.880 0.0195
b1 0.5271 0.1007 0.5271 0.0050 0.3297 0.7245 0.3949 0.5176 0.5371 0.0195
μu 1.2E–11 4.2E–21 1.2E–11 1.5E–12 1.1E–10 1.4E–10 2.4E–11 9.2E–12 1.5E–11 5.8E–12
μ1 1.7E–05 1.6E–09 1.7E–05 3.1E–06 6.0E–05 9.4E–05 3.4E–05 1.2E–05 2.4E–05 1.2E–05
μ2 0.2380 0.0627 0.2433 0.0523 0.0005 0.7287 0.7281 0.1511 0.3501 0.1990
θu 2.2E–05 9.5E–10 2.2E–05 2.8E–06 3.8E–05 8.3E–05 4.5E–05 1.7E–05 2.8E–05 1.1E–05
θ1 0.0053 0.0000 0.0054 0.0010 0.0006 0.0101 0.0094 0.0037 0.0074 0.0037
θ2 0.2141 0.0132 0.2187 0.0469 0.0011 0.4394 0.4383 0.1353 0.3132 0.1779
Ru(x0) 0.9989 0.0015 0.9989 0.0001 0.9926 0.9990 0.0064 0.9986 0.9991 0.0005

S2

a0 −71.758 13.120 −71.758 0.0010 −97.472 −46.044 51.428 −71.760 −71.756 0.0039
a1 1.6490 0.3102 1.6490 0.0050 1.0410 2.2570 1.2160 1.6391 1.6587 0.0195
b0 −21.958 3.5885 −21.958 0.0050 −28.992 −14.925 14.067 −21.968 −21.948 0.0195
b1 0.4850 0.0930 0.4850 0.0050 0.3027 0.6673 0.3646 0.4755 0.4950 0.0195
μu 5.5E–14 8.9E–26 5.5E–14 6.9E–15 5.3E–13 6.4E–13 1.1E–13 4.2E–14 6.9E–14 2.7E–14
μ1 1.5E–06 1.3E–11 1.6E–06 2.8E–07 5.6E–06 8.7E–06 3.1E–06 1.1E–06 2.1E–06 1.1E–06
μ2 0.1591 0.0306 0.1626 0.0350 0.0002 0.5018 0.5016 0.1010 0.2340 0.1330
θu 5.4E–05 4.8E–09 5.4E–05 6.8E–06 8.2E–05 1.9E–04 1.1E–04 4.1E–05 6.7E–05 2.6E–05
θ1 0.0083 0.0000 0.0085 0.0015 0.0012 0.0155 0.0143 0.0057 0.0115 0.0058
θ2 0.2483 0.0155 0.2537 0.0543 0.0047 0.4920 0.4874 0.1569 0.3632 0.2063
Ru(x0) 0.9973 0.0035 0.9973 0.0003 0.9905 0.9998 0.0093 0.9966 0.9979 0.0013

(Continued)
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Table 15 (continued)

Sample Par. MLE Bayesian ACI BCI

Est. Std.Er Est. Std.Er Low. Upp. IW Low. Upp. IW

S3

a0 −13.556 14.235 −13.556 0.0010 −41.456 14.343 55.799 −13.558 −13.554 0.0039
a1 0.2938 0.3470 0.2938 0.0050 −0.3864 0.9740 1.3604 0.2839 0.3034 0.0195
b0 −18.231 13.876 −18.231 0.0050 −45.427 8.965 54.392 −18.241 −18.221 0.0195
b1 0.3524 0.3775 0.3524 0.0050 −0.3875 1.0923 1.4799 0.3429 0.3624 0.0195
μu 2.0E–03 1.3E–04 2.0E–03 2.5E–04 2.0E–02 2.4E–02 4.0E–03 1.5E–03 2.5E–03 9.8E–04
μ1 4.3E–02 8.1E–03 4.3E–02 7.7E–03 1.3E–01 2.2E–01 8.5E–02 2.9E–02 5.9E–02 3.0E–02
μ2 0.3335 0.1094 0.3409 0.0733 0.0031 0.9818 0.9787 0.2117 0.4905 0.2788
θu 8.1E–05 1.3E–07 8.2E–05 1.0E–05 6.3E–04 7.9E–04 1.6E–04 6.2E–05 1.0E–04 4.0E–05
θ1 0.0032 0.0000 0.0032 0.0006 0.0024 0.0088 0.0063 0.0022 0.0044 0.0022
θ2 0.0373 0.0072 0.0381 0.0082 0.0013 0.2039 0.2026 0.0235 0.0545 0.0310
Ru(x0) 0.9912 0.0189 0.9911 0.0008 0.9541 0.9944 0.0403 0.9896 0.9926 0.0031

