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Abstract. This work aims to extend the techniques used for the optimal control of the Navier-
Stokes systems to control a steady multi-scale FSI system. In particular, we consider a multi-
scale fluid-structure interaction problem where the structure obeys a membrane model derived
from the Koiter shell equations. With this approach, the thickness of the solid wall can be
neglected, with a meaningful reduction of the computational cost of the numerical problem.
The fluid-structure simulation is then reduced to the fluid equations on a moving mesh together
with a Robin boundary condition imposed on the moving solid surface. The inverse problem
is formulated to control the velocity on a boundary to obtain a desired displacement of the
solid membrane. For this purpose, we use an optimization method that relies on the Lagrange
multiplier formalism to obtain the first-order necessary conditions for optimality. The arising
optimality system is discretized in a finite element framework and solved with an iterative
steepest descent algorithm, used to reduce the computational cost of the numerical simulations.

1 INTRODUCTION

In this work, we study the optimal control of a fluid-structure system, where the solid is
modeled with a multiscale model. The fluid-structure interaction (FSI) simulations have gained
popularity and interest in the research community thanks to the large variety of possible applica-
tions. In such numerical problems, the fluid flow changes the tensional state of a solid structure
and, at the same time, the solid deformation affects the fluid flow. Several models have been
implemented to represent the behavior of the interaction between a fluid and a solid, and a large
variety of articles and books is available on this topic [1, 2].

We consider a fluid-structure multiscale model, based on the reduction of the dimensionality
of the solid, through the so-called Koiter shell equations firstly presented in [3]. To couple the
fluid and the structure domains, the Koiter shell equations are embedded into the fluid equations
as a Robin boundary condition [4]. By using this model, which has many applications in cases
where a fluid interacts with a thin membrane, the optimal control system is easier to obtain.

To control the presented FSI system, an adjoint-based method is used. Such a method has
been proven to be a good approach for the optimal control of complex computational fluid
dynamics problems [5]. Moreover, these methods have a solid mathematical background and
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the existence of local optimal solutions can be proven for many interesting cases [6]. Many works
deal with adjoint FSI optimization, such as [7, 8] and references therein. In particular, in [9] an
optimal pressure boundary control problem for a steady multiscale fluid-structure interaction
system has been presented. In this paper we solve a stationary displacement matching problem:
the control variable is the fluid velocity on a boundary, and we use the Lagrangian multipliers
method to obtain the optimality system, and to reproduce a desired displacement in a target
region of the domain.

Moreover, we focus on the regularity of the optimal solution on the controlled boundary. In
fact, the presence of fractional norms can occur in the treatment of boundary optimal control
problems. These norms lead to the presence of fractional derivatives in the first-order necessary
conditions that characterize optimal solutions. To deal with the issue of balanced regularity [10],
we implement a numerical algorithm for the simulation of fractional operators on the controlled
boundary of the domain, obtaining optimal solutions in the correct functional space.

The rest of this paper is organized as follows. In Section 2 we introduce the mathematical and
physical model describing the considered multiscale FSI problem. In Section 3 the optimal con-
trol problem is introduced and we derive the optimality system arising from the minimization of
the augmented Lagrangian. Moreover, we introduce the regularization of the presented optimal
control problem in the fractional Sobolev space, in order to deal with the balanced regularity
issue. In Section 4, the implemented numerical algorithm is presented, and the finite element
formulation for the fractional operator is reported. Then, some numerical results are shown.

2 Physical model

In this section, the mathematical model for FSI problem is introduced. While the fluid is
modeled with the standard Navier-Stokes equations, a shell model is used for the solid modeling.
In particular, the structural model is based on the Koiter shell approach that considers the model
of an elastic thin membrane.

In the following, we denote with L2(Ω) the space of square integrable functions on the domain
Ω, and with Hs(Ω) the standard Sobolev space with norm ‖ · ‖s. Let Hs

0(Ω) be the space of
all functions in Hs(Ω) that vanish on the boundary of Ω, and with H−s(Ω) the dual space of
Hs

0(Ω). The trace space for the functions in H1(Ω) is denoted by H1/2(Γ). The operator (·, ·)
will denote the L2(Ω(t)) inner product, and (·, ·)Γs will denote the L2(Γs) inner product. We
will use the following continuous [11] bilinear and trilinear forms

a(u,v) =

∫
Ω

(∇u +∇uT ) : ∇vdx ∀u,v ∈ H1(Ω) , (1)

b(u, q) = −
∫

Ω
q∇ · udx ∀q ∈ L2

0(Ω),∀u ∈ H1(Ω) , (2)

c(w,u,v) =

∫
Ω
w · ∇u · vdx ∀w,u,v ∈ H1(Ω) . (3)

