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(is paper proposes a novel driving cycle construction method in consideration of velocity, road slope, and passenger load, based
on a real-world bus route with a plug-in hybrid electric bus (PHEB). (e main purpose is to address the disadvantage that an
inaccurate reflection of the real-world driving characteristics for city buses will be caused when ignoring the passenger load in the
course of a driving cycle synthesis. Two contributions are supplemented to distinguish from the previous research. Firstly, a novel
station-based method is proposed aiming at developing a driving cycle with high accuracy. (e kinematic segments are par-
titioned according to the distance of adjacent bus stops, while a two-dimensional Markov chain Monte Carlo method is employed
to synthesize driving cycle between each interval of adjacent bus stops. Secondly, the random passenger load for different bus stops
is treated as a discrete Markov chain model, according to the correlation analysis of the measured passenger data which are
distinguished for off-peak and peak hours. Meanwhile, Monte Carlo simulation and maximum likelihood estimation are utilized
to determine the most likely number of passengers for each bus stop. At last, the fuel consumption of the PHEB is simulated with
the best-synthesized driving cycle and contrasted to the mean fuel consumption of the later measured data which is composed of
the velocity, road slope, and the passenger load. (e results demonstrate that the synthesized driving cycle has a higher accuracy
on fuel consumption estimation.

1. Introduction

(e depletion of fossil fuels together with severe environ-
mental pollution has greatly promoted the development of
energy-saving technology and advanced hybrid propulsion
systems [1, 2]. Plug-in hybrid electric buses (PHEBs) have
been considered as one of the most promising solutions to
decrease fuel consumption and exhaust emissions for urban
public transport, due to its longer pure electric mileage and
grid charge capability [3, 4]. Driving cycle is generally de-
scribed as a velocity-time profile to represent driving
characteristics of the real world. It has been widely utilized in
the detection of exhaust pollution and energy consumption
with the purpose of certification [5]. Moreover, it is also a
vital foundation of vehicle design [6], especially for a PHEB
with a complicated optimization problem. (e component

size, the powertrain topology, and the control strategies can
be suitably optimized to decrease the fuel consumption and
production cost, based on a typical driving cycle [7].

Numerousness standardized driving cycles are existing,
which can be classified as transient cycles and modal cycles,
such as the well-known Federal Test Procedure-75 (FTP-75)
and the New European Driving Cycle (NEDC). (e former
has frequent velocity variation similar to the real-world
driving behavior, whereas the latter is mainly composed of a
succession of constant velocity or acceleration [5–7]. Both of
them are used as legislative driving cycles for evaluation and
certification of the automobile performance (e.g., emissions
and energy consumption) by regulatory authorities. How-
ever, characteristics of the driving cycle are considerably
variational from one region to another, and the legislative
driving cycles are not suitable for the vehicle design owing to
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their discrepancy with the real-world driving characteristics
in different regions [8]. (erefore, nonlegislative driving
cycles have been investigated in different countries and
cities, such as Edinburgh driving cycle [9], Athens driving
cycle [10], Hong Kong driving cycle [11], Pune driving cycle
[12], Singapore driving cycle [13], and Mashhad driving
cycle [14], as well as some customized driving cycles in
typical Chinese cities [15]. All of them have been extensively
employed in research from performance estimation to the
vehicle design. Furthermore, some typical driving cycles
have also been synthesized for city buses, considering the
different driving characteristics between the city buses and
passenger cars [16–21].

Currently, with the rapid development of electric ve-
hicles (EVs), more and more investigation of driving cycles
focused on the battery electric vehicles (BEVs), hybrid
electric vehicles (HEVs), and PHEVs. Wang et al. [22]
analyzed the energy-saving potential of the EVs in realistic
driving conditions and compared to internal combustion
engine vehicles (ICEVs). (e research confirmed that the
energy-saving effect and the energy consumption of the EVs
were underestimated under the NEDC cycle suggested by
the government. Zhao et al. [23] constructed a representative
EV urban driving cycle for passenger cars in Xi’an city and
compared the energy consumption between the synthesized
driving cycle and the international driving cycles [24]. (e
comparison revealed that large error was generated when the
international driving cycles were adopted to estimate the
energy consumption and driving range of the EVs. Patil et al.
[25] investigated the influence of the driving cycle on the
component sizing design of the PHEVs and simulated the
vehicle performance over realistic driving cycles collected in
Southeast Michigan. (e author found that most of the real-
world driving cycles consumed more fuel than standard
driving cycles with the same trip distance. Gonder et al. [26]
acquired the driving data by Global Positioning System
(GPS) from a set of 277 vehicles inMissouri and analyzed the
fuel consumption and operating characteristics over the
collected driving data. It was found that the simulated fuel
consumption of the real-world driving data was lower in
comparison with certification cycles, while the electric en-
ergy consumption was slightly higher. (e above results
suggest that the existing driving cycles cannot well capture
the characteristics of the real-world driving process, thereby
leading to inaccuracy estimation of power demands for EVs.
(erefore, it is imperative to develop a dedicated driving
cycle for EVs [27]. Gong et al. [28] collected real-world
operation data of electric vehicles in Beijing and developed a
driving cycle for BEVs on the basis of the data analysis. (e
developed driving cycle was verified to represent the real-
world driving condition well by comparison of the energy
consumption between the predicted and the real world.
Ashtari et al. [29] logged real-world driving data from a fleet
of 76 cars in Winnipeg city and synthesized a driving cycle
for PHEVs. (e results indicated that the characteristics of
the proposed driving cycle were able to represent the ag-
gressive driving of the real-world well compared to existing
standard driving cycles. Similar studies were also carried out
in Dublin by Brady and O’Mahony [5], in Florence by Berzi

