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Abstract. We present data-parallel approaches to solve radial-basis function interpolation
problems in the context of partitioned multi-physics simulations, where interpolation meth-
ods are required to transfer coupling data between non-matching vertex clouds. Data-parallel
approaches are a key component for the efficient use of accelerator cards and thus for perfor-
mance portability on modern compute platforms. The presented approach is integrated into
the open-source coupling library preCICE.

After discussing different implementation strategies, we introduce a solution based on the
linear algebra library Ginkgo, which provides a common abstraction layer for cross-platform
performance with focus on solving sparse linear systems. The new implementation exploits
accelerator cards for both, matrix assembly as well as solving the resulting linear system.
The capability of the presented approach is compared to already existing implementations in
preCICE using a turbine blade geometry.

1 INTRODUCTION

Solving interpolation problems using radial-basis functions (RBF) is a computationally
demanding task. The application area of RBF interpolation ranges from implicit surface
reconstruction to solving partial differential equations [1]. In this article, we analyze efficient
RBF interpolation in the context of partitioned multi-physics simulation, where interpolation
methods are required to transfer coupling data between non-matching coupling meshes. In
particular, we focus on data-parallel execution of RBF interpolation problems to exploit the
compute capabilities of modern multi- and many-core systems, such as graphics processing
units (GPU).

This article revolves around data mapping within the open-source coupling library pre-
CICE1 [2]. preCICE is designed for partitioned multi-physics simulations, but has no specific
notion about the simulated physics. All data defining the interpolation problem is provided by
the user, usually as a cloud of vertices with attached data. Therefore, a typical data-mapping

1https://precice.org/
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problem in preCICE consists of one vertex cloud with user-provided data values used to build
an interpolant, which we refer to as the input mesh, and one vertex cloud used to evaluate
the interpolant to retrieve data, which we refer to as the output mesh. RBF interpolation,
among other data mapping methods, is applied to deal with these vertex clouds in preCICE.
For RBF data mappings, preCICE offers already a sequential solver algorithm as well as an
MPI-parallel solver algorithm capable of massively-parallel runs on supercomputers [3]. However,
none of these approaches is yet able to exploit data-parallel execution utilizing accelerator cards.
Therefore, on top of these two implementations, we present the integration of a data-parallel
RBF mapping implementation that specifically targets accelerator cards. We discuss the newly
added data-parallel implementation approach and show when it is feasible to apply over al-
ready existing implementations. This article builds on and summarizes the master thesis of
Schrader [4].

The remainder of this article is organized as follows: Section 2 describes the mathematical
details of RBF interpolation, Section 3 summarizes already existing implementation approaches
for RBF interpolation in preCICE, Section 4 discusses potential implementation approaches for
data-parallel implementation and concludes on their applicability in preCICE, Section 5 shows
the integration of our implementation approach, Section 6 presents results on numerical test
cases, and Section 7 concludes.

2 RADIAL-BASIS FUNCTION INTERPOLATION

Interpolation methods in coupled simulations are required in order to map data between input
and output meshes. Each mesh is defined in terms of a discrete set of vertices {xi ∈ Rd; i =
1, . . . N} in d ∈ {2, 3} space dimensions. Given corresponding data values {fi ∈ R; i = 1, . . . N}
for the discrete vertices on the input side, data mapping aims to interpolate a solution at the
discrete vertices of an output mesh. Oftentimes, the mesh vertices xi are initially defined once
in coupled simulations, while only the data values fi change over time. RBF interpolation
constructs an interpolant If : Rd → R by

If (x) =
N∑
i=1

λiϕ(∥x− xi∥) + β0 + βT
l · x, (1)

where N is the number of input mesh vertices, λi ∈ R represents the unknown coefficients,
ϕ : R → R a radial-basis function, and β0 ∈ R and βl ∈ Rd represent the unknown coefficients
of an additional linear global polynomial contribution. The global polynomial is required to
fulfill consistency constraints, i.e., exactly interpolate linear data. We enforce N constraints
through the interpolation condition

If (xi) = fi, i = 1, . . . N (2)

and additional regularization constraints for a unique solution according to

N∑
i=1

λi · xi = 0 and
N∑
i=1

λi = 0. (3)

Summarizing the constraints in a matrix notation leads to the following linear system(
C P
PT 0