The Koiter shell approach relies on the assumptions that the structure displacements are
small and normal to the shell surface. The domain of the shell structure is denoted by Γs,
while the undeformed membrane configuration is indicated with Γs,0, the displacement and the
external surface forces vectors by η and fs. The weak form of the considered shell equation
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results ∫
Γs,0

ρsε
∂2η

∂t2
·ψ dΓ +

∫
Γs,0

εEαβλδγαβ(η)γλδ(ψ) dΓ =

∫
Γs,0

fs ·ψ dΓ , (4)

for appropriate test functions ψ belonging to a functional space to be determined on the basis
of the imposed boundary conditions. Furthermore, ρs and ε are the density and the thickness of
the shell, respectively, and with Eαβλδ and γαβ the elasticity and the change of metric tensor,
respectively.

In this work, negligible bend, shear stresses, and linear elastic constitutive law with a homo-
geneous and isotropic material are considered [3]. Under these hypotheses, the structure model
(4) reduces to a simple scalar equation. The dimension of the structure is then reduced by one.
So the following simplified model is obtained

ρsε
∂2ηn
∂t2

+ βηn = fs on Γs,0 ,

ηn|t=0 = ηn0 ,
∂ηn
∂t

∣∣∣
t=0

= ηnv on Γs,0 ,

(5)

where ηn represents the displacement normal to the reference solid surface Γs,0. The normal
displacement field η can be written as η = ηnn0, where with n0 we denote the normal unit
vector to the reference boundary Γs,0.

We consider also prestressed loading along the shell structure

ρsε
∂2ηn
∂t2

+ β∗ηn −∇ · (P∇ηn) = fs on Γs,0 , (6)

where P is the Cauchy stress tensor in the deformed configuration for tangential stresses. The
prestressed model (6) must be completed with proper boundary conditions, i.e., ηn|∂Γs,0 = 0.

The fluid is Newtonian, homogeneous and incompressible, described in ALE form [2, 12] as

ρf
∂u

∂t

∣∣∣∣
A

+ρf [(u−w) · ∇]u−∇ · σf = 0 on Ω ,

∇ · u = 0 on Ω ,

(7)

where ρf and u are the density and the velocity vector of the fluid, and σf is the Cauchy stress
tensor of the fluid written as σf = −pI + µ(∇u + ∇uT ), where p and µ are the pressure and
the dynamic viscosity of the fluid, respectively. The system of equations (7) is completed with
appropriate boundary conditions. The fluid domain is Ω, and w is the velocity of the points of
the fluid domain. On the moving boundaries we have w|Γs = ∂η/∂t. The velocity w is extended
over the domain by solving the armonic operator −∆w = 0 on Ω. Once w is known, the map
which connects each point x0 of the reference configuration into the deformed configuration xf
is defined as xf (t) = x0 +

∫ t
0 wdτ .

The structure equations can be reduced to a boundary condition on Γs for the fluid problem.
Therefore, the two sub-systems (7) and (5) can be coupled by imposing σf · n− fsn = 0 on Γs.
Let us define the functional space V 0 = {φ ∈ H1(Ω) : φ|ΓD

= 0}, where ΓD is the portion of
the boundary where Dirichlet conditions are imposed. In order to satisfy the continuity of the
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test functions φ · n = ψ over the interface surface Γs in the coupled system, a new functional
space is introduced as

W 0 = {(φ, ψ) ∈ V 0 ×H1(Γs) : φ · n = ψ over Γs} . (8)

The optimal control that is introduced in this work is based on the stationary solution of the
fluidstructure system. Therefore, in the following, we neglect all the time derivatives. We can
write the weak formulation for the coupled system as

ρfc(u;u,φ) + µa(u,φ) + b(p,φ)− (τ ,φ)ΓrΓs+

+ (β∗Jsηn, ψ)Γs + (PJs∇ηn,∇ψ)Γs = 0 , ∀(φ, ψ) ∈W 0,

b(u, q) = 0 , ∀q ∈ L2(Ω) ,

(9)

where τ = σf · n, and Js is defined by the differential transformation JsdΓs = dΓs,0. A finite
element technique is used to obtain the discrete weak formulation of (9). Following [4], we
explicitly treat the position of the fluid domain and consider an implicit discretization of the
coupling conditions. With this approach, the structural equation can be incorporated into the
fluid equations as a Robin boundary condition.

