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Abstract. This work presents a novel force method for multiphase flow in which displacements 

and forces progress while strains terminate on surfaces between two different phases, such as 

the surface between air and liquid. This report is part of a research project to apply Helmholtz 

decomposition (H-d) to the finite element method. State vectors continues to exist on the surface 

of multiphase. The conventional scheme uses displacement method and applies a model to set 

Dirichlet boundary conditions for air on the air-liquid interface. The proposed scheme allows 

simulating it without such modeling. 
 

 

1 INTRODUCTION 

1.1 Introduction of a novel force method using the transfer matrix 

This work presents a novel force method for multiphase flow in which displacements and 

forces progress while strains terminate on surfaces between two different phases, such as the 

surface between air and liquid. 

However, because the proposed force method is developed for general continuum mechanics, 

it differs from the so-called conventional force method in the framework, which is constructed 

based on the statically determined main structure. † 

In the transfer matrix approach, the vector consisting of displacement u and force  is called 

“state vector.” 

Let us refer to the overall state vector, which includes components like {𝒖, ∇𝑭, ∇∇𝑭,⋯ } as 

the “state vector,” and {𝒖, ∇𝒖, ∇∇𝒖,⋯ } as the “derivative vector.” 

The former is represented by the latter as follows: {𝒖, ∇𝑭, ∇∇𝑭,⋯ } = {𝒖, 𝜇∇𝒖, 𝜇∇∇𝒖,⋯ },  

===<note>=========================================================== 

In conventional “force method,”† the {forces} are independent variables and the equation 

defining the constraint conditions are satisfied. 
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where 𝜇 is the viscosity coefficient. 

The element represented by the state vector will be referred to as the “state vector element.” 

The rationale for this will be explained later but for now let us refer to the proposed approach 

of employing node parameters {𝒖, ∇𝑭}𝑘  on vertex nodes as “state vector method,” which 

encompasses both the displacement and force methods. †† 

The “one-by-one corresponding particle/Cartesian cell (P/CC) model” [1] is proposed here 

as a multiphase flow model. The moving particle and vertex nodes of the neighboring 

hexahedral cell are independently coupled to the Cartesian cells (CC) in the P/CC model.  

At the start of the simulation, the particle connects to the initial CC center and the vertex to 

the CC’s vertex nodes. We can image dual grids: one connecting to the neighbor vertices and 

another to the neighboring particles. We denoted the former as “vertex node cell” and the latter 

as “particle grid cell.” The former cell includes a unique particle, and the latter includes a vertex 

node. 

As the simulation progresses, each particle connects to the nearest CC center, thereby 

forming particle grid cell. Each vertex node must be in located the particle grid cell individually. 

Let us position the vertex node on the gravity of the particle grid cell as the initial coordinate, 

which is corrected to conserve the initial particle cell volume. 

At the time step n, the current phase of the hexahedral cell can be ascertained using the CC 

because both the permanent and current addresses are memorized in the CC. The state vector 

finite element approach is used to calculate the P/CC model in this study. 

1.2 Discrete Helmholtz decomposition 

This report is part of a research project to apply Helmholtz decomposition (H-d) to the finite 

element method (FEM). 

To apply H-d to FEM, H-d is improved, and the improved H-d is referred to as “discrete 

Helmholtz decomposition (dHd),” which is the outcome of this study. 

An incompressible flow is assumed in this work. The dHd expression for incompressible 

flow is 𝒖 = ∇𝝍 ∙ {1,1,1}𝑇  (𝑑𝑖𝑣𝝍 = 0) , where 𝒖  denotes the displacements in the Cartesian 

coordinates and is represented by the Einstein contraction convention (tensor contraction using 

the Einstein summation convention) by ∇𝝍 in the right hand side. 

A new symbol for the ∇𝝍  expression is defined as ∇𝝍 ≡ [∇𝑑𝑖𝑎𝑔𝝍, ∇𝑜𝑓𝑓𝑑𝝍] , which 

represents the decomposition of ∇𝝍 into lateral (longitudinal) and transverse components. 