et al. [30], and in Southeast Michigan by Lee et al. [31]. It had
also found that the role of a typical driving cycle was in-
creasingly significant, not only for vehicle certification and
design but also for analyzing the impact of PHEV on the
grid. As plug-in hybrid electric buses (PHEBs) generally
operate in a fixed bus route, with frequent stop-and-go
behavior, it is hard to employ the existing standard driving
cycle to represent their operating characteristics. It is of great
significance to construct a typical driving cycle which can
accurately reflect the real-world driving characteristics of the
bus route, during the PHEB design process.

(ere are various methodologies to develop a typical
driving cycle, which can be substantially classified into four
categories: microtrips, segment-based, pattern classification,
and Markov chain method [32–35]. Microtrips are usually
extracted from the measurement data sequence between two
uninterrupted time points at which the vehicle is stopped
[12]. In the process of driving cycle construction, candidate
cycles are randomly synthesized by the microtrips and then
assessed based on acceptable target parameters to determine
the preferable driving cycle [11–18]. Comparing with the
microtrips, the segment-based method is more flexible for
the partition of measured driving data. (e kinematic
segments are able to be partitioned according to the road
characteristics and traffic conditions, where the vehicle may
not be stationary or idle. (erefore, additional constraints
must be added to the velocity and acceleration for con-
necting the segments together (i.e., ensuring smoothness
between connection segments) when developing a new cycle
[21, 35, 36]. In order to reduce the number of microtrips or
kinematic segments during driving cycle construction, the
pattern classification method is applied to cluster them into
heterogeneous classes based on their statistical properties
[5, 37]. Abundant studies employ principal component
analysis (PCA) together with the clustering method to
synthesize the new driving cycles [19, 23, 24, 38].

Since the real-world driving cycles are considerable
stochastic and have been confirmed to have the Markov
property [39], Markov chain method has been extensively
accepted as one of the most accurate approaches for driving
cycle construction so far [7, 20, 28, 29, 31, 36]. In previous
literature studies, the Markov chain method was usually
used to calculate the probability of transition between dif-
ferent types of snippets classified by themaximum likelihood
estimation (MLE) method or other clustering methods
[20, 29, 32]. To improve the quality of the constructed
driving cycle, other methodologies based on the Markov
chain have been proposed and exhibited better performance.
In Ref. [31], a two-dimensional Markov chain containing the
information of velocity and acceleration was introduced and
employed to synthesize the driving cycle. Moreover, the road
altitude was also considered in Ref. [7], and the new driving
cycle was synthesized by a combined three-dimensional
Markov chain Monte Carlo (MCMC) method. (e author
found that a satisfactory driving cycle can be synthesized by
employing a two-dimensional Markov chain method in-
cluding velocity and road altitude, whereas the use of three-
dimensional Markov chain increased the computational
burden. In addition, the random passenger load has been
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confirmed to have a considerable impact on both the
powertrain design and the control strategies of the vehicles
[40, 41]. Nevertheless, there are few literature studies taking
into consideration of it in the course of driving cycle con-
struction. It is a significant characteristic of the driving cycle,
and the unrealistic vehicle design will be brought out
without regard to it, especially for a PHEB with a greatly
variational passenger load.

With the motivation of introducing passenger load in-
formation in the synthesized driving cycle, we collect the
passenger data from a real road bus route, respectively, in
off-peak and peak hours and analyze the correlation of the
passenger data between adjacent bus stops. Based on the
analysis, we propose a method in a combination of Markov
chain, Monte Carlo simulation as well as maximum likeli-
hood estimation, to determine the most likely passenger
numbers for each bus stop in off-peak and peak hours. In
addition, despite the obvious advantage of the Markov
chain-based method in driving cycle synthesis, the accuracy
and the time efficiency are usually conflicting [7]. Reducing
the interval and increasing the number of states can improve
the accuracy of the synthesized driving cycle; however, it
leads to a computational burden [42]. To overcome this
drawback and facilitate the introduction of the passenger
load information, we employ a new station-based method to
construct a representative driving cycle considering the
velocity and acceleration, for a bus route. (e kinematic
segments are partitioned according to the actual distance of
adjacent bus stops, and the velocity profile between the
adjacent bus stops is synthesized separately by a two-di-
mensional MCMC method. Finally, the passenger number
information is integrated into the synthesized driving cycle
and the effectiveness of the proposed method is verified by
comparison of the fuel consumption between the best-
synthesized driving cycle and later measured data, while the
different initial state-of-charge (SOC) is also considered.