)(
λ
β

)
=

(
f
0

)
, (4)
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where λ = (λ1, λ2, . . . , λN)
T ∈ RN , β =

(
β0,β

T
l

)T ∈ Rd+1, C = (ϕ (∥xi − xj∥))i,j=1,...,N ∈
RN×N , P =

(
1,xT

i

)
i=1,...,N

∈ RN×(d+1), and f = (f1, f2, . . . , fN)
T ∈ RN . Solving Eqn. (4) for λ

and β enables the evaluation of Eqn. (1) at any given output mesh vertex x [5].
preCICE offers different options for ϕ. Throughout the remainder of this work, we use the

compact thin-plate-spline C2 [2]

ϕ (r) =

{
1− 30r2 − 10r3 + 45r4 − 6r5 − 60r3 ln(r) if r < 1,

0 otherwise.
(5)

The radial distance r between two vertices is computed by r = ∥xi −xj∥2/ρ with the support
radius ρ of the basis-function determining the sparsity of matrix C as well as the accuracy
of the RBF interpolant. Here, ϕ is strictly positive definite, which results in a symmetric
positive definite (s.p.d.) matrix C. To take advantage of the sparsity of C, we do not solve
Eqn. (4) exactly [6]. Instead, we split the polynomial coefficients β from Eqn. (4) and solve
them separately in a linear least-square system

∥P · β − f∥2 → min (6)

Afterwards, the basis-function coefficients λ can be computed solving

C · λ = f −P · β. (7)

Eqn. (6) and Eqn. (7) need to be solved for each data exchange between coupling participants,
potentially hundreds of thousand times per simulation. However, matrices C and P remain
constant throughout the simulation, if the vertices xi remain constant. Direct solution methods
can exploit this property by computing factorizations of C and P once and solving Eqn. (6)
and Eqn. (7) efficiently using the factorized matrices.

3 EXISTING SERIAL AND DISTRIBUTED MEMORY IMPLEMENTATIONS

RBF interpolation is already supported in preCICE by employing two different implementation
approaches: a serial implementation relying on the linear-algebra library Eigen [7] and an MPI-
parallel version relying on PETSc [8].

The serial implementation applies dense matrix decompositions for matrices C and P. A
Cholesky decomposition is applied for matrix C in case the selected basis function ϕ is positive
definite, otherwise a QR decomposition is used. Matrix P is always factorized using a QR
decomposition. If preCICE runs MPI-parallel in a distributed-memory environment, the mapping
computation uses a gather-scatter approach to collect the data on a single process, i.e., the
mapping is still executed in serial on a single CPU.

The second implementation uses sparse data-structures and solvers from the parallel linear-
algebra library PETSc [9]. Similar to the serial implementation, the tall and skinny matrix
P of the polynomial least-square system is solved using a QR decomposition. However, the
coefficient matrix C is solved using an iterative Krylov method. By default a GMRES solver
is used, independent of the basis functions. For the experiments in this work, however, a
conjugate-gradient (CG) solver is used. To report convergence, a relative convergence criterion
∥r∥2/∥rhs∥2 < ϵ taking the residual and the right-hand side into account is applied.
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4 DISCUSSION OF POTENTIAL IMPLEMENTATION APPROACHES

Before describing the realized implementation in Section 5, this section discusses viable
implementation options we considered. We first define design targets for the implementation in
preCICE. Afterwards, we describe and discuss different programming libraries and frameworks
that address our needs. Finally, we draw a conclusion on which the GPU-accelerated RBF
interpolation in preCICE builds upon.

To realize GPU-accelerated data mapping in preCICE, we define the following design targets:

• The approach should take different execution backends into account. This means in
particular the implementation should support vendor-independent execution on GPUs
and multi-core CPUs.

• The maintenance effort of the solution should be as minimal as possible to guarantee a
sustainable integration into preCICE.

• External dependencies should be established and available, e.g., through package managers,
to ensure usability of the implementation.

• Since RBF interpolation involves linear-algebra, the dependency should offer corresponding
data structures such as matrices and vectors as well as commonly used solvers and
preconditioners through a high-level API.

• The implementation should be able to perform embarrassingly data-parallel operations
such as the assembly of the coefficient matrix C with a custom kernel on the compute
device to exploit the compute capabilities as well as possible.