3 Optimal control problem

We now consider the displacement matching optimal control problem. We aim to obtain a
given shell deformation, by controlling the fluid velocity on a portion Γc of its boundary Γ. Let
vc be the control, such as

u = vcn|Γc on Γc , (10)

thus we assume that the tangential component of the velocity is zero on Γc. We introduce the
following objective functional

J (η, vc) =
1

2

∫
Γd

|η − ηd|2 dΓ +
λ

2
||vc||2Hs(Γc) , (11)

where η = ηnn0. The first term expresses the distance in norm between the actual displacement
in the normal direction and its desired value ηd over the controlled boundary Γd, which can
either be the whole moving wall or one sub-portion, while the second one has been added to
limit the Hs(Γc)-norm of the control, by means of a regularization parameter λ, which weights
the importance of the two terms over the cost functional. Choosing a value for it can be
challenging: too much regularization leads to smoother but less effective controls, while a lack
of regularization may cause numerical issues or non-physical solutions with singularities.

Note that, since u ∈ H1(Ω), the natural space where optimal boundary control vc should be
sought is H1/2(Γc). Usually, the cost term in (11) is modeled as a H1(Γc)-norm. However, this
approach leads to a more restrictive control space than the natural H1/2(Γc). In this paper, we
study and compare the regularization in both spaces, considering s = 1 and s = 1/2 in (11).
Note that H1(Γc) is a subspace of H1/2(Γc).
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3.1 Control in H1(Γc)

If the control belongs to H1(Γc), we have that the norm introduced in (11) can be expressed

‖vc‖2H1(Γc) = ‖vc‖2L2(Γc) + |vc|2H1(Γc) ,

where |vc|H1(Γc) is called seminorm and is given by

|vc|H1(Γc) =
(∫

Γc

|∇vc|2)dΓ
)1/2

.

The functional (11) can be reformulated as

J (η, vc) =
1

2

∫
Γd

|η − ηd|2 dΓ +
λ1

2

∫
Γc

|vc|2dΓ +
λ2

2

∫
Γc

|∇vc|2dΓ , (12)

where the regularization parameters λ1 and λ2 weights the L2(Γc)-norm and theH1(Γc)-seminorm
respectively.

We now introduce the following augmented Lagrangian functional L, that is obtained by
adding to the objective functional J the FSI state equations (9) multiplied by the appropriate
Lagrangian multipliers, also known as adjoint variables

L(η,u,ua, vc, pa,Γ) = J (η, vc) + ρfc(u;u,ua) + b(p,ua) + b(pa,u) + µa(u,ua)

− (τ ,ua)ΓrΓs + (β∗η,ua)Γs + (P∇η,∇ua)Γs + (u− vcn, sa)Γc ,
(13)

where we have used the vector η = ηnn0. The stationary points of the Lagrangian functional
can be found by setting to zero the Fréchet derivatives taken with respect to all the problem
variables. When the derivatives are taken with respect to the adjoint variables the weak form of
the state system (9) is recovered as well as the boundary conditions. By taking the derivatives
in the direction δp we get

DL
Dp

δp = b(δp,ua)− (δpn,ua)ΓrΓs = 0 ∀δp ∈ L2
0(Ω) . (14)

From (14), we find that ∇ · ua = 0 on Ω, and from the surface contributions we recover the
boundary conditions ua · n = 0 on ΓD. On ΓN we have δp = 0 since we prescribe Neumann
boundary conditions with fixed pressure.

For the derivatives in the direction δη, we have

DL
Dη

δη = (β∗δη,ua)Γs + (P∇δη,∇ua)Γs +

∫
Γd

(η − ηd) · δηdΓ = 0 ∀δη ∈ H1(Γs) , (15)

which gives the boundary conditions on Γs for the adjoint velocity. We now collect δu terms
and integrate by parts obtaining

DL
Du

δu = ρfc(δu;u,ua) + ρfc(u; δu,ua) + b(pa, δu)− µ(∆ua, δu)+

− (µ∇δu · n,ua)ΓrΓs + (µ∇ua · n, δu)Γ + (δu, sa)Γc = 0 , ∀δu ∈ H1(Ω) .
(16)
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Then the strong form of the adjoint velocity reads

