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Abstract. In this study, an implicit algorithm and different solvers are applied to the Moving 

Particle Semi-Implicit (MPS) method for temperature calculation. The original MPS method 

uses an explicit method for temperature calculation and is limited by time increment due to 

diffusion number. In this paper, the heat conduction of plates with Dirichlet boundary 

condition and Neumann boundary condition is studied.  The accuracy of explicit and implicit 

calculation of plate heat transfer cases are compared. In addition, different solvers are 

compared. Consequently, it is shown that the error of the implicit algorithm is not much 

different from the original one. And CG is still the better solver, CGS is also a superior 

solver. The implicit algorithm increases the size of a single time step by a maximum of 50 

times (original diffusion number is 0.2), while the calculation time of a single time step does 

not increase Substantially, so it has a significant effect on the acceleration of calculation. 
 

 

1 INTRODUCTION 

Heat exchange phenomena appear in natural and in various engineering fields in large 

numbers of ways. Temperature is also the most basic property of the material, which affects the 

physical properties of the material and then affects the calculation of other aspects like modeling 

fluid flow. Therefore, no matter what kind of numerical simulation method, the calculation of 

heat transfer is an important part. At present, there are mesh methods based on the Euler 

equation and meshless methods (particle method) based on the Lagrange equation in the 

discrete aspect of the computing domain. After a long time of development, grid-based methods 

have shown great success in the simulations of heat transfer. But there are still many problems 

with the particle method. 

Lagrangian particle methods are superior for the simulation of deformation problems 

including free surface flows [1], fluid-structure interactions [2], multiphase flows [3], and 

bubble dynamics [4]. There are two widely used particle methods for numerical simulation, 

Smoothed Particle Hydrodynamics (SPH) [5] and the Moving Particle Semi-Implicit (MPS) 

method. SPH and MPS are similar while some differences still exist. One is the difference 

between discrete schemes, the other is the explicit algorithm used in SPH while the semi-
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implicit algorithm used in MPS. In the original SPH, the pressure is directly calculated by the 

state equation. In addition, in the semi-implicit method, the pressure field is solved globally 

from Pressure Poisson Equation (PPE).  In the heat transfer part of both methods [6][7], the 

temperature of each particle is solved directly by retrieving the particles in the neighbor domain 

and then calculating the interaction. 

 MPS was first introduced by Koshizuka and Oka [8] for single-phase flow. In the earliest 

MPS method, the calculation of heat transfer was not considered. Subsequently, temperature 

calculations were added to the MPS as a separate module [9]. An explicit calculation model and 

the diffusion number criterion are used to limit each time step to obtain a stable solution. 

However, due to the limitation of the time step, effective results cannot be obtained in a limited 

time in some working conditions (section 2.3). Therefore, it is necessary to reduce the limitation 

of each time step, which is the same motivation as the implicit calculation of viscosity term 

[10]. There has been some literature [11][12] on implicit thermal conductivity, but few on the 

optimal algorithm. 

In this paper, the Krylov subspace solvers are used to solve the temperature solution matrix: 

Conjugate gradient method (CG) [13], Conjugate Residual method (CR) [14], Bi-Conjugate 

Gradient Stabilized method (BICGSTAB) [15], Bi-Conjugate Residual Stabilized method 

(BICRSTAB) [16], Conjugate Gradient Squared method (CGS) [17], Direct Lanczos algorithm 

(D-Lanczos) [18]. Meanwhile, the preconditioner Diagonal-scaling which is simple and easy to 

parallelize is used to Preconditioned Conjugate Gradient (PCG) and Preconditioned Bi-

Conjugate Gradient Stabilized method (PBICGSTAB). Of particular interest in this work is to 

investigate a better solver. 

2 METHODS 

2.1 The MPS method 

For the heat conduction problem with constant physical properties, the Lagrangian 

governing equations in the MPS method are given as follows: 

𝐷𝜌

𝐷𝑡
= 0 (1) 

21Du
P u g

Dt



= −  +  +   (2) 

2dT
c k T Q

dt
 =  +   (3) 

Where 𝜌 is the density; 𝑢 the velocity; 𝑃 the pressure; 𝜈 is the laminar kinematic viscosity; 

𝑔 is the gravity; 𝑐 the heat capacity; 𝑇 the temperature; 𝑡 the time; 𝑘 the thermal conductivity; 

and �̇� is the heat source per particle. In this study, only the energy conservation equation will 

be solved. 