We considered approaches to fulfill these design targets on various different levels. Since
GPU programming is typically carried out through vendor-specific frameworks such as CUDA
(provided by NVIDIA) or ROCm (provided by AMD), a straight-forward consideration would
be a self-written implementation from scratch using these low-level frameworks. This approach
introduces no external dependencies for preCICE, as all necessary ingredients are directly
available on the associated hardware. However, these frameworks usually require an intricate
memory-management and the implementation of sophisticated solver algorithms in an efficient
way is a non-trivial task. In addition, any solution is bound to the hardware vendor, which
leads to a substantial implementation effort to provide cross-platform performance portability.
Instead of writing solver routines from scratch, a more obvious approach relies on functionality
offered by hardware-vendor libraries such as cuSolver2 or hipSolver3. These libraries expose a
LAPACK-like interface to the user, which gives access to hardware-tailored highly-optimized
solver routines. Although the libraries are separate software packages, they are shipped with
the device libraries as well and introduce no visible dependency for preCICE.

To overcome vendor-specific implementation efforts, the OpenCL [10] standard provides a
common abstraction layer for cross-platform parallel-programming of accelerator cards, e.g.,
GPUs or tensor processors. Low-level kernel code is compiled and deployed on the device
at runtime, which ensures performance portability across different platforms. The OpenCL

2https://docs.nvidia.com/cuda/cusolver/
3https://rocm.docs.amd.com/projects/hipSOLVER/
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standard is supported by almost all relevant hardware-providers and, similar to the device
libraries, does not constitute a user-visible dependency. While OpenCL is very well-suited
to parallelize algorithms in a data-parallel manner, the complexity for memory management
and linear-algebra is comparable to an implementation using the device frameworks mentioned
above.

SYCL [11] is another open standard that extends the core idea of OpenCL by expanding
the supported computing platforms and reducing the API complexity. OpenCL is typically one
backend used by SYCL itself to offer performance portability. The high-level interface mimics
modern C++ with focus on data-parallel algorithms such as a parallel-for. Although linear-algebra
data structures and solvers are not directly available in SYCL, there are third-party software
packages such as SYCL-BLAS, which implement matrix operations using SYCL itself. However,
these packages usually introduce an external dependency in addition to SYCL.

Similar to SYCL, Kokkos [12] implements a C++ interface for performance-portable algorithms
and is well-established in the HPC community. Kokkos can be used, among other options,
with SYCL operating as backend programming model. While the Kokkos core contains the
abstraction layer for data structures, memory concepts as well as algorithms, the broader Kokkos
ecosystem, e.g., the Kokkos kernels, directly support high-level math operations. Although
Kokkos and the ecosystem packages can be installed on HPC systems via a package manager
such as Spack, each component is a separate software dependency for preCICE.

Ginkgo [13] wraps the algorithmic complexity levels considered so far into a high-level linear
algebra interface. Dedicated kernel implementations for CUDA (NVIDIA GPUs), HIP (AMD
GPUs), DPCPP (Intel devices) and OpenMP ensure cross-platform performance with a focus on
sparse linear systems, which are accessible through a common API. Conceptually, solvers and
preconditioners are treated as operators in Ginkgo, which enables almost arbitrary configuration
and combination options for the design of problem-tailored solver algorithms. Backend-specific
kernels are statically compiled when building the library, but all compiled backends remain
runtime configurable for the user. Similar to preCICE, Ginkgo is part of the Extreme-scale
Scientific Software Development Kit [14] (xSDK), which ensures interoperability between these
software components.

In summary, the potential implementation approaches for RBF interpolation in preCICE are
vastly different and cover the complete range from vendor-specific low-level and highly-optimized
implementations to ready-to-use cross-platform libraries operating on distinct complexity levels.
We decided to follow and implement an RBF interpolation approach based on Ginkgo for
various reasons: First and foremost, our focus lies on the application of linear-algebra to solve
RBF systems and not the efficient implementation of linear-algebra subroutines, which is a
non-trivial task itself. In this regard, Ginkgo is the only solution we considered offering a
self-contained performance-portable ecosystem with a high-level abstraction layer for linear
algebra. An additional benefit compared to other considered external dependencies is the superior
interoperability between Ginkgo and preCICE as provided through xSDK and compliance with
the xSDK software standards.