The findings demonstrate that the Bayesian (credible interval) approach exhibits superior perfor-
mance compared to maximum likelihood (asymptotic interval) in terms of yielding lower standard
errors and shorter interval lengths. This pattern of improved efficiency is also consistently observed
across the computed interval estimates.

To evaluate the performance of the MCMC algorithm, using S1 (for instance), histogram (with
Gaussian density kernel) and trace plots based on 40,000 samples are plotted (see Fig. 2). These visual
tools confirm that the staying 40,000 Markov iterations achieved proper convergence and mixing
behavior. The Bayesian estimates and their credible intervals for key parameters are clearly depicted,
with solid and dashed lines, respectively. The burn-in phase is sufficient to remove the influence of
initial values. Additionally, posterior distributions exhibited varying shapes such as:

(i) Symmetrical shape for ai and bi (for i = 1, 2);

(ii) Positively skewed shape for μi, θi (for i = u, 1, 2);

(iii) Negatively skewed shape for Ru(t).

Figure 2: (Continued)
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Figure 2: Density (left) and Trace (right) plots from HVLT data

To better understand the behavior of the estimated reliability function Ru(t) under varying
operational conditions, it is essential for reliability analysts to visualize the fitted reliability curves
against empirical data. Fig. 3 provides a comparative depiction of the empirical and model-based
estimates of the reliability function under two distinct stress scenarios. Fig. 3, using dataset S1 as
an illustrative case, compares empirical and estimated reliability functions under normal (35.4 kV)
and accelerated (42.4 kV) stress conditions using the Hjorth model. In both cases, the estimated
reliability curves (dashed lines) closely follow the empirical step functions, indicating a good model
fit across varying stress levels. This visual agreement supports the model’s robustness and suitability
for analyzing reliability behavior under different operational and stress scenarios.

6.2 Oil of Insulating Fluid
The oil breakdown times (OBTs) are key indicators of how well an insulating fluid withstands

electrical stress before failure, directly impacting the reliability of high-voltage equipment. Measuring
OBTs under various voltages helps evaluate the fluid’s insulation strength and aging behavior. This
part examines the OBTs of an insulating fluid subjected to varying levels of high-voltage stress.
Following Nelson [30], two sets of OBT observations (in seconds) are analyzed: one collected under
a nominal stress level of 30 kV (normal-use condition), and the other under an elevated stress level
of 36 kV (stress condition). For computational simplicity, each OBT observation is divided by a
factor of 1/10. The transformed data are presented in Table 16. From Table 16, the fitting outcomes
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reposted in Table 17 suggest that the Hjprth model adequately fits the OBT data under both stress
levels appropriately.

Figure 3: Estimated lines of Ru(t) from HVLT data

Table 16: Times to failures in OBT datasets

Stress Failure times
30 kV 1.705 1.774 2.046 2.102 2.266 4.340 4.730 13.907 14.412 17.588 19.490
36 kV 0.035 0.059 0.096 0.099 0.169 0.197 0.207 0.258 0.271 0.290 0.367 0.399 0.535 1.377 2.550

Table 17: Fitting the Hjorth model from OBT datasets

Stress Par. MLE (Std.Er) 95% ACI [IW] KS (p-value)

30 kV
μ 0.2809 (0.1493) (0.0000,0.5735) [0.5735]

0.2539 (0.4086)
θ 0.0092 (0.0051) (0.0007,0.0192) [0.0185]

36 kV
μ 3.0997 (0.8980) (1.3397,4.8597) [3.5201]

0.1513 (0.8335)
θ 0.0688 (0.4135) (0.0000,0.8792) [0.8792]