A new vector operator is also defined as ∇1𝝍 ≡ ∇𝝍 ∙ {1,1,1}𝑇 , where ∇1𝝍 ≡ ∇𝑑𝑖𝑎𝑔𝝍+

offd𝝍 , which represents the lateral and transverse components of displacement 𝒖 . 

Subcontractions are used to represent the latter. Therefore, let us call it “transverse components 

subcontraction,” which is a very important conception to understand that how two-dimensional 

(2D) model can be obtained from the 3D model. This is explained in the next section. 

===<note>=========================================================== 

In the proposed novel force method††, {displacement, force} are independent variables and 

the virtual work equation is satisfied. 
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The compressible component of the flow is represented by ∇𝜑 (∇2𝜑 ≠ 0) . Therefore, 
∇𝜑 (∇2𝜑 = 0) can be temporarily used for computing the incompressible flow. 

The above expressions of dHd by potential 𝝍 are also represented in ∇1𝝍 ≡ 𝑢𝑖,𝑗. 

1.3 Proposed relationship between 3D model and 2D model 

The x-y 2D model is a model achieved by the application of the z-axis periodic boundary 

conditions of the 3D model. 

In FEM, the number of finite elements in z-axis is sufficient to build the system and the node 

parameters in x-y planes can be equaled, achieving the 2D model. 

The 2D model is represented using displacement {u,v} and {w}, where 𝜕𝑤 𝜕𝑧 = 0.⁄  This 

perception is important to explain the stream function  and recognize mirror images. 

The torsion around z-axis 𝜕𝑤 𝜕𝑥 (= 𝜕𝑤 𝜕𝑦) ⁄⁄  in 3D are equal to the transverse components 

in x-y plane, i.e., 𝜕𝑤 𝜕𝑥 = 𝜕𝑣 𝜕𝑥 ⁄⁄   and 𝜕𝑤 𝜕𝑦 = 𝜕𝑢 𝜕𝑦⁄⁄  . Therefore, the off-diagonal 

components (transverse components) in ∇𝒖 can be contracted from six to three components. 

Therefore, the lateral components are represented by scalar potential 𝛹,  i.e., ∇𝛹 =
{𝜕𝑤 𝜕𝑥⁄ = 𝜕𝑣 𝜕𝑥,⁄  𝜕𝑤 𝜕𝑦 = 𝜕𝑢 𝜕𝑦, 𝜕𝑢 𝜕𝑧 = 𝜕𝑣 𝜕𝑧},⁄⁄  ⁄⁄  which is similar to the stream fun-

ction ∇𝜓 = {𝑣 = 𝜕𝜓3 𝜕𝑥 = 𝜕𝜓2 𝜕𝑥,⁄⁄ 𝑢 = 𝜕𝜓3 𝜕𝑦 = 𝜕𝜓2 𝜕𝑦,𝑤 = 𝜕𝜓1 𝜕𝑧⁄  ⁄⁄ = 𝜕𝜓2 𝜕𝑧}⁄ . 

The contraction in modeling from 2D to 1D is 𝜕𝑤 𝜕𝑥 = 𝜕𝑣 𝜕𝑥⁄⁄  (𝜕𝑣 𝜕𝑦 = 0⁄ ) in the case 

of the beam model. Therefore, the locking of the so-called Timoshenko’s beam is resolved using 

the variable 𝜕𝑣 𝜕𝑥⁄ . The locking in Mindlin model is resolved similarly. 

1.4 Mapping method 

The state vector element is represented in Fig 1 by a quasi-C1-continuity element, which is 

an incomplete three-fold third-order function. 

 

    Figure 1: Quasi-C1-continuity finite element represented by the three-fold third-order function 

However, a three-fold first-order function is used to express the shape element. 

As a result, the mapping is done using a nonisoparametric technique. 
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dHd is represented by a normalized cell 𝝌 (1 × 1 × 1) and uses nonisoparametric mapping 

to calculate the dynamic hexahedral cell. 

First, FEM is employed to calculate the shape element’s 𝒙 coordinates using the mapping 

method f: 𝒙→𝝌. 

FEM calculates 𝒙 using the node parameters {𝒖}𝑘: 𝒙 = {𝒙}𝑘 + 𝒖(𝝌), where {𝒙}𝑘  denotes 

the coordinates of the shape element’s vertex node and 𝒖 denotes the displacement. 