However, there are two shortcomings of Ginkgo compared to other approaches: First, the
high-level interface does not provide any opportunity to dispatch and launch self-written matrix
assembly kernels on the device (last design target). As a remedy, we employ an experimental
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non-released version of Ginkgo (branch public common kernels4) throughout this work, which
exposes the internal kernel dispatch mechanism of Ginkgo to the API. Including this feature
in a future release of Ginkgo is still in discussion. The second shortcoming of Ginkgo is the
focus on sparse linear algebra. As explained in Section 5, we employ dense linear algebra in
our implementation approach. Therefore, we complement the operators offered by Ginkgo with
highly-optimized dense matrix solvers offered by cuSolver and hipSolver, supporting NVIDIA
and AMD GPUs respectively. These solvers do not impose additional external dependencies for
preCICE, as they are part of the vendor-specific software stack.

5 IMPLEMENTATION

This section deals with the implementation of the GPU-accelerated RBF interpolation in
preCICE. Firstly, it starts with describing the computationally intense assembly of matrix
C and optimization approaches to speed-up the kernel on the GPU. Secondly, it depicts the
iterative solvers, including their preconditioners, that we implemented into preCICE to solve for
the interpolation weights. Finally, as opposed to iterative solvers, the efficient application of
direct solvers is discussed, namely a QR factorization that also leverages the compute power of
GPUs. The current implementation targets multi-core CPUs or single GPUs and is not capable
of combining the compute power of multi-GPUs in a mapping process. If preCICE is executed
in an MPI-parallel environment, distributed data is handled using a gather-scatter approach,
similar to the Eigen implementation.

5.1 RBF MATRIX ASSEMBLY

The assembly of the RBF coefficient matrix C is embarrassingly data-parallel because each
matrix entry ϕ (∥xi − xj∥) can be computed independently. The computational complexity
of the assembly of C grows with O(N2). As a result, a data-parallel kernel is developed by
implementing and passing a lambda function into the kernel dispatch mechanism available in
the experimental Ginkgo branch. During the build process of preCICE, the kernel is compiled
for NVIDIA CUDA, AMD ROCm, and OpenMP backends. To exploit the massive amount of
parallel executing threads accessible on GPUs, the dispatch mechanism creates O(N2) threads;
one for each matrix element. This is different to the OpenMP API, which spawns at most as
many threads as CPU cores available. All available data points are split as equally as possible
across the OpenMP threads.

There is still one issue that arises when writing general data-parallel code only once that
should be executed on different platforms. That is, it is not optimized for efficiency on each
individual executor. According to Cheng et al. [15], so-called aligned coalesced memory accesses
are ideal when it comes to memory access patterns on GPUs. Whereas the term aligned
refers to the first address of a memory transaction being a multiple of the cache granularity,
coalesced denotes the fact that all threads within one warp access a contiguous chunk of memory.
Especially the latter is of high interest in the case of matrix assembly because RBFs require the
norm of the difference of two two- or three-dimensional vertices, i.e., every vertex is made up
of two or three coordinates. When it comes to iterating over each dimension to calculate the
norm in parallel, neighboring threads in the GPU thread grid should access neighboring memory
addresses. Hence, each coordinate dimension is stored in a contiguous chunk of memory. On

4https://github.com/ginkgo-project/ginkgo/commit/a195f856e
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top of that, the assembly kernel uses fused-multiply-add instructions to save one rounding step
when performing a floating point multiplication that is immediately followed by an addition.
This optimization is done for both CUDA and ROCm and realized via conditional compilation
dependent on the currently compiled backend.

5.2 ITERATIVE SOLVERS

Ginkgo offers multiple linear iterative solvers. Few of them, that are widely used in scientific
computing are the conjugate gradient (CG) method and the generalized minimal residual
(GMRES) method. Both solvers can be configured to solve Eqn. (7). For the polynomial
least-square system, a normal-equation is solved using a CG solver. All iterative solvers use
a convergence criterion based on the residual norm reduction, which compares the norm of
the initial residual, ∥r0∥, with the norm of the current residual, ∥r∥, and stops if the relative
reduction is below a predefined threshold, i.e., ∥r∥/∥r0∥ < ϵ. On top of that, in order to support
CG and GRMES to approach a good solution faster, two out of several available preconditioners
in Ginkgo are implemented into preCICE. Combining the solvers with preconditioners is beyond
the scope of this work and we refer to [4] for more details in this context.