Fig. 4 shows that (i) the PP plot closely follows the diagonal, (ii) empirical and theoretical quantiles
align well, (iii) the fitted RF mirrors the empirical curve, and (iv) the contour plot confirms existence
and uniqueness of μ̂ and σ̂ . These facts support the adequacy of the Hjorth model fit.
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Figure 4: Fitting visualization tools of the Hjorth model from OBT datasets. (a) Stress 30 kV, (b) Stress
36 kV

Now, from OBT data reported in Table 16, we conduct a comprehensive evaluation of the
proposed point and interval estimators for the parameters ai and bi (for i = 1, 2) as well as of μi, θi

(for i = u, 1, 2), and Ru(t). To achieve this, several IAPT2C samples are generated through the CSALT
procedure, derived from the OBT dataset; see Table 18.

Table 18: Various IAPT2C samples using CSALT from OBT data

Sample Scheme T11(r1) T12(r∗
1) τ1 Q∗

1 Censored Data ((n1, m1) = (11, 8)) at 30 kV

S1 (3, 0∗7) 1.75(1) 14.5(8) 14.412 0 1.705, 1.774, 2.046, 2.102, 2.266, 4.340,
4.730, 14.412

S2 (0∗3, 3, 0∗4) 2.25(4) 14.5(7) 14.5 1 1.705, 1.774, 2.046, 2.102, 4.340, 4.730,
13.907

S3 (0∗7, 3) 3.75(5) 4.5(6) 4.5 5 1.705, 1.774, 2.046, 2.102, 2.266, 4.340

T21(r2) T22(r∗
2) τ2 Q∗

2 Censored Data ((n2, m2) = (15, 12)) at 36 kV

S1 (3, 0∗11) 0.15(3) 0.55(12) 0.535 0 0.035, 0.096, 0.099, 0.169, 0.197, 0.207,
0.258, 0.271, 0.290, 0.367, 0.399, 0.535

S2 (0∗5, 3, 0∗6) 0.22(6) 0.55(10) 0.55 2 0.035, 0.059, 0.096, 0.099, 0.169, 0.197,
0.258, 0.290, 0.367, 0.535

S3 (0∗11, 3) 0.07(2) 0.26(8) 0.26 7 0.035, 0.059, 0.096, 0.099, 0.169, 0.197,
0.207, 0.258
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For each collected dataset, we computed the MLE/MCMC estimates and corresponding 95%
ACI/BCI estimates for each parameter under investigation. Under a designated nominal stress level of
su = 25, all estimates of Ru(t) are obtained at time t = 1. The Bayes investigation for each parameter
is performed using the same calculation setups depicted in Section 6.1. The results (presented in
Table 19) indicate a strong agreement between the frequentist and Bayesian point estimates; however,
the Bayesian approach consistently outperforms the frequentist method in terms of yielding smaller
Std.Ers and narrower IWhs. This pattern of superiority is also evident in the comparison of interval
estimates, reinforcing the efficiency and precision of the Bayesian framework. Using dataset S1 from
Table 16, the performance of the MCMC algorithm is evaluated through histogram and trace plots
based on 40,000 retained samples (see Fig. 5).

Table 19: Point and 95% interval estimates from OBT data

Sample Par. MLE Bayesian ACI BCI

Est. Std.Er Est. Std.Er Low. Upp. IW Low. Upp. IW

S1

a0 −5.6057 29.485 −5.6057 0.0010 −63.395 52.183 115.58 −5.6077 −5.6038 0.0039
a1 0.1210 0.9472 0.1210 0.0050 −1.7355 1.9776 3.7131 0.1111 0.1307 0.0195
b0 −34.752 5.2477 −34.752 0.0050 −45.037 −24.467 20.571 −34.762 −34.742 0.0195
b1 1.0536 0.1524 1.0535 0.0050 0.7548 1.3523 0.5975 1.0441 1.0635 0.0195
μu 0.0758 0.2077 0.0764 0.0096 0.0000 0.9691 0.9691 0.0584 0.0955 0.0371
μ1 0.1388 0.0791 0.1404 0.0212 0.0000 0.6899 0.6899 0.1014 0.1831 0.0817
μ2 0.2870 2.0482 0.2916 0.0530 0.0000 3.0921 3.0921 0.1952 0.3983 0.2032
θu 0.0002 0.0001 0.0002 0.0001 0.0000 0.0009 0.0009 0.0002 0.0003 0.0001
θ1 0.0431 0.0011 0.0435 0.0065 0.0000 0.1069 0.1069 0.0312 0.0565 0.0252
θ2 23.959 112.35 24.327 4.4060 3.1843 44.733 41.549 16.274 33.150 16.876
Ru(x0) 0.9487 0.2996 0.9484 0.0063 0.7615 0.9992 0.2377 0.9359 0.9602 0.0244