In the MPS method, the computational domain is discretized into particles and uses the 

kernel function to calculate the interaction with particles. the kernel function adopted in this 

study is from Ref. [19] 
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Where the 𝑟𝑖𝑗   is the distance between particle i and the neighbor particle j; 𝑟𝑒  is the 

interaction radius (𝑟𝑒 = 3.1 ⋅ 𝑙0 in 2 dimensions), and is the constant initial particle distance. 

The particle number density (PND) which is proportional to particle density is defined from 

kernel function as: 

( , )i ij e

j i

n w r r


=   
(5) 

In the MPS method, differential operators are used to discretize different particle interaction 

models based on the kernel function, and in the energy conservation equation, gradient and 

Laplacian operator is given by [8]: 
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Where 𝜑 is the parameter using the Laplacian operator; d is the number of dimensions; 𝑛0 

is the initial PND decided by initial uniform particle configuration; 𝜆 the constant parameter 

dependent on particle size, defined in the following: 
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The original MPS method [20] utilizes a semi-implicit algorithm to solve the equations. In 

each time step, the solution of governing equations is spilt into an explicit part and an implicit 

part. The energy equation is solved explicitly. To correct the deviation of PND, the pressure 

field is solved from Pressure Poisson Equation (PPE): 

* 0
2 1 1

2 0

n n

i i

n n
P aP

t n

+ + −
 = − − 

  
  (9) 

Where, 𝑃 is the pressure, 𝜌 is the density, 𝛥𝑡 is the time step, 𝑛∗ is the temporal PND, 𝑎 is 

an artificial compressibility coefficient to smooth the pressure field. After obtaining the pressure 

field distribution, the pressure gradient term is used to solve the correction value of velocity to 

ensure the conservation of PND. 

2.2 Boundary treatment 

In this study, we use the boundary treatment [21] which has been applied to SPH to arrange 
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the thermal boundary to obtain higher accuracy. For the Neumann boundary condition, the 

temperature value of dummy particles is the same as the internal particle like the original MPS 

method. The temperature value of dummy particles is calculated before solving the implicit 

temperature equation, as shown in the following: 

1
j j

Dummy Boundary Internal

i i

d d
T T T

d d

 
= + − 
 

  (10) 

2.3 Time integration 

To improve the stability of the algorithm and prevent pseudo-oscillatory solutions or non-

physical solutions, the time step in MPS is severely constrained. Whether solving the PPE 

equation, energy conservation equation, or viscosity term, there is a stable condition to constrain 

each time step. The minimum time step is selected in the calculation to ensure that all stability 

conditions are met. [22], respectively by:  

0
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and for explicit temperature calculation: 
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Where 𝐶  is the courant number, 𝑙0 the initial distance between particles, 𝑢𝑚𝑎𝑥  is the 

maximum velocity among all particles, 𝑆 the diffusion number, 𝛼𝑚𝑎𝑥 is the maximum thermal 

diffusivity (𝛼 = 𝑘/𝜌𝑐  The above two conditions are necessary conditions to maintain the 

accuracy of numerical simulation.  

As shown in equation (12), the time step in explicit temperature calculation is limited by 

particle size and physical properties. In some multiscale simulations, the time step is set by the 

smallest particle size, or under simulation with high thermal diffusivity, the time step of a single 

calculation can even reach the order of 10−7  s/step, it is difficult to get effective results in 

limited time. Therefore, it is necessary to increase the time step through the implicit solution to 

reduce the total calculation steps and then reduce the calculation time. 

2.4 Solvers for implicit temperature calculation 

In the original MPS method, only the PPE is solved globally. The PPE and energy equation 

are discretized by the Laplacian operator, for each particle i the discrete PPE equation and the 

explicit energy equation can be translated into: 
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Where the superscripts 𝑛 and 𝑛 + 1 of the above two formulas represent the previous time 

step and current time step respectively. Similarly, we can also solve the temperature implicitly 

like grid-based methods. The equation becomes as follows: 
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Such a formula can be written for every i particle that needs to be solved, and the temperature 

value of dummy particles is moved to the right of the equation as part of the source term. Due 

to the different forms of solving equations, it is necessary to find the optimal algorithm for 

implicit temperature calculation. Meanwhile, the convergence condition of implicit temperature 

calculation is explored in the same way as those in Ref [23]: 

2

n

it c T c   =  r   (16) 

The residual vector 𝐫 is defined as the difference between the source term and the product 

of the sparse coefficient matrix and the approximate solution after an iteration. The convergence 

value 𝜀 (10−9) which is the same as the PPE solution in the implicit temperature calculation. 