Furthermore, it is important to carefully select the best suited data structure for all matrices
and vectors that are part of the RBF mapping. Ginkgo focuses on the iterative solution of
sparse linear systems [13]. However, the sparseness of RBF system depends heavily on the
support-radius of the applied basis function and non-uniform vertex clouds lead to irregular
sparsity patterns, which render the efficient application of sparse data structures challenging.
As a result, all the operations in preCICE are implemented using the dense matrix formats
offered by Ginkgo.

5.3 DIRECT SOLVERS

The vendor-specific libraries cuSolver and hipSolver extend the facilities of Ginkgo to bring
GPU-accelerated decompositions into preCICE. Both libraries offer different factorization
methods such as QR and Cholesky decomposition in a LAPACK-derived naming scheme. As a
starting point, a Householder QR decomposition is implemented and used for the coefficient
matrix C. Since Ginkgo data structures act as wrapper around memory spaces, they can easily
be reused in the QR decomposition without the need for additional changes. Having computed
the factorization once, preCICE can repeatedly compute the interpolation factors by using the
matrix factors to solve a triangular system. Ginkgo offers a triangular solver out of the box that
is used to compute the solution to this system every time a new right-hand side f is provided.
For the polynomial system, however, an iterative CG solver is applied as described above.

6 RESULTS

We compare the new RBF interpolation approach with existing implementations using a
turbine-blade geometry as a realistic example for coupled simulations. This section describes
the numerical setup and shows performance results of the numerical experiments. All software
and data components to reproduce the shown experiments are available in [16].
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Figure 1: The turbine geometry and a corresponding mesh with data fFr stemming from Franke’s function.

Cuda CG OpenMP CG PETSc CG Cuda QR Eigen

backend Ginkgo Ginkgo PETSc Ginkgo/cuSolver Eigen
preCICE exec. Serial CPU Serial CPU 64 CPU ranks Serial CPU Serial CPU
preCICE mapping GPU 128 CPU threads 64 CPU ranks GPU Serial CPU

Table 1: Overview of compared backends and their execution environment. The mapping methods of Ginkgo
and Eigen are always launched from a single CPU in preCICE, whereas the fully-parallelized PETSc backend is
launched from a parallel preCICE. The CPU for all experiments is an AMD EPYC 7763 64-Core processor and
the GPU is an Nvidia A100 GPU with 40 GB VRAM. We use PETSc version 3.18.5 and Eigen version 3.3.7.

6.1 SETUP

In order to investigate the implemented mapping approaches, we make use of the so-called
Artificial Solver Testing Environment5 (ASTE) provided by preCICE. ASTE is a thin wrapper
around the preCICE API imitating two participants of a coupled simulation. Combined with
the performance instrumentation of preCICE itself, ASTE enables insight into performance as
well as accuracy metrics of different mapping configurations in preCICE.

Similar to [2], we use meshes of various refinement levels derived from a turbine-blade
geometry [17] as shown in Figure 1. The mapping is executed for input meshes of different
refinement levels, while keeping the output mesh at a constant size. The meshes were generated
with Gmsh [18] by prescribing a target edge-length h between two adjacent vertices ranging from
h = 3 · 10−2 (438 vertices) to h = 4 · 10−3 (21,283 vertices) for the input meshes and h = 3 · 10−3

(38,112 vertices) for the output mesh. Similar to [4], Franke’s test function is sampled for each
input mesh vertex in order to generate the relevant test data and serves as a reference solution
for the interpolated values on the output mesh vertices.