S2

a0 −11.558 5.1842 −11.558 0.0010 −21.718 −1.3968 20.322 −11.560 −11.556 0.0039
a1 0.3395 0.1559 0.3394 0.0050 0.0339 0.6450 0.6112 0.3295 0.3491 0.0195
b0 −34.937 7.4504 −34.937 0.0050 −49.540 −20.335 29.205 −34.947 −34.927 0.0195
b1 1.0169 0.2278 1.0169 0.0050 0.5704 1.4634 0.8930 1.0074 1.0269 0.0195
μu 0.0464 0.0040 0.0467 0.0059 0.0000 0.1697 0.1697 0.0357 0.0584 0.0227
μ1 0.2531 0.0310 0.2558 0.0386 0.0000 0.5979 0.5979 0.1849 0.3338 0.1489
μ2 1.9401 1.7151 1.9707 0.3580 0.0000 4.5069 4.5069 1.3191 2.6922 1.3731
θu 0.0001 0.0002 0.0001 0.0009 0.0000 0.0003 0.0003 0.0001 0.0001 0.0004
θ1 0.0119 0.0001 0.0120 0.0018 0.0000 0.0338 0.0338 0.0086 0.0156 0.0070
θ2 5.3248 32.735 5.4066 0.9792 0.0000 16.539 16.539 3.6169 7.3675 3.7506
Ru(x0) 0.9683 0.0422 0.9681 0.0039 0.8856 0.9995 0.1139 0.9603 0.9755 0.0152

S3

a0 −61.331 14.376 −61.331 0.0010 −89.507 −33.154 56.353 −61.333 −61.329 0.0039
a1 1.7077 0.4086 1.7077 0.0050 0.9068 2.5086 1.6019 1.6978 1.7173 0.0195
b0 −27.960 5.3456 −27.960 0.0050 −38.437 −17.483 20.954 −27.970 −27.950 0.0195
b1 0.8512 0.1719 0.8512 0.0050 0.5142 1.1882 0.6740 0.8417 0.8612 0.0195
μu 0.0008 0.0001 0.0008 0.0001 0.0000 0.0013 0.0013 0.0006 0.0010 0.0004
μ1 0.0004 0.0010 0.0004 0.0006 0.0000 0.0008 0.0008 0.0003 0.0005 0.0002
μ2 1.1583 2.7006 1.1765 0.2137 0.0000 4.3791 4.3791 0.7875 1.6073 0.8198
θu 0.0013 0.0002 0.0013 0.0001 0.0000 0.0040 0.0040 0.0010 0.0016 0.0006
θ1 0.0886 0.0013 0.0895 0.0135 0.0172 0.1600 0.1429 0.0642 0.1161 0.0519
θ2 14.639 187.37 14.864 2.6921 0.0000 41.468 41.468 9.9437 20.255 10.311
Ru(x0) 0.9994 0.0007 0.9994 0.0001 0.9980 0.9997 0.0017 0.9992 0.9995 0.0003
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Figure 5: Density (left) and Trace (right) plots from OBT data

The subplots in Fig. 5 confirm that the Markov chains exhibit proper convergence and effective
mixing after the burn-in phase. The Bayesian estimates and their credible intervals are visualized,
and the burn-in period successfully mitigates the influence of initial values. Fig. 5 exhibits the same
behaviors for the distribution of 40,000 MCMC iterations of the parameters as displayed in Fig. 2.