(e remainder of the paper is organized as follows.
Section 2 introduces the proposed method for driving cycle
construction for a bus route, with no consideration of the
passenger load. In Section 3, a Markov chain-based method
is proposed to dispose of the random passenger load for
different bus stops, on the basis of realistic passenger data
analysis, respectively, for off-peak and peak hours. In Section
4, the synthesized driving cycle including passenger load
information is validated by comparing the fuel consumption
with the mean fuel consumption of the later measured data,
followed by the conclusions in Section 5.

2. Construction of the Driving Cycle Based on a
Bus Route

2.1. Driving Data Collection. (e driving data are collected
from a typical bus route in Liaocheng, Shandong province,
and the studied PHEB is also running on the route. (e bus
route is comprised both of the urban and suburban driving
conditions with a single trip distance of approximately
20.5 km (see Figure 1).

Considering the passenger load may have a distinct
difference for the operation of a round trip, the round-trip

route is designed for data acquisition. In other words, the
PHEB is driven routinely from the starting bus stop to the
terminal bus stop and then returns to the starting bus stop.
(e bus route consists of 31 bus stops for a single trip, and
the trip distances of different bus stops to the starting bus
stop are shown in Table 1.

(e on-board measurement method is utilized to
obtain driving data, and the driving data are collected from
both the global position system (GPS) and on-board di-
agnostics (OBD) [23]. (e velocity data obtained from the
OBD are mainly employed to identify and amend the
abnormal data acquired from the GPS. (e collected
driving data are mainly constituted by the signal of vehicle
velocity, acceleration, traveled distance, and road altitude
with the sampling time interval of 5 s. (e data collection
has continued for approximately half a month including a
whole day operation of the weekdays and weekends. (ere
are 285,652 valid data being collected, which traveled for
approximately 1,435 km. All measured data are pre-
processed to remove the abnormal data and then extended
with an interpolation method to transform the sampling
time into 1 s for which it will facilitate the driving cycle
construction.

In addition, the number of passengers getting on and
off the bus for the selected bus route is separately collected
corresponding to the bus stops for both of the off-peak
hours and peak hours. A total of 26,280 valid data for 219
round trips are manually logged according to the actual
passenger flow, for which it continues for approximately 2
months.

2.2. Verification of Sampling Saturation. (eoretically, a
large number of sample data have a great benefit to the
accuracy of the synthesized driving cycle. Since the driving
data are acquired from a fixed route with the same test
vehicle ignoring the influence of the drivers, the charac-
teristic parameters of the sample data will have a negligible
variation when the sample size reaches a certain level. Ac-
cordingly, it is of great necessity to determine the appro-
priate sampling number, aiming at constructing a more
accurate driving cycle via less measured data.

In this study, four characteristic parameters are analyzed
to determine the saturation of the collected driving data,
which are composed of the mean velocity vm, mean driving
velocity (i.e., not including the idle time) vm d, maximum
acceleration am, and minimum acceleration ad. Moreover,
the percentages of acceleration time, deceleration time, idle
time, and cruise time are also considered, which are re-
spectively expressed as Ta, Td, Ti, and Tc.

As shown in Figures 2(a)–2(c), the selected 8 charac-
teristic parameters tend to be stabilized as the number of
samples is increased. It implies that the selected parameters
can be utilized for a further determination of the sampling
number. (erefore, an evaluation parameter namely “sta-
bility margin” is defined to identify a suitable minimum
number of samples for the construction of a driving cycle.
(e stability margin is expressed as K, which can be cal-
culated by the following equation:
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K(j) �
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i�1

Mi(j) − Mi(j − 1)

Mi(j)
, i � 1, 2, . . . , 8; j � 1, 2, . . . , n,

(1)

where i is the index of the selected characteristic parameters,
j is the sampling number, K(j) is the stability margin when
the sampling number is j, and Mi(j) represents the accu-
mulated value of the ith characteristic parameter when the
sampling number is j.

As shown in Figure 2(d), the stability margin K is
converging to zero with the increase of the sampling
number. When the confidence level α is defined as ±0.001,
the stability margin K fluctuates within the acceptable level
with a successive increment of the sampling number from 29
to 35. In other words, at least 29 groups of valid data should
be provided by measurements. Here, 35 groups of valid
driving data are employed for the construction of the driving
cycle to ensure reliability and stability.

2.3. Synthesis of the Driving Cycle Containing Velocity and
Road Slope

2.3.1. Partition of Kinematic Segments. In the course of a
driving cycle synthesis, the measured driving data are usually
divided into the kinematic segments with the microtrip
method or other regular methods [21, 23]. However, it may
not keep the characteristics of the synthesized driving cycle
consistent with the actual driving characteristics of the

measured data, especially for a bus driving cycle. In this
study, a novel partition method based on the distribution of
the bus stop is proposed to promote the accuracy of the
synthesized driving cycle as well as to easily consider the
variation of passenger load for different bus stops.