The coefficient matrix of implicit temperature solution is also a symmetric sparse matrix like 

the PPE. Therefore, similar to Duan’s work [23] in comparing different PPE solvers, the solvers 

used in the paper in most algorithms in the Krylov subspace. Including CG and D-Lanczos 

method in Ritz-Galerkin method, CR method in orthogonal method; BICGSTAB, BICRSTAB, 

and CGS in Petrov-Galerkin method. Meanwhile, the PCG and PBICG which use the 

preconditioner Diagonal-scaling are applied to implicit temperature calculation. 

 The CG method is the most common method to solve symmetric positive definite matrices. 

D-Lanczos is based on the Lanczos algorithm and solves the tridiagonal matrix by using 

Gaussian elimination with the nonselective main element. It is equivalent to the Lanczos 

algorithm, but the method with no principal element may cause calculation interruption. CR 

method is based on the Orthogonalization (minimal residual) method in Krylov subspace. 

GMRES [24] is an extension of its asymmetric matrix solution. Another extension is GCR [25]. 

Since only symmetric matrices need to be solved in temperature solution, CR is used in the 

orthogonalization method to compare with other algorithms. The Petrov-Galerkin method is 

based on the orthogonality of subspace and constraint space. It is an extension of the Ritz-

Galerkin method to asymmetric matrices. Since Lanczos and BICG method was proposed in 

1952 [26], there have been many biorthogonal methods based on BICG or BICG biorthogonal 

idea, including CGS, Bi-Conjugate Residual Stabilized method (BICR) and other methods with 

higher stability such as BICGSTAB and BICRSTAB. 

In this paper, a one-dimensional heat conduction example and a square plate heat conduction 

example are used to compare the error of implicit and explicit temperature calculation. 

Subsequently, all the above solvers will be analyzed in terms of convergence, solution error, 

and computing resource consumption. 
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3 NUMERICAL EXAMPLES 

One-dimension heat conduction, as well as the square plate heat conduction, is studied as 

two typical cases with different boundary conditions in this paper to evaluate the performance 

of different solvers. The boundary condition with fixed temperature is named as Dirichlet 

boundary condition, while the one given a function is called the Neumann boundary condition. 

Figure 1 and Figure 2 show the calculating settings of these two cases. To meet the one-

dimension requirement, the large length/width ratio is 10. Therefore, a plane with a height of 

1.0 m and a width of 0.1 m is employed. The Dirichlet boundary condition is applied on the left 

edge. Meanwhile, we also analyze the influence of different boundary conditions on implicit 

heat transfer calculation. The square plate’s side length is 𝐿 = 1.0 m. In terms of boundary state, 

the Dirichlet boundary condition is applied on the right, left, and bottom edges while the upper 

edge is calculated with the Neumann boundary condition: 𝜕𝑇/𝜕𝑥 = 0. In both cases, no internal 

heat source involved there, the initial temperature of the one-dimension plate and the square 

plate is set to 𝑇0, the temperature of the Dirichlet boundary is assumed  𝑇𝑤 constantly. 

In order to avoid the independence of particle average distance for the simulation similar to 

the mesh independent study in the mesh-based method. Different particle size is used to 

calculate these two, In the calculation of this paper, the particle sizes used in the one-dimension 

heat conduction are 0.001 m and 0.0005 m. Meanwhile, the initial particle spacing of 0.005 m 

and 0.002 m is used in the square plate heat conduction. 

In the two simulations, all physical properties are constant, and the selected value of 

properties is within the range of those commonly used in projects. 𝜌 = 8000 𝑘𝑔/𝑚3 , 𝑐 =
400 𝐽/(𝑘𝑔 ∙ 𝐾), 𝑘 = 10 𝑊/(𝑚 ∙ 𝐾), In the following, we will analyze the difference between 

explicit and implicit in the two examples, and compare the calculation results under different 

algorithms, so as to find some better algorithm for implicit temperature calculation. 