ρf (∇u)T · ua − ρf (u · ∇)ua +∇pa − µ∆ua = 0 on Ω , (17)

with boundary conditions

ua = 0 on ΓD, (µ∇ua · n + pan) = 0 on ΓN ∪ Γs , (18)

and µ∇ua · n + pan = sa on Γc. Considering the variation δvc, we have

DL
Dvc

δvc = λ1(vc, δvc)Γc + λ2(∇vc,∇δvc)Γc − (δvcn, sa)Γc = 0 , ∀δvc ∈ H1(Γc) . (19)

Moreover we have to consider the contribution on L given by the motion of the boundary Γs
along the direction δη

DL
DΓ

δη =

∫
Γs

β∗(∇ua · n + χua) · δη dΓ = 0 ∀δη ∈ H1(Γs) , (20)

where χ represents the shell curvature. Under the hypothesis of small deformation we can safely
neglect the terms where χ appears. The term with ua is defined on the surface Γs and a constant
extension of this value towards the normal direction to the surface leads to a null normal gradient
of this term, so we have that DL

DΓ δη = 0.

3.2 Control in H1/2(Γc)

Before expressing the regularization term by means of the H1/2(Γc) norm, we first introduce
the fractional Sobolev spaces. Given a generic n-dimensional domain Ω ⊂ Rn, the fractional
Sobolev space W s,p(Ω) is defined as

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p

+s
∈ Lp(Ω× Ω)

}
, (21)

for any p ∈ [1,∞) and with a fractional exponent s ∈ (0, 1). It is an intermediary Banach space
between Lp(Ω) and W 1,p(Ω), endowed with the natural norm

‖u‖W s,p(Ω) =

(∫
Ω
|u|pdx+

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

) 1
p

, (22)

where the term

[u]W s,p(Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

) 1
p

(23)

is called Gagliardo seminorm. We focus on the case p = 2, which is an important case since the
fractional Sobolev space W s,2(Rn) turns out to be the Hilbert space Hs(Rn) defined as

Hs(Rn) =

{
u ∈ L2(Rn) :

|u(x)− u(y)|
|x− y|n2 +s

∈ L2(Rn × Rn)

}
. (24)
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We bound this definition on Ω, by saying that u ∈ Hs(Ω) if and only if the ũ ∈ Hs(Rn), where
the extension function ũ is defined as [13]

ũ(x) =

{
u(x) x ∈ Ω ,

0 x ∈ Rn r Ω .
(25)

The functional (11) can be expressed as

J (η, vc) =
1

2

∫
Γd

|η − ηd|2 dΓ +
λ1

2

∫
Γc

|vc|2dΓ +
λ2

2

∫
Rn

∫
Rn

|vc(y)− vc(x)|2
|x− y|n+1

dydx . (26)

where the reduction to Γc is obtained by imposing

vc =

{
0 on Rn r Γc ,

vc on Γc ,
(27)

and n is the dimensionality of Γc. Therefore, the derivative of the Lagrangian functional L,
obtained by (13) with the objective functional of (26), in the direction δvc, becomes

DL
Dvc

δvc = λ1(vc, δvc)Γc + λ2

∫
Rn

∫
Rn

(vc(y)− vc(x))

|x− y|n+1
(δvc(y)− δvc(x))dydx+

− (δvcn, sa)Γc = 0 , ∀δvc ∈ H1/2(Γc) .

(28)

The integral term over Rn in (28) is the weak form of the fractional Laplacian of vc bounded to Γc
under the hypothesis (27). In this work, the Riesz method is used for the numerical simulations
of the fractional Laplacian [14]. Following the approach for the Riesz fractional Laplacian on a
bounded domain Γc, the term with integrals over Rn can be split as [15]∫

Rn

∫
Rn

(vc(y)− vc(x))

|x− y|n+1
(δvc(y)− δvc(x))dydy =

=

∫
Γc

∫
Γc

(vc(y)− vc(x))

|x− y|n+1
(δvc(y)− δvc(x))dydx+

+ 2

∫
Γc

vc(x)δvc(x)

∫
RnrΓc

1

|x− y|n+1
dydx .

(29)

The finite element discretization of (29) is presented in the next section.