As shown in Figure 3, vehicle velocity and the corre-
sponding acceleration of each measured driving cycle is
divided into 60 kinematic segments according to the bus
stop distribution in Table 1. Meanwhile, each segment
should also satisfy the following restrictions:

v(r) � v
(r)
1 , . . . , v

(r)
t ,

v
(r+1)
1 � v

(r)
t + a

(r)
t ,

Sr �  v
(r)

· dt,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where v(r) represents the velocity collection of the rth ki-
nematic segment, v

(r)
1 and v

(r)
t represent the start and end

velocity of the rth kinematic segment, respectively, r� 1, 2,
. . ., 60, a

(r)
t is the corresponding acceleration when the

vehicle velocity is v
(r)
t for the rth kinematic segment, Sr

represents the actual distance between the rth bus stop and
(r+ 1)th bus stop, and t is the driving time of the kinematic
segment.

After the segmentation of each group driving data, the
kinematic segments which belong to the same interval of the
adjacent bus stops are classified into the same dataset. As
shown in Figure 4, since the kinematic segment should be
satisfied with the restriction of trip distance, the start and
end velocity may not be zero. (is may cause a velocity
fluctuation when the driving cycle of each interval is con-
nected.(us, the problem is disposed of by adding zeros and
simultaneously restricting the starting and ending acceler-
ation of constructed driving segments when synthesizing the
driving cycle.

2.3.2. Establishing a Markov Chain Model including Velocity
and Acceleration. Many available methodologies have been
adopted to construct a representative driving cycle in the
previous research studies. Since the Markov chain is a
stochastic process for which the future state depends only on
the current state and independent of the past state, it has
been widely utilized to dispose of the random property of

Starting
bus stop

Urban

Suburban

Terminal
bus stop

Figure 1: (e selected bus route in Liaocheng, Shandong, China (Map data ©2019 Baidu).

Table 1: Bus stop information for the round trip.

Bus stop Bus stop name Trip distance (m)
1 Starting bus stop 0
2 Bus stop 2 528
3 Bus stop 3 782
. . . . . . . . .

30 Bus stop 30 18500
31 Terminal bus stop 20500
32 Bus stop 30 22500
. . . . . . . . .

59 Bus stop 3 40218
60 Bus stop 2 40472
61 Starting bus stop 41000
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Figure 2: Saturation analysis of driving data sampling. Variation of (a) vm and vm d, (b) amax and amin, (c) Ta, Td, Ti, and Tc, and (d)Kwith the
increase in samples.
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driving cycles. A Markov chain can be defined as a discrete-
time sequence of random variables {Xk} that have the
Markov property and can be expressed as follows [31]:

P Xk+1 ∈ xj 
 X0, X1, . . . , Xk 

� P Xk+1 ∈ xj 
 Xk ,

(3)

where {Xk} represents the sequence of the state; meanwhile,
{Xk} and xj can take its values in spaceΩ� {x1, x2, x3, . . ., xr}.

For driving cycle synthesis, the state variables of the
Markov chain usually consist of the velocity, acceleration,
and the road slope or two of them. Once the current state is
known, the future state for the next step is determined
according to the transition probabilities which can be
expressed as follows:

Pij � P Xk+1 � xj

 Xk � xi , (4)

where Pij is the transition probability from state Xk to Xk+1,
which can be calculated by the following equation:

Pij �
Qij

jQij

, (5)

where Qij represents the number of transition times from
state Xk to Xk+1 in the measured data.

Moreover, the probabilities used in the synthesis process
are time-independent, and the sum of all probabilities
transferring out from a certain state must satisfy the fol-
lowing restriction:


j

Pij � 
j

P Xk+1 � xj

 Xk � xi  � 1. (6)

In this paper, a Markov chain model on the basis of the
velocity and acceleration is employed to synthesize the
driving cycle for each interval between adjacent bus stops. As
shown in Figure 5(a), the measured driving data are
expressed as a phase diagram of the velocity and accelera-
tion, while segmenting into discrete bins with a constant bin
width. (e bin containing the driving data is considered as a
state space, and the transition probability of each state can be
calculated by equation (5). (en, all transition probabilities

are combined to form a transition probability matrix (TPM).
When the current state is known, the possible state and its
corresponding probability for the next state can be derived
according to the TPM. For instance, the current state be-
longs to a state bin where the velocity v(t) ∈ [8.8, 9) m/s and
the acceleration a(t) ∈ [0.08, 0.28) m/s2, and the TPM, from
the current state to the next 40 states, can be obtained
according to the distribution of the measured data and the
number of transitions between different states (see
Figure 5(b)).

2.3.3. Synthesis of the Driving Cycle Based on Monte Carlo
Method. When constructing the driving cycle with the
Monte Carlo method, the obtained TPM of each kinematic
segment dataset is transformed into a vector for each row,
and equation (6) should be satisfied for each row vector.
(en, the cumulative sum for each row is calculated, and
each element in the newly obtained TPM is represented by
a new row vector with values starting at zero and ending at
one [7].

(e Monte Carlo method is applied to repeatedly gen-
erate random numbers μ ∈ [0, 1]. When the random number
μ falls in an interval which satisfies equation (7), the nth state
bin is determined for the transition of the next state, and the
velocity is chosen randomly from the corresponding state
bin to synthesize a velocity profile:


n− 1

j�1
Pij < μ≤ 

n

j�1
Pij, (7)

where n is the number of the state bins which is determined
by each kinematic segment dataset.