The considered backends used for the mapping experiments are summarized in Table 1. Each
backend is tested for two different stationary support radii: ρ = 3h and ρ = 20h. Stationary
support radius means that the radius is scaled along with the mesh width such that a fixed number
of vertices is covered by the RBF support in radial direction, leading in our cases to an almost
constant sparsity pattern within each configuration series. The iterative solver configurations
(Cuda CG, OpenMP CG and PETSc CG) employ a conjugate-gradient solver (CG) with a
convergence criterion ϵ = 1 · 10−8. For iteratively solved polynomial contributions (cf. Eqn. (6))

5https://github.com/precice/aste
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Figure 2: Initialization time (left column) and solve time (right column) with a support radius of ρ = 3h (upper
row) and ρ = 20h (lower row). The initialization time is the one-time cost for a given vertex distribution and
the solve time is the time required to interpolate values on the output mesh for given data on the input mesh.
The shown timings are average timings obtained through five runs.

the CG employs a residual norm reduction of 10−4 as convergence criterion.

6.2 Performance Results

The performance results for both series are shown in Figure 2. For small problem sizes
with less than 1,000 input mesh vertices, the CPU variants are faster than corresponding GPU
computations, as the throughput-optimized GPU cannot operate at its full compute capabilities
for such small problems. In fact, for small problem sizes the initialization time of the GPU
dominates the overall initialization time of the mapping. However, apparent differences between
the iterative methods relying on Ginkgo and PETSc might also stem from slightly different
convergence criteria or implementations: While the Ginkgo-based solver requires around 200
to 400 iterations for ρ = 3h and 3,800 to 9,700 iterations for ρ = 20h, the PETSc-based solver
only requires around 70 to 150 and 3,800 to 6,000 iterations. The increased iteration count and
associated runtime increase between ρ = 3h and ρ = 20h is due to an increase in the condition
number by three to four orders of magnitude. In contrast, the runtime of direct solution methods
is mostly defined through the size of the linear system and no observable performance changes
can be noted between the two series when looking at the performance of Eigen or Cuda QR,
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Figure 3: l2 error e = 1
N

√∑N
i=1 (If (xi)− fFr(xi))

2
associated to the timings shown in Figure 2. All runs

produce the same error regardless of the executor. Note that stationary experiments eventually face error
saturation and no convergence can be observed [5].

respectively. Therefore, iterative solvers are only competitive if the RBF configuration leads to
a sufficiently well-conditioned linear system. However, as depicted in Figure 3, a smaller RBF
support radius comes at the cost of a worse accuracy.

7 CONCLUSION

To conclude this paper, it is important to note that the GPU-based RBF interpolation fills a
gap that existed in preCICE until now. In a very heterogeneous HPC landscape, there are many
different setups ranging from many-core CPU environments to GPU compute clusters. Matching
the available hardware with the resources required by individual simulations to reach a proper
load-balancing in partitioned coupling is complex. In this respect, the presented approach
provides additional flexibility by allowing the use of accelerator cards to solve computationally
intense RBF problems in preCICE.

If the input and output meshes do not change throughout the simulation, direct solution
strategies state an efficient and robust choice due to the large number of timesteps, which
typically occur in coupled simulations. However, the algorithmic complexity of O(N3) to
compute dense matrix decompositions renders direct solution methods prohibitively expensive
for large problem sizes. In such cases, iterative methods are oftentimes a more viable approach.
From the user perspective, however, configuring RBF mappings with an iterative solver to find
a good trade-off between accuracy and runtime can be a complicated procedure.

One drawback of all implementations introduced in this paper is that they act on dense
matrix structures. When it comes to dealing with large problem sizes, the available VRAM
might not be sufficient to store all required data structures and the approaches do not work
any more. To overcome this issue, two approaches were tested in [4]. Firstly, there is CUDA
Unified Memory that allows for overallocation by dynamically transferring memory from RAM
to VRAM and vice versa as required and treating both as one large address space. Secondly, a
matrix-free approach is implemented that does not store the coefficient matrix C explicitly but
assembles it from scratch every time that it is needed by some algorithmic step, e.g., BLAS
routines in CG. This builds upon the performance observations of the assembly kernel.

10
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As a final remark, it is worth mentioning that RBF interpolation is only one mapping
method available in preCICE. If the interpolation problem exceeds a certain size, globally-
constructed RBF interpolation as discussed throughout this work is not appropriate any more,
since the resulting linear system quickly becomes too ill-conditioned. Therefore, future work
aims to combine the presented approaches with a partition-of-unity RBF method, which is
already available as an MPI-parallel CPU implementation in preCICE. Enriching this available
implementation with the support for accelerator cards discussed here promises to enable mapping
computations on massively-parallel multi-node multi-GPU systems.
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