4 Numerical results

In this section, we report some numerical results obtained by using the mathematical model
shown in the previous sections. Since solving numerically the optimality system in a fully coupled
fashion is computationally expensive, we uncouple the state, adjoint, and control equations by
using the iterative steepest descent method described in Algorithm 1. The initialization step
can be summarized as follows. We first set an initial state (u0, p0, η0) satisfying the state system
(9) and compute the initial value of the objective functional J0 with (12) in the case of H1(Γc)
control and (26) for the H1/2(Γc) control. Once the state variables are known, we can solve the
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adjoint system (15)-(16) to obtain the adjoint velocity ua and the adjoint pressure pa that are
used to compute the value of sa. Then, the control vc can be obtained using (19) or (28). A
standard line search with backtracking strategy is performed. When the functional decreases
under a certain tolerance opttol, the optimal solution is found and the algorithm stops. We
implement the Algorithm 1 in the in-house finite element code FEMuS [16], which works on
multiprocessor architectures and uses a multigrid solver with mesh-moving capability.

Algorithm 1 Main sketch of the Steepest Descent algorithm.
1. Initialization step.
for i = 1→ imax do

2. Solve the system (15)-(16) to obtain the adjoint state (ua, pa)
3. Obtain the control update δvic from (19) or (28) and set ri = r0

while J i(vi−1
c + riδvic, η) > J i−1(vi−1

c , η) do . Line search
4. ri update: ri = ρ ri

5. Solve the state equations (9) with vic = vi−1
c + riδvic

If (ri < toll) → Line search not successful
If
(
(J i(vic, η)− J i−1(vi−1

c , η)
)
/J i−1(vi−1

c , η) < opttol → Optimal solution found
end while

end for

To test the algorithm, we consider a rectangular domain Ω = {(x, y) : x ∈ [0, 0.1], y ∈ [0, 0.3]},
as shown in Figure 1, and the following boundary conditions. On the boundary Γw = ΓD we
impose no-slip Dirichlet boundary conditions. The velocity control vc acts on the boundary Γc,
while on Γs we impose the generalized Robin boundary condition to model the structure. On
Γo = ΓN outflow conditions are imposed. We aim to control the displacement of the region
Γd = {(x, y) : x = 0.1, y ∈ [0.08, 0.15]}, and we request a fixed desired field ηd = 0.005m. The
fluid has density ρf = 1000 kg/m3 and dynamic viscosity µ = 100 Pa · s. For the solid, we
consider β∗ = 60kPa/m and thickness ε = 0.0075 m.

For all the presented simulations, the domain was uniformly divided with a regular rectangular
mesh with 10 × 30 elements. We now introduce the finite element discretization used. Let
X2
h ⊂ H1(Ω) and X1

h ⊂ L2(Ω) be two families of finite-dimensional sub-spaces parameterized by
h that tends to zero. To satisfy the BBL inf-sup condition, we consider the velocity uh ∈ X2

h

and the pressure ph ∈ X1
h and use standard Taylor-Hood elements. We consider a quadratic

displacement field ηh ∈ X2
h. The discretization of the adjoint variables follows that of the

corresponding state variable.
We describe the finite element approximation of Riesz bounded fractional Laplacian, as pre-

sented in [15]. Since the boundary of a two-dimensional case is a one-dimensional domain, the
mixed integral for the Riesz assembly can be reduced to

2

∫
Γc

vc(x)δvc(x)

∫
RrΓc

1

(x− y)2
dydx =

= 2

∫
Γc

vc(x)δvc(x)
(∫ e1

−∞

1

(x− y)2
dy +

∫ ∞
e2

1

(x− y)2
dy
)
dx =

= 2

∫
Γc

vc(x)δvc(x)
( 1

x− e2
− 1

x− e1

)
dx ,

(30)
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where e1 and e2 are the extremes of the Γc. The first double integral in (29) is discretized as∫
Γc

∫
Γc

vc(y)− vc(x)

(x− y)2

(
δvc(y)− δvc(x)

)
dydx '

'
Nel∑
elx=1

ng(elx)∑
xg=0

Jxgwxg

(
Nel∑
ely=1

ng(ely)∑
yg=0

Jygwyg
vc,h(yg)− vc,h(xg)

(xg − yg)2

(
δvc(yg)− δvc(xg)

))
,

(31)

and (30) is discretized as

2

∫
Γc

vc(x)δvc(x)
( 1

x− e2
− 1

x− e1

)
dx '

'
Nel∑
elx=1

ng(elx)∑
xg=0

2Jxgwxgvc,h(xg)δvc,h(xg)
( 1

xg − e2
− 1

xg − e1

)
,

(32)

where all the loops are developed on the boundary elements.
Since the Riesz approach is nonlocal, the numerical system to be solved is characterized by

a dense matrix. The resolution of a dense matrix is numerically expensive, so the resolution
of these operators over complex domains might be unfeasible. In our case, the computation is
limited to the boundary element of Γc. For this purpose, we used the PETSc libraries, that
support the resolution of numerical systems characterized by dense matrices.