(e procedure of driving cycle synthesis is shown in
Figure 6, and there are three points that should be further
explained. Firstly, the number of μ should guarantee the
requirement for the trip distance between the adjacent
bus stops and also minimize the computation time.
Secondly, once the beginning and the ending velocity of
the generated kinematic segment are not zero, it should
be processed by the method which has been mentioned in
Section 2.3.1. Finally, some restrictions need to be added
to ensure the higher representativeness of the synthesized
driving cycle during the synthesis process, i.e., the rel-
ative error (RE) of the statistical properties for the
synthesized driving cycle ought to be within 10%,
compared to the measured data [7, 23].

Moreover, the road slope information of the selected
route is also considered in the course of the driving cycle
synthesis. Since the road altitude is an inherent property for
a fixed bus route, it is not random and mainly be influenced
by the travel position of the vehicle. As shown in Figure 7(a),
when the vehicle is driving from the position P1 to P2, the
road altitude for a variational position and the actual driving
distance L can be acquired by the on-board GPS. (us, the
road slope θ is described as follows:

θ � arcsin
H2 − H1

L
 , (8)
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where θ is the road slope from P1 to P2, H1 and H2 are the
road altitudes of P1 and P2 respectively, and L is the travel
distance from P1 to P2.

Considering the errors caused by GPS measurements,
the road altitude of the bus route is repeatedly measured and
the mean value of the same position is taken to calculate the
slope of the real road.(e result of the road slope can be seen
in Figure 7(b).

2.3.4. Validation of the Synthesized Driving Cycle. (e
synthesized driving cycle including the information of ve-
locity and road slope is shown in Figure 8. As the road slope
is derived from the repeated measurement data based on the
real world, it is of great representativeness for the selected
bus route. (e validity of the synthesized driving cycle is
primarily verified by comparing the statistical properties of
the synthesized velocity and the measurement cycles, which
can be seen in Table 2. (e statistical properties of the
measurement cycles used for validation are derived from the
mean value of measurement data and most of the evaluation
parameters presented in the table are selected according to
the previous studies [7, 23, 32].

(e relative errors of the synthesized cycle compared
with the measured cycles are restricted within a maximum
of 10% when constructing a representative driving cycle
with the candidate constructed segments. (ereby, an
acceptable cycle is obtained with its maximum relative
error for − 9.23% which occurs at the idle percentage. (e
comparison indicates that the synthesized cycle can have a
good reflection of statistical properties for the measure-
ment cycles.

Moreover, to further validate the matching degree of the
synthesized cycle and measured cycles, in Figure 9, the
distribution histogram of the velocity and acceleration is
shown. (e comparison results demonstrate that the syn-
thesized cycle is the great resemblance of the real-world
driving cycle, where the average relative errors are 9.6% and
8.3%, respectively, for the distribution of the velocity and
acceleration. (e results reveal that the synthesized cycle has
a high degree of matching with the measured cycle in terms
of velocity and acceleration.

Since the synthesized driving cycle is based on the
distribution of the bus stops, the trip distance of each in-
terval of adjacent bus stops also needs to be guaranteed.
(erefore, the trip distance of each synthesized segment is
compared to the real distance of the corresponding adjacent
bus stops. As shown in Figure 10, the maximum error point
occurs at the 59th interval where the trip distance of the
synthesized segment is 263.16m with a relative error of 3.6%
compared to the desired 254m.

3. Synthesis of the Driving Cycle considering
Random Passenger Load

(e random passenger load has a significant impact on the
fuel economy of PHEBs. However, there are no effective
conventional approaches to integrate it into the driving cycle
synthesis. To develop a reliable methodology, the variation

characteristics of the passenger load for different bus stops
are analyzed based on the measured data.

3.1. Property Analysis of the Passenger Load for Different Bus
Stops. (e variation of the passenger load is an extremely
complicated stochastic process, which is influenced by
population, transportation, environment, climate as well as
the subjectivity, etc. However, the passenger flow of the bus
route is approximately stable for a period of time, when
ignoring other nonirresistible reasons. In other words, the
data-based method is able to reflect the passenger changing
characteristics as long as the amount of data is large enough.

When the bus arrives at the kth bus stop, the number of
passengers on the bus is described as follows:

Nij � 
k

i�1
Aij − Bij , (9)

where i represents the ith bus stop (i� 1, 2, . . ., k), j rep-
resents sampling number of the measured data (j� 1, 2, . . .,
m), Nij is the number of the passengers on the bus at the ith
bus stop for the jth measured data, and Aij and Bij denote the
number of the passengers getting on or off the bus, re-
spectively, at the ith bus stop for the jth measured data.

Since it has a great imbalance between the number of
passengers in off-peak and peak hours, it is difficult to
identify the relationship of passengers’ number between
adjacent bus stops. (us, the measured data are distin-
guished according to the off-peak and peak hours, as shown
in Figure 11.

(e database of the passengers is composed of more than
200 sampling data for off-peak and peak hours, where it has
more passengers nearby the 10th and 50th bus stops
compared to the fewer passengers at the 30th bus stop. (is
is mainly because these bus stops are located in the urban
area while the 30th bus stop is the terminal located in the
suburban.