The displacements 𝒖  for the state vector element represented by a three-fold third-order 

function are derived using independent variables 𝒙, which are calculated above. 

(𝑋, 𝑌, 𝑍) represents the global coordinates, and (𝑥, 𝑦, 𝑧) represents the local coordinates in 

the hexahedral cell, with origin (𝑋, 𝑌, 𝑍)1, where (𝑋, 𝑌, 𝑍)𝑘 represents the global coordinates 

of the vertex nodes k (= 1,2,3,⋯,8). 

1.2 Multidirectional finite element method 

The most important findings of the study are that the expression of {u,v} by stream function 

is an expression on 𝜃 = 𝜋 4⁄  rotated-coordinates around the z-axis, and {v,w} and {w,u} are 

rotated individually on 𝜋 4⁄  around the x- and y-axes and expressed using vector potential 𝝍 in 

three-dimensions (3D), which is the H-d expression. 

When and only when the Coulomb gauge is satisfied by a solution of the strong form 

(analytical solution), that is, when the algebraic solution is guaranteed, the H-d equation can 

represent displacements in arbitrarily rotated coordinates. 

However, because FEM is a method for obtaining a solution by week form, therefore, 

residuals exist between the solutions, for example, solutions between cases 𝜋 4⁄  and −𝜋 4⁄  or 

𝜃 = 0. 

The simple average of their solutions is used in the multidirectional FEM. 

The Cauchy-Riemann equations must be satisfied by the multidirectional FEM to eliminate 

digit losses. That is, however, general tasks for the robust model. 

It is worth noting that Cauchy-Riemann equations are derived in two dimensions (2D). The 

adoption of the so-called conjugate variable concept enables to apply the conception of Cauchy-

Riemann equations to three-dimensional problems applying to the mirror images. 

 

2 FUNDAMENTAL EQUATIONS 

In Lagrangian mechanics, the Navier-Stokes (NS) equation is defined as 𝜌𝑑𝑼 𝑑𝑡⁄ =
𝜇∇2𝑼 where 𝑼 is velocity. 

The pressure 𝑃 term is eliminated from the NS equation, since the equation, ∇𝑃 +
1 3𝜇⁄ ∇div𝑼 = 𝟎 and (∇𝑝 + 1 3𝜈⁄ ∇div𝑼 = 𝟎). 

The velocity 𝑼 is represented by the velocity of ∇1𝝍 and mapped. 

The mapped NS equation is linear in the Lagranian expression. The simultaneous equation 

appears to be solved without an iterative method based on the implicit method at a galance; 
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however, iteration is inevitable, because the equations div𝝍 = 𝟎 and ∇div𝑼 = 𝟎 must be 

satisfied on n+1. 

3 FINITE ELEMENTS FOR STATE VECTOR METHOD 

The finite element described by state vector {𝒖, ∇𝑭, ∇∇𝑭,⋯ } is represented by an 

incomplete three-fold third-order function with 32 terms and expressed by node parameter 

vector {𝑢𝑖, ∇𝐹𝑖}𝑘, which has four degrees of freedom per node. This is a quasi-C1-continuity 

element. 

A scheme in the FEM does not exist to apply this quasi-C1-continuity element. 

The transfer matrix method called reduction method also uses the state vector. The 

method is developed in 1954–1956 at the universities of (Technischen Hochschulen) 

Hannover, Braunschweig, and Darmstadt. The method called different respectively. 

The “reduction method” means that the state vector on point a resolve onto point b. 

The resolved state vector’s, however, half terms can be known (no more parameters) by 

satisfying the boundary condition on the point a and the other half parameters are 

determined using other side boundary on point b or more transferred point. This process is 

known as the transfer matrix method for the beam. 

In the proposed state vector method, the state vector {𝒖, ∇𝑭, ∇∇𝑭,⋯ } is represented with 

the node parameter vector {𝑢𝑖 , ∇𝐹𝑖}𝑘 on the vertex nodes. In the case of the beam, their 

parameters are present on the both ends. 