4 RESULTS AND DISCUSSION 

4.1 Comparison of explicit and implicit results 

In order to verify the accuracy of different algorithms, before comparing the performance of 

different algorithms, the analytical solution or the results of the original explicit calculation 

method are used to compare the results of different algorithms. 

Figures 3 and 4 show the temperature distribution cloudy map of the implicit results using 

CG method in the simulation of one-dimension heat conduction and square plate conduction 

respectively. This result is consistent with that of literature [11]. 

The particle temperature value is derived to analyze the simulation results. In the two cases, 

the extracted temperature distribution line is in the middle of the y-axis and parallel to the x-

axis. In the one-dimensional heat conduction simulation, the extracted temperature is located in 

the center of the one-dimensional plate. Since the length/width ratio is 10, the temperature 

distribution in the center of the plate can be regarded as one-dimensional heat conduction 

temperature distribution. The analytical solution is as follows: 

( )

0

,

2

w

w

T x t T x
erf

T T t

−  
=  

−  
  (9) 



SIJUN LI, YUBAO ZHONG, QINGHANG CAI 

 7 

Where 𝑇(𝑥, 𝑡) denotes the temperature at time 𝑡 and location 𝑥, and 𝑒𝑟𝑓 is error function. In 

the heat conduction simulation of square plates, the analytical solution is not used for 

comparison, but the explicit and implicit results are used for comparison. The one-dimensional 

heat conduction simulation results at 10 s, 20 s, and 30 s, and the square plate calculation results 

at 1000 s, 5000 s, and 10000 s are output, as shown in figures 5 and 6. As the simulation 

proceeds, the high-temperature region expands along the x-axis coordinate under the effect of 

temperature difference. Finally, the parabolic temperature distribution appears in the case of 

square plate heat conduction. The square plate heat conduction presents a symmetrical 

temperature distribution. In simulation, both the one-dimensional and square plate heat 

conduction, the results of the explicit, implicit, and analytical solutions are in good agreement. 

The temperature values of the simulation results almost coincide. 

Fig. 7 shows the relative errors between the implicit results and the analytical solutions in 

the one-dimension heat conduction case. Fig. 8 shows the implicit and explicit relative errors 

of square plate heat conduction examples. In the simulation, the explicit calculation uses the 

diffusion number of 0.2, while the implicit one is 2.0. The implicit calculation can get a stable 

solution under this diffusion number, but can only get a divergent non-physical result if the 

same number original method is used. It can be seen that the error gradually decreases with the 

simulation. The error of the implicit method is larger than the original explicit result, but the 

overall error is in a small order of magnitude. The implicit results obtained by different 

algorithms are not very different, even though the relative error curves coincide. 

In the one-dimensional heat conduction simulation results, the heat transfer phenomenon 

mainly depends on the temperature difference, and the temperature change before the 30s is 

mainly between the dimensionless distance of 0.4 and the fixed temperature wall, so the relative 

error of temperature is 0 when the dimensionless distance is greater than 0.4. Similar to the 

temperature distribution, the relative error distribution of square plate heat conduction also 

presents a symmetric form. The temperature distribution and error distribution on both sides of 

the square plate at the initial stage are similar to that of one-dimensional. The simulated 

temperature distribution by all the solvers agrees reasonably with the theoretical results, The 

performance of different solvers will be compared later. 

4.2 Convergence of different solvers 

The convergence properties of different solvers are discussed as follows. Different initial 

particle sizes are used to simulate one-dimensional heat conduction and square plate heat 

conduction in the two cases, to eliminate the influence of the time step, the same time step is 

used in the same example. The selection principle of the time step is to select the time step 

under the same stable dissipation number of smaller particles, so as to ensure the stability of the 

calculation results of smaller particles. 

All the typical convergence profiles by different solvers of two cases are shown in Figures 9 

and 10, where the values of the ordinates represent the residual refers to ‖𝒓‖2𝛥𝑡 (left side of 

equation (16). It can be seen that the number of iterations required for implicit calculation is 

much less than that for PPE. The reason is that the value in the implicit heat transfer equation 

𝜌𝑐/𝛥𝑡 is much larger than 𝑎 in PPE, which is also consistent with the results in the literature 

[23]. 