To gain deeper insight into the behavior of the estimated reliability function Ru(t) across different
operational conditions, it is crucial to compare the model-based curves with empirical data. Fig. 6,
based on dataset S1, illustrates this comparison under two stress levels: normal-use (30 kV) and
accelerated (36 kV). The estimated Hjorth reliability curves (dashed lines) align closely with the
empirical step functions in both cases, demonstrating a strong model-data agreement. This consistency
across stress conditions highlights the model’s robustness and reinforces its applicability for reliability
assessment in both standard and accelerated environments.
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Figure 6: Estimated lines of Ru(t) from OBT data

FInally, the numerical results derived from data on oil breakdown times or high-voltage trans-
former life-testing failure times showed that the suggested Hjorth model is helpful in solving the
engineering problems as well as the suggested inferential issues. Moreover, to place our results in
context, it is important to compare them with findings from related studies. The parameter estimates
and reliability measures obtained from the two real data sets confirm the flexibility of the Hjorth
model under constant-stress accelerated life testing, particularly in capturing increasing and bathtub-
shaped hazard rates. The current study is the first effort to integrate the Hjorth lifespan model into the
reliability domain using accelerated life tests. In contrast, classical models such as the Weibull, gamma,
and generalized exponential distributions are limited in this regard.

7 Practical and Theoretical Implications

The proposed framework carries several important implications for both reliability theory and
industrial practice. On the theoretical side, the study demonstrates that the Hjorth distribution, when
linked with stress through a log-linear model, offers a flexible alternative to traditional two-parameter
lifetime models such as the Weibull and gamma. Its ability to capture constant, increasing, decreasing,
and bathtub-shaped hazard rates significantly broadens the class of lifetime distributions available for
accelerated life testing, thereby strengthening the statistical foundations of reliability analysis.

From a practical standpoint, the integration of the Hjorth model with constant-stress accelerated
life tests under the improved adaptive progressive Type-II censoring scheme provides engineers and
reliability practitioners with an efficient tool for decision-making. For instance, in the context of high-
voltage transformers, the model can guide the estimation of the reliability function under normal
conditions, enabling more accurate scheduling of preventive maintenance and reducing unexpected
downtime. In warranty analysis, the ability to model bathtub-shaped hazards supports better pre-
diction of early-life and wear-out failures, allowing firms to design more cost-effective warranty
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policies. Likewise, in industries such as aerospace and automotive engineering, where tests often
involve small samples and censored data, the Bayesian approach proposed in this study ensures more
stable inference, improving risk assessments and long-term planning.

Overall, by combining flexibility in hazard modeling with efficiency in handling censored ALT
data, the proposed framework enhances both the theoretical toolkit of reliability analysts and the
practical decision-making capabilities of engineers and industrial managers.

8 Concluding Remarks

This study addressed the critical challenge of assessing highly reliable products by proposing an
integrated framework that combined constant-stress accelerated life tests with an improved adaptive
progressive Type-II censoring scheme. The Hjorth distribution, selected for its exceptional flexibility
in modeling four distinct hazard rate patterns (constant, decreasing, increasing, and bathtub-shaped),
was applied under a log-linear life-stress relationship. The methodology adopted both classical and
Bayesian approaches, deriving maximum likelihood estimates with approximate confidence intervals
and Bayesian estimates with credible intervals using Markov Chain Monte Carlo sampling. The
estimation covered both the model parameters and the reliability function under normal operating
conditions. A Monte Carlo simulation study is conducted to compare the performance of various
estimates. The simulation results show that Bayesian estimators outperform maximum likelihood
estimators in precision, especially with small samples or heavy censoring. They also show that higher
censoring thresholds and a greater number of stress levels generally improve accuracy and coverage,
underscoring the influence of experimental design. Moreover, left-censoring yields more stable esti-
mates for stress-related parameters and use-level reliability, whereas right-censoring performs better
for baseline parameters. The practical utility of the framework was validated through real-world
accelerated lifetime data sets, confirming its effectiveness in reliability applications. By considering
the integration of the improved adaptive progressive Type-II censoring scheme with constant-stress
accelerated life tests for the Hjorth model, this work filled a significant gap in the reliability literature,
where prior studies predominantly focused on conventional distributions. A natural extension is to
develop estimation procedures for the Hjorth model, including use-level reliability, for step-stress
accelerated life tests using the same censoring scheme. This work is under consideration and will be
reported at a later date.
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