For tree-type framework†, the transfer matrix method has been achieved [2],[3]. However, 

the research of network-type framework†† has been abandoned [4]. 

A typical tree-type system is a continuous girder, i.e., a tree-type framework but without 

branches. Furthermore, the system can be represented using a simultaneous equation with the 

parameters {𝑤, 𝜃,𝑀, 𝑄}𝑘. This is a state vector method, which is represented by {𝒖, ∇𝑭}𝑘, 

where {𝒖}𝑘 ≡ {𝑤, 𝜃}𝑘 and {∇𝑭}𝑘 ≡ {𝑀,𝑄}𝑘 as a proper expression for the continuous girder. 

This expression can be applied to broad continuum mechanics problems represented by finite 

elements. As a result, the technique that employed the state vector shall be referred to as the 

“state vector method.” 

In the finite element, the transfer matrix (reduction matrix) transfers the state vector {𝒖, 𝑭} 
(Zustandvektor) from point a to point b (the reduction matrix deduces the state vector on a 

onto b). The coefficient vector of the finite Taylor series is referred to as the “derivative 

vector,” as opposed to the state vector, as previously explained. 

Strains are calculated with the former, whereas displacements and forces are calculated 

===<note>=========================================================== 

Tree-type framework† : open-type framework, geschlossene Rahmentrangwerke in German 

as technical term. 

network-type framework††: closed-type framework, geschlossene Rahmentragwerke in 

German. 
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vectors from point a to point b. Rearranging the transfer matrix of the derivative vector yields 

the transfer matrix of the state vector. In the case of the single phase problem, this is a linear 

problem on  and . 

The transfer matrix of the derivative vector, {𝑢𝑖
(𝑗𝑘𝑙)

}0 is the matrix made up of derivatives 

of the vector {𝑥𝑗𝑦𝑘𝑧𝑙 𝑗! 𝑘! 𝑙!⁄ }, which are power series derivatives. 

The state vector is obtained by substituting the first-order components of the derivative 

vector {𝑢𝑖
(𝑗𝑘𝑙)

}0 with {𝐹𝑖
(𝑗𝑘𝑙)

}0, where {𝐹𝑖
(𝑗𝑘𝑙)

}0 = {𝜇𝑢𝑖
(𝑗𝑘𝑙)

}0. The cell is represented by the 

node parameter vector {𝒁}𝑘 in Equation (1). 
 

{𝒁}𝑘 = {𝑢𝑖
(000)

, 𝐹𝑖
(100)

, 𝐹𝑖
(010)

, 𝐹𝑖
(110)

, 𝐹𝑖
(001)

, 𝐹𝑖
(101)

, 𝐹𝑖
(011)

, 𝐹𝑖
(111)

}𝑘  (1) 

 
Equation (2) represents the node parameter vector for the quasi-C1-continuity element. 

 

{𝒁}𝑘 = {𝑢𝑖
(000)

, 𝐹𝑖
(100)

, 𝐹𝑖
(010)

, 𝐹𝑖
(001)

}𝑘  (2) 

 

As a result, Equation (3) represents the transfer of the state vector {𝒁}0 on point 0 to point 

x, where {𝒁}𝒙 is the state vector on point x and [𝑻𝒙] is the transfer matrix. 
 

{𝒁}𝒙 = [𝑻𝒙] ∙ {𝒁}0  (3) 

 

The following is a simple example of [𝑻𝒙] for a two-dimensional model (2Dm). 
 

{

𝑢(00)

𝐹(10)

𝐹(01)

𝐹(11)

}

𝒙

= [𝑻]𝒙 ∙ {𝒁}𝟎 =

[
 
 
 
 
 1  

𝜓1,𝑥
𝜈

   
𝜓1,𝑦

𝜈
  
𝜓1,𝑥𝜓1,𝑦

𝜈
  

   1         0           𝜓1,𝑦
               1           𝜓1,𝑥

                         1
                     ]

 
 
 
 
 

∙ {

𝑢(00)

𝐹(10)

𝐹(01)

𝐹(11)

}

𝟎

  (4) 

                           where   {𝒁} : state vector (Zustandvektor) 

                                          [𝑻]𝒙 : transfer matrix (Übertragungsmatrix). 