As shown in Figures 12 and 13, to analyze the rela-
tionship of the passengers’ number between two bus stops,
the Pearson correlation coefficient, expressed as λ, is, re-
spectively, calculated based on the measured data of off-peak
and peak hours. (ere is a distinct difference in the number
of passengers for different periods, where the maximum
amount is 57 for peak hours compared to 22 for off-peak
hours. However, the variation tendency of the correlation
coefficient has a good consistency. When the step of the
transition is increased from 1 to 10, the correlation coeffi-
cient is dramatically decreased. It means that the number of
passengers between adjacent bus stops may have a certain
possibility to transform; whereas two bus stops are far apart,
no evidence can determine there is some kind of relationship
between them.

Moreover, with the increase of the measured data, the
correlation coefficient of the passengers’ number between
two bus stops has gradual stability, while it has the same
characteristic consistent with the previous analysis. (e
correlation is also weakened as the step of the transition is
increased (shown in Figure 14).
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(e analysis results demonstrate that the number of
passengers for the next bus stop has a strong dependence on
the current while having no significant relationship with
previous bus stops. (at means the variation of the pas-
sengers for different bus stops can be considered as a discrete
Markov process for a period of time. (erefore, a method

based on a Markov chain is proposed in this study to solve
the random variation of passenger load for the bus route.

3.2. Synthesis of the Driving Cycle including Passenger
Information. (e random variation in the number of
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Figure 8: (e synthesized driving cycle including velocity and road slope.

Table 2: Comparison of the statistical properties for the synthesized cycle and measured cycles.

Parameter Measured cycles Synthesized cycle Relative error (%)
Max. velocity (km/h) 56.6 57.56 1.7
Mean velocity (km/h) 18.25 18.21 − 0.22
Mean driving velocity (km/h) 24.73 24.6 − 0.53
Std. dev., velocity (km/h) 16.14 15.87 − 1.67
Cycle distance (km) 41 41.13 0.32
Max. acceleration (m/s2) 1.1 1.12 1.82
Min. deceleration (m/s2) − 1.82 − 1.77 − 2.75
Mean acceleration (m/s2) 0 0 —
Std. dev., acceleration (m/s2) 0.36 0.37 2.78
Cycle duration (s) 8162 8134 − 0.34
Acceleration percentage (%) 27.2 27.8 2.21
Deceleration percentage (%) 22.1 23.3 5.43
Idle percentage (%) 26 23.6 − 9.23
Cruise percentage (%) 24.7 25.3 2.43
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passengers from one station to another is disposed of as a
Markov chain model based on the historical measurements,
and three steps are needed to synthesize a driving cycle for
the passengers (see Figure 15).

(i) Calculating the TPM of the Markov chain model
based on the measured passenger data, respectively,
for the off-peak and peak hours

(ii) Employing the Monte Carlo simulation to generate
plenty of random number μ ∈ [0, 1], and deter-
mining the states corresponding to the generated μ,
according to equation (7)

(iii) (e most possible state of each bus stop is derived by
the maximum likelihood estimation (MLE), and the
number of passengers is determined on the basis of
the most possible state for the corresponding bus stop

Similar to the construction of the velocity cycle, the
measured passenger data are partitioned into some discrete
bins with a constant bin width, where the state bins are
distinguished by bus stops and the number of passengers
(see Figure 16(a)). (e transition probability matrix (TPM)
is calculated according to the measured data, respectively,
for off-peak and peak hours. It is worth noting that it may
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Figure 13: Measured passenger data and the correlation analysis for peak hours. (a) Measured data. (b) 1-step transition. (c) 5-step
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have more than one state bin for a certain bus stop, which
leads to a state transition occurring within the same bus stop.
(erefore, the state bins are coded horizontally to ensure the
state transitions for the adjacent state bins can only occur at
different bus stops. For instance, when the state bin is at the
7th bus stop with the number of passengers including 25 and
26, the state number is coded as 550, and the next state coded
as 551 is located at the 8th bus stop. (e TPM, which
represents the transitions from the current state to the next
50 states, is shown in Figure 16(b).

When the Markov chain model of the passenger
changing is established, the Monte Carlo simulation is
utilized to determine the state bins by a large amount of the
generated random numbers μ. For example, when the
number of μ is set to 20000, 20000 state bins are determined
according to the TMP of the established Markov chain
model, where some state bins are repetitive (see Figure 17).
Accordingly, the most frequently appeared state bin for each
bus stop is selected as the most possible state on the basis of
the MLE and the corresponding number of passengers can
be derived.

(e number of passengers for each bus stop is derived
according to different numbers of μ, respectively, for the off-
peak and peak hours. More than 1,000 cycles for passenger

changes are generated, respectively, for the off-peak hour
and peak hours. (e most representative one utilized for the
fuel consumption estimation and optimization of the PHEB
is selected based on the candidates according to the fol-
lowing restriction:

Ngi �
1
m



m

j�1
xij, (10)

where Ngi is the average number of the generated passengers
for the ith bus stop,m is the sample number of the generated
passenger data, and xij represents the generated passengers
of ith bus stop for the jth sample.