L
y

Lx

Γd

C

D

Γc

Γw Γs

Γo

Ω

0.00000

0.00308

0.00616

0.00924

0.01233

0.01541

0.01849

0.02157

0.02465

0.02773
|u| (m/s)

0.000000

0.000566

0.001132

0.001699

0.002265

0.002831

0.003397

0.003963

0.004530

0.005096
η(m)

(a) (b) (c)

Figure 1: Geometry used for the numerical test (a). Contours and streamlines of the velocity field (b)
and contours of the displacement (c) for the reference case.

The objective of our problem is to control the normal displacement on the surface Γd of the
membrane by acting on the fluid through the normal fluid velocity vc on the boundary Γc. We
consider two different cases: the velocity vc belonging to the space H1(Γc) and to the natural
space H1/2(Γc). Several tests have been performed by considering λ1 = 10−9 and various values
for λ2. In Table 1 we report the functional values and the number of iterations done by the
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Table 1: Objective functional values, number of algorithm iterations obtained with different λ1 values,
for λ2 = 10−9, vc ∈ H1(Γc) and vc ∈ H1/2(Γc).

vc ∈ H1(Γc) vc ∈ H1/2(Γc)

λ2 J (η, vc) Iterations J (η, vc) Iterations

Reference 1.3718 · 10−9 - 1.3718 · 10−9 -
10−6 4.91889 · 10−10 2 3.16288 · 10−10 3
10−7 3.05569 · 10−10 5 2.69857 · 10−10 2
10−8 2.05425 · 10−10 18 1.11873 · 10−9 18
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Figure 2: Comparison of the velocity vc profile along the controlled boundary Γc for H1(Γc) and H1(Γc).
Optimal solution for λ2 = 10−6 (a) and λ2 = 10−9 (b).

algorithm to obtain the optimal solutions as a function of the regularization parameter λ2 for
both regularizations.

By reducing the control regularization, we notice that the optimal solutions tend to the desired
one after a larger number of iterations. The velocity vc over the controlled boundary Γc is shown
in Figure 2 and 3 for λ2 = 10−6 and λ2 = 10−9 and both regularization. The distance from the
objective decreases as the value of λ2 decreases, consistently with the expectations. Moreover,
the results obtained with the fractional regularization show a slightly lower distance from the
objective in comparison with the H1(Γc) regularization, as expected from the theoretical results:
in fact, the H1(Γc) regularization imposes the solution in a more restrictive function space than
the natural one.
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Figure 3: Comparison of the velocity vc profile along the controlled boundary Γc for λ2 =
10−7, 10−8, 10−9 with vc ∈ H1(Γc) (a) and λ2 = 10−5, 10−6, 10−7 with vc ∈ H1/2(Γc).

5 Conclusions

In this work, we presented and compared two different regularization methods for the treat-
ment of Dirichlet boundary optimal control problems for a steady multiscale fluid-structure
interaction system. The optimization problem aims to achieve the desired deformation of the
membrane modeled through the Koiter shell model, by acting on the velocity field on a portion
of the boundary. We have obtained the optimality system, and the optimal control problem
has been solved by using the Lagrange multiplier method and the gradient of functional has
been determined by solving the adjoint problem. We first implemented a standard H1-norm
for the regularization of the velocity. However, this approach leads to solutions in a more re-
strictive control space than the natural one. The second formulation we proposed limits the
H1/2-norm of the control parameter, then the control parameter is sought in its natural space.
This approach requires the numerical approximation of the fractional Laplacian operator, which
we performed by directly applying the Riesz method. We performed numerical simulations on a
finite element framework, considering both regularization approaches and studying the influence
of the regularization coefficients. All the performed simulations show a decrease in the distance
from the objective, thus effectively controlling the displacement field through the inlet velocity.
In addition, the fractional approach shows a smaller distance from the objective in comparison
with the H1 regularization, as theoretically expected.
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