 

The virtual work equation is integrated using {𝒁}𝒙 and expressed with node parameters in 

Equations (3) and (4), which include force parameters {𝑭}𝑘. For continuum mechanics, this is 

the force method. 

4 NOVEL 𝚽-𝒖 FINITE ELEMENT HYBRIDIZATION 

4.1 Chain rule of Helmholtz decomposition 

As previously indicated, dHd is the final outcome of the current study, and a novel Φ-𝒖 

FEM is the outcome of the dHd scheme. 
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H-d can decompose any arbitrary vector field, such as potential, displacement, and strain 

vector fields, according to the Helmholtz theorem. 

Thus, H-d is associated with the formula, although it can also be represented using various 

variables. This is referred to as the “chain rule of H-d.” 

For example, ∇2𝜑 − 𝑑𝑖𝑣𝑼 = 0 and ∇2𝜐 − 𝑑𝑖𝑣𝝍 = 0. The former is the equation to satisfy 

the continuity equation and the latter is corresponds to the Coulomb gauge. 

4.2 Scalar potentials by the Chain rule 

The following equations hold ∇𝑑𝑖𝑎𝑔
2 𝜐 = ∇𝜑, ∇𝑑𝑖𝑎𝑔

2 𝜑 = ∇Φ,∇𝑑𝑖𝑎𝑔
2 Φ = ∇𝑃, etc., according 

to the chain rule. 

In incompressible flow, the potential 𝑃 is commonly used instead of the potential 𝜑 by 

weighting with weight factor 𝛥𝑡 to offset the lateral components from the velocity. 

As discussed later, the potential 𝜐 is used to satisfy the Coulomb gauge. 

So far, the scalar potential 𝜑 has been used to compensate for the residual of the continuity 

equation. 

However, I recently observed that the scalar potential Φ represents the particle’s position, 

which is represented by current coordinates. 

As a result, the incremental values of the particle’s displacements u,v,w must be equal to 

−x,−y,−z., and their cumulative {𝑢, 𝑣, 𝑤} values must be equal to {Φ𝑥, Φ𝑦 , Φ𝑧}. 

4.3 Tensor subcontraction: Equations of components in 𝛁𝒖 

Tensor contraction is used to depict the displacements 𝑢𝑖; 𝑢𝑖 is considered as a reflection in 

three opposing mirrors. The x-y mirror is positioned on z = 0, and so on. 

In the x-y mirror, for example, there are three equations between off-diagonal components: 

𝑢(010) = 𝑤(010),  𝑣(100) = 𝑤(100) in ∇𝒖. 

Under the assumption that 𝑐𝑢𝑟𝑙𝒖 = 𝟎, the dHd expression of ∇1𝒖 is expressed as Equation 

(5). Shear strains are still the transverse components in Equation (5). The variables from 

Equation (5) will be used in the next sections. However, real values are the average of 

numerical findings. 
 

 ∇1𝒖 =

{
  
 

  
  
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
+
𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥
+
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑧 }
  
 

  
 

 (= ∇ {
𝛷
𝛷
𝛷
}) (5) 

 

Equation (6) is used to represent the 2Dm. However, 𝑐𝑢𝑟𝑙𝒖 is employed in this equation, 

that is, (𝑤(01) − 𝑤(10)), since components {𝑤(10), 𝑤(01)} are included in 2Dm if, and only if, 

𝑤(001) = 0, representing a 2Dm. 
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 ∇1𝒖 =

{
 
 

 
 𝜕𝑢

𝜕𝑥
+ (

𝜕𝑢

𝜕𝑦
+
𝜕𝑤

𝜕𝑦
)

(
𝜕𝑢

𝜕𝑦
−
𝜕𝑤

𝜕𝑥
) +

𝜕𝑣

𝜕𝑦}
 
 

 
 

,𝑤ℎ𝑒𝑟𝑒 ∇𝑤 = ∇𝑠ℎ𝑟𝒖 (6) 

 

This is the concept of the stream function. Similarly, 𝑐𝑢𝑟𝑙𝒖 can be employed in 3D 

problems based on the following equations. 
 