(e generated passengers and an acceptable candidate
well matching to the characteristic of random passengers for
the off-peak and peak hours are shown in Figure 18. It can be
seen that the generated passengers of different times have an
obvious difference with each other. (e number of pas-
sengers during peak hours is much larger than during off-
peak hours. (us, the representative passenger flow of the
bus route needs to be determined according to the following
equation:

Npi � ω · Ngn,i +(1 − ω) · Ngr,i, (11)

Measured
data

Data divided according to the
off-peak and peak hours

Calculating the TPM based on
Markov chain

Generate μ ∈ [0, 1] by Monte
Carlo simulation

Determine the state for each μ

Calculating the frequency of the
generated state

Determine the most likely
passenger numbers for each bus

stop by MLE method

Is the restriction
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Yes
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Figure 15: (e procedure to synthesize a driving cycle for passengers.
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where Npi is the representative number of passengers for the
ith bus stop, ω is the weight factor between the off-peak and
peak hours, and Ngn,i and Ngr,i are the generated passengers
of the off-peak and peak hours for the ith bus stop.

In general, to better reflect the realistic passenger flow of
the bus route, the off-peak and peak hours need to be
considered eclectically. When the weight factor ω is defined
as 0.5, the representative number of the passengers is cal-
culated by the average of the generated passengers for the
off-peak and peak hours, and the calculated number should
be rounded to the nearest integer. (e driving cycle con-
taining the variation information of passengers is shown in
Figure 19. Accordingly, the passenger load can be acquired
according to the number of passengers for each bus stop,
when the mass of a passenger is defined as 68 kg [35].

4. Analysis of the Fuel Consumption Based on
the Synthesized Driving Cycle

To verify the representativeness of the synthesized driving
cycle, the fuel consumption of the PHEB is simulated on an
established model based on the Matlab platform [43]. (e
flow diagram of the model is shown in Figure 20. (e
synthesized driving cycle is comprised of velocity, road

slope, and the passenger load. In the course of the simu-
lation, the control commands are determined by the driver
model and executed via the controller model. (e driving
cycle is tracked in accordance with the error between ref-
erence velocity vref and the actual velocity vx. Meanwhile, the
required torque Treq is supplied from both of the engine and
motor (i.e., Te and Tm) according to the rule-based control
strategy, namely, charge-depletion and charge-sustaining
(CD-CS) which is adopted for the researched PHEB [44].
Moreover, the motor can also work as a generator, when the
required torque is negative and the state-of-charge (SOC) of
the battery meets the charging demand. (e main param-
eters of the simulation model are listed in Table 3.

4.1. Powertrain Model. In this paper, the powertrain of the
studied PHEB is mainly composed of the diesel engine,
electric motor, AMT, final drive, and power battery pack.
(e engine model is simplified as a steady-state fuel con-
sumption model neglecting the impact of temperature and
dynamic performance. As shown in Figure 21(a), the fuel
consumption rate can be derived by the interpolation
method from the brake-specific fuel consumption (BSFC)
map.

20000

10000

00

0.5

0

200

400

600

1
D

et
er

m
in

ed
 st

at
e

μ

Random numbers

Figure 17: Monte Carlo simulation for the passengers.

60

20

40

60

Pa
ss

en
ge

rs

0

20

40

Pa
ss

en
ge

rs

10 20 30 40 500 60
Bus stops

Peak hours
Off-peak hours

Figure 18: Generated passengers of each bus stop.

Journal of Advanced Transportation 13



Meanwhile, the motor can also be simplified as a look-up
table of the efficiency map on a hypothetical stable condi-
tion. (e efficiency of the motor ηm is expressed as the
function of the speed and torque, which can be described as
follows:

ηm � ηm nm, Tm( , (12)

where nm and Tm denote the rotate speed and torque of the
motor, respectively. Moreover, the generator torque of the
motor is limited, considering the stability and reliability of
motor during brake energy recovery (see Figure 21(b)).

(e lithium-ion battery is equipped to the PHEB for its
higher stability and longer operating distance. (e battery
pack is simplified as an internal resistance battery model. As

shown in Figure 22, the main working area of the battery in
the simulation is restricted in the scope of the 0.35 to 0.8
according to the actual situation of the researched PHEB.

When ignoring other dynamic characteristics, the PHEB
is regarded as a point-mass model. (e torque requirement
of the vehicle is governed by the following equation:

Treq �
Te + Tm

ηT

� Mr + mr( gfr cos θ + Mr + mr( g sin θ

+
1
2
CdAρdu

2
a +

δ Mr + mr(  · dua

dt
,

(13)

where Treq is the torque requirement of the vehicle, Te and Tm
represent the output torque of the engine and motor, Mr is
the curb mass of the vehicle, mr is the payload which is
changed according to variation of the passengers, g is the
gravity acceleration, fr is the rolling resistance coefficient, θ is
the road slope, Cd is the aerodynamic drag coefficient, A is
the windward area, ρd is the air density, ua is the vehicle
speed, δ is the correction coefficient of the rotationmass, and
ηT is the efficiency of the powertrain.

4.2. Results and Discussion. To examine the impact of the
passenger load on fuel consumption (FC) of the PHEB, the
simulation under different constant passenger load
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Figure 19: (e synthesized driving cycle including passengers.
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Figure 20: (e flow diagram of the simulation model.

Table 3: Main parameters of the simulation model.