The convergence patterns are different among these solvers. The convergence curves of CG, 
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CR, and D-Lanczos are stable and smooth. CG and Lanczos are mathematically equivalent, 

which prove to converge absolutely. D-Lanczos is the direct form of Lanczos which has the risk 

of infrequent breakdowns. In the calculation of the square plate case with a spacing of 0.002m, 

D-Lanczos suffered from infrequent breakdowns, but it also converged after reusing some of 

the principal elements. In the Petrov-Galerkin method, they need fewer iteration steps to 

converge. The effect of BICRSTAB’s convergence is slightly lower than that of BICGSTAB. 

The convergence curve of BICGSTAB has small fluctuations, while CGS has no fluctuations. 

At the same time, CGS has fewer iteration steps and smoother curves before convergence. In 

theory, CGS will perform better in solving the equation with uniform eigenvalue distribution, 

which is different from solving the PPE. In addition, PCG and PBICGSTAB with Diagonal 

preconditioning are also used to solve the equation. The results indicate that diagonal 

preconditioning cannot accelerate convergence, but increases the operation in iteration then 

increase the consumption of computing resources. 

The following table lists the number of component operations required by various solvers 

for every single iteration. Since multiplication consumes the most computing resources during 

the program operation, Matrix-Vector (MV) multiplication, Vector Update (VU), and Inner 

Product (IP) are considered in this paper, The component operations under the same time step 

are shown in figure 11. The number of MV required by the Petrov-Galerkin method in a single 

iteration is 2, while most other solvers are 1. However, since the number of iterations required 

for convergence is also less than other solvers, most solvers use roughly the same number of 

MV operations, except that CR is twice that of other solvers. For the VU, D-Lanczos needs the 

most VU operations in each time step, while CGS and CG have fewer VU operations. CGS has 

a minimum number of IP operations. 

5 CONCLUSIONS 

This paper discusses an implicit heat calculation module in the MPS method. Comparing the 

implicit module with the original one. Six Krylov subspace solvers, CG, PCG, CR, D-Lanczos, 

CGS, BICGSTAB, PBICGSTAB, and BICRSTAB, are examined in terms of accuracy, 

convergence, and computing resource consumption, and the following conclusions are drawn: 

Implicit heat transfer calculation will not introduce large calculation errors and reduce the 

time step limit under the stability requirements. Due to the difference between PPE and implicit 

heat transfer equation, the number of iterations to advance a single time step is much less than 

that of the PPE equation, which will not bring more time consumption. 

For the comparison of different algorithms, CG is a recommended solver, CGS has the least 

IP operations, and other component operations are similar to CG. Therefore, CGS solver can be 

considered in the subsequent MPI parallel.  
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Solver structure 
MV 

(Matrix-Vector) 
VU 

(Vector Update) 
IP 

(Inner Product) 
CG 1 3 2 

CR 2 4 2 

D-Lanczos 1 6 2 

CGS 2 6 2 

BICRSTAB 2 9 4 
BICGSTAB 2 6 4 

Table 1: Number of different component 

operations for different solvers 
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Figure 1: Model of one-dimensional 

heat conduction  

Figure 2: Model of square plate heat 

conduction  
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Figure 4: Temperature field in the square 

plate heat conduction case  
Figure 3: Temperature field in the one-

dimensional heat conduction case  

Figure 5: Temperature distribution in the 

one-dimensional heat conduction case 

Figure 6: Temperature distribution in the 

square plate heat conduction case 

Figure 7: Relative error in the one-

dimensional heat conduction case 
Figure 8: Relative error in the square plate 

heat conduction case 
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Figure 9: The convergence profiles by different solvers in one-dimensional heat conduction case.  (a) initial 

particle spacing 0.001m (b) initial particle spacing 0.0005m 

Figure 10: The convergence profiles by different solvers in square plate heat conduction case. (a) initial particle 

spacing 0.005m (b) initial particle spacing 0.002m 

21

42

21

22

24

26

63

84

126

66

108

78

42

42

42

22

48

52

CG

CR

D-Lanczos

CGS

BICGSTAB

BICRSTAB

0 20 40 60 80 100 120 140

 MV

 VU

 IP

Number of component operation

Figure 11: Number of component operation of different algorithms in 

the same time step 