𝑐𝑢𝑟𝑙𝒖 = {𝑤(010) −𝑤(100), 𝑢(001) − 𝑢(010), 𝑣(100) − 𝑣(001)}𝑇 (7) 

 

4.4 Conjugate variable conception 

Let us refer to a pair of variables (𝐴 + 𝐵) and (𝐴 − 𝐵) as “conjugate variables.” 

When (𝐴 + 𝐵) includes a loss of digit |±𝑒|, i.e., (𝐴 + 𝑒) + (𝐵 − 𝑒) individually, the 

conjugate variable must be minimized to minimize 2𝑒, i.e., by (𝐴 + 𝑒) − (𝐵 − 𝑒) ⟹ 0, 

where the converse is also true. 

In 2Dm, these are the Cauchy-Riemann equations, which are applied to the mirror images. 

4.5 Virtual work equation and 𝚽-𝒖 finite element hybridization for constraint 

conditions 

The following is the virtual work equation using the dHd expression: 

 

∫[
 

Ω

𝛿𝒖 ∙ 𝜌
𝜕𝑼

𝜕𝑡
+ 𝛿∇𝒖 ∙ ∇

𝜕𝑭

𝜕𝑡
]𝑑Ω = 0, 

𝑤ℎ𝑒𝑟𝑒 
𝜕𝑼

𝜕𝑡
=
(𝛥𝒖 + 𝒖𝑚−1)𝑛+1 − 𝒖𝑛

𝛥𝑡2 2⁄
,

𝜕𝑭

𝜕𝑡
= (

𝛥𝑭 + 𝑭𝑚−1

𝛥𝑡
)𝑛+1 

                      𝛥: incremental, 𝒖𝑚 = 𝛥𝒖 + 𝒖𝑚−1 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛 + 1 

(8) 

 

 

 

 

 

The following section states that the incremental 𝛥𝒖 is bound by the continuity condition, 

Cauchy-Riemann equations, and other constraints. 

5 CONSTRAINT CONDITIONS FOR VIRTUAL WORK EQUATION 

First, let us consider how to satisfy the Coulomb gauge. 

The lateral components, i.e., {𝑢, 𝑣, 𝑤} − {Φ,Φ,Φ} = 𝟎, require the Coulomb gauge, as 

discussed earlier. 

When the element volume is conserved, the mass can be conserved to yield an approximate 

solution under the assumption that the density within the element is constant. 

The scalar potential 𝜐 (upsilon), which is represented by a three-fold two-order element, is 

used to satisfy the Coulomb gauge by Equation (9). 
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∫[
 

Ω

δ∇2𝜐 ∙ (∇2𝜐 − (𝑢 + 𝑣 + 𝑤))]𝑑Ω = 0

∫ [
 

Ω

𝛿𝒖 ∙ (𝛥𝒖 + {
𝜐(200)

𝜐(020)

𝜐(002)
})]𝑑Ω = 0

    

}
 
 

 
 

,   𝑤ℎ𝑒𝑟𝑒 𝒖𝑛 = 𝒖𝑛−1 + 𝛥𝒖 (9) 

 
The incremental 𝛥𝒖  offsets the residual of the Coulomb gauge by adding Equqtion (9) as a 

conditional expression to the vertual work equation. 

6 SURFACE TENSION MODEL 

The surface tension model is represented in equation (10), where the scalar potential 𝜐 is 

obtained by solving simultaneous equations in which temporarily used and different from the 

equation (9) under the Dirichlet bounrary at the Ceiling of the simulation domain. 𝑃g is the 

atmospheric and water pressure, where g is gravitational accelration. 

 

∫[
 

Ω

𝛿𝒖 ∙ (𝜌
𝜕𝑼

𝜕𝑡
+ ∇𝑃g) + 𝛿∇𝒖 ∙ ∇

𝜕𝑭

𝜕𝑡
]𝑑Ω = 0,𝑤ℎ𝑒𝑟𝑒 𝑃g = ∇

1𝜐     

∫ [
 

Ω

δ∇2𝜐 ∙ (∇2𝜐 − 𝜌g)]𝑑Ω = 0                                                               
}
 
 

 
 

 (10) 

 

7 CONCLUSIONS 

- The multiphase flows are generally encountered flow systems, for which a multiphase 

model called P/CC model has been proposed. 

- State vectors continues to exist on the surface of multiphase. The conventional scheme 

uses displacement method and applies a model to set Dirichlet boundary conditions for 

air on the air-liquid interface. The proposed scheme allows simulating it without such 

modeling. 

- Quasi-C1-continuity U-element method was applied to a 2D cavity problem simulated 

for 15 years. However, the Cauchy-Riemann equations were not considered. See 

Appendix-1 for more information. 

- Three years prior, the C1-continuity element method depicted a 2D cavity with a stream 

function. (Cauchy-Riemann equations not considered.) 

- A bending plate scheme based on the C1-continuity element was recently developed. 

See Appendix-2 for more information. 

- This report results from a long-term study on H-d and its application to FEM. 

- The most important revelation is that the H-d only represents a vector field in one of 

the rotated coordinates. 

- To include Cauchy-Riemann equation to the scheme is very important to construct a 

robust scheme, i.e., the multidirectional FEM. This results from the long years studies. 

- Another difference is that the vector potential  represents dHd Lagrangian 

coordinates. 

- The vector potential   can be represented by stream function  of scalar by the 

contraction of the transvers components. I will present it later. 



J. Imamura 

 10 

- A series of investigations have led to the development of a multidirectional FEM 

concept, which includes Cauchy-Riemann equations in mirror images. 

- The scalar potential Φ represents displacement of the particle and 𝜑 represents 

coordinate positions, which is represented by current coordinates, as obtained from the 

findings of this research. 

- The proposed model will be numerically verified in the future. 
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[Appendix-1] 2D cavity flow using quasi-C1-continuity elements for Re 10,000 

(Cauchy-Riemann equations was not considered.) 

 

Re 1×104 (2D)

 : contar

30×30
(t=800) 

20×20
(t=500) 

15×15
(t=200) 

(t=300 same to 200)

Down to 10×10

○:Ghia et al.

2D cavity using quasi-C1-continuity for Re 10,000
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[Appendix-2] The typical example of the force method application: plate bending 

The Kirchhoff theory for plate bending represented by biharmonic function in equation (a) 

is widely known as a typical example to be apply the C1-continuity element, where D is plate 

stiffness, w is deflection and q is distributed load. 
 

𝐷∇2∇2𝑤 = 𝑞  (a) 

 

The C1-continuity element is represented with node parameter vector {𝝋}𝑘 in equation (b), 

where 𝑀(11) = 𝐷𝑤(11). 
 

{𝝋}𝑘 = {𝑤 
(00), 𝑤 

(10), 𝑤 
(01), 𝑀 

(11)}𝑘  (b) 

 

A numerical example is shown in Table 1 in case of a peripheral fixing rectangular plate 

under uniformly distributed load q. 

 

                    Table 1. An application of the proposed force method 

 
 

The most important point to solve the C1-continuity element is that the force parameter in 

the variational formula must be applied as the freedoms to satisfy the Neumann boundary 

conditions.  

 

That is that the node parameter {𝑀 
(11)}𝑘 must be dedicated for variational formula (c) not 

only on boundaries of the system but also for distribution 𝑀 
(11) in inner domain of the plate 

to satisfy the stress equilibrium inter element boundaries. 
 

∫
𝜕𝑀 

(11)

𝜕{ 𝑀 
(11)}𝑘  Ω

∙ 𝑀 
(11)𝑑Ω = 0  (c) 

 

The variational in inner domain is to minimize the variation of the residual for the Cauchy-

Riemann equation: 𝜃𝑥
(01)

+ 𝜃𝑦
(10)

= 0 on  /4 rotated coordinate system. 

 Print up to 3 decimal place

 Print up to 4 decimal place

2×2 4×4   6×6     8×8     10×10  20×20

1.303     1.263     1.264     1.265      1.265       1.265

1.3030 1.2631   1.2643   1.2648    1.2651     1.2653

Additional cases： 30×30: =1.2653

40×40: =1.2653

Peripheral fixing rectangular thin plate using two-fold third order C1-continuity element

n×n elements