Items Description
Vehicle Curb/gross mass: 12,500/16,500 kg
Passengers Max./rated: 74/17–44

Engine Max torque: 850Nm
Max power: 162 kW

Motor Max torque: 850Nm
Max power: 130 kW

AMT 4-speed, speed ratio: 4.13/2.45/1.49/1
Final drive Ratio: 6.33
Battery Capacity: 50Ah, voltage: 384V
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conditions is carried out. As shown in Figure 23, the FC is
simulated, respectively, when the passenger load is pre-
defined as no-load, half-load, and full-load, when the SOC of
the battery is limited within 0.35 to 0.8. It is noteworthy that
there is a conspicuous difference in the FC for different
passenger loads. (e FC under no-load, half-load, and full-
load are, respectively, 6.23 L, 7.44 L, and 8.75 L, where the
maximum deviation can reach up to 40.45% between the
full-load and no-load. (erefore, it is of great challenge to
give an accurate estimation of the FC in the course of the
PHEB design, when the selected driving cycle does not take
into account the passenger changes.

Moreover, the passenger load also has a distinct influ-
ence on the driving mode, where the PHEB with no-load has
longer distance travel under the CD mode compared to the
half-load and full-load. (e results indicate that the pas-
senger load has a considerable impact on the FC and the
control strategy of the PHEB, and it is of great significance to
synthesize a driving cycle containing the passengers via an
effective methodology.

As shown in Figure 24, the FC of the synthesized driving
cycle is also analyzed with different initial SOC. It can be
seen that, when the SOC is started from 0.8, the travel
distance of the PHEB under the CDmode can approximately
reach up to 10 km while it is decreased to 6 km with the
initial SOC of 0.6. Particularly, the PHEB almost entirely
works in the CSmode when the initial SOC is 0.4. Hence, the
SOC needs to be considered in the validation.

To verify the effectiveness of the proposed method for
driving cycle construction, the FC of the synthesized driving
cycle is simulated and compared to the simulated FC of the
later measured data. As the synthesized driving cycle needs
to be representative to reflect various driving characteristics
of the bus route, the FC of the measured data is obtained by
the mean of multiple measurement cycle simulation results.
More than 100 measured driving cycles containing the in-
formation of the velocity, road slope, and random passenger
load are utilized to the simulation, while the mean and the
standard deviation of the FC are analyzed with the increase
of the simulated cycles.
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As shown in Figure 25(a), the mean and the standard
deviation of the FC become stable with the increase of the
simulated driving cycles. (e mean FC is varying within
±0.01 L/100 km when the number of the simulated cycles is
more than 77, and the standard deviation at the end of the
simulations is approximately 0.42 L/100 km. Moreover, the
distribution of the FC shown in Figure 25(b) also reveals
that the simulation results have remarkable characters of
centralized distribution within the scope of 16 L/100 km to
17 L/100 km, and the proportion reaches up to 80%.
(erefore, the reliable mean FC can be acquired from the
simulation results.

(e mean FC and standard deviation for different initial
SOC are shown in Figures 26 and 27. As similar to the one
with the initial SOC of 0.8, both of them gradually tend to

stabilize with the increase of simulated driving cycles.
However, the stable values are larger than the case with the
SOC started at 0.8. Moreover, the distribution of FC has a
slight difference from each other.(e smaller the initial SOC
is, the lower the concentration of the distribution is. Nev-
ertheless, it has a neglectable impact on themean FC, and the
number of measured cycles is enough to determine the mean
FC for the researched bus route.

Besides, the FC based on the average of historical
measurement passenger data is also analyzed and com-
pared with the best-synthesized cycle. As shown in Fig-
ure 28, the SOC changing of them is close to each other,
while the FC is different. (e FC of the synthesized cycle is
slightly lower than the FC of the average, for different initial
battery SOC.

CD CS

0.3

0.4

0.5

0.6

0.7

0.8

SO
C

10 20 30 400
Distance (km)

No-load
Half-load
Full-load

(a)

8.75

7.44

6.23

No-load
Half-load
Full-load

0

2

4

6

8

10

Fu
el

 co
ns

um
pt

io
n 

(L
)

10 20 30 400
Distance (km)

(b)

Figure 23: Impact of the passenger load on fuel consumption. (a) SOC changing and (b) fuel consumption.

CD CS

CSCD

0.3

0.4

0.5

0.6

0.7

0.8

SO
C

10 20 30 400
Distance (km)

Initial SOC = 0.8
Initial SOC = 0.6
Initial SOC = 0.4

(a)

0

2

4

6

8

10

Fu
el

 co
ns

um
pt

io
n 

(L
)

10 20 30 400
Distance (km)

Initial SOC = 0.8
Initial SOC = 0.6
Initial SOC = 0.4

(b)

Figure 24: FC simulation of the synthesized driving cycle with different initial SOC. (a) SOC changing and (b) fuel consumption.

16 Journal of Advanced Transportation



Table 4 gives the FC comparison between the best-
synthesized cycle and the later measured data. To il-
lustrate the advantages of the best-synthesized cycle, the
FC under different constant passenger loads is also listed
out, and the relative error versus the mean FC is, re-
spectively, compared. Moreover, the FC based on the
average value of the historically measured passengers is
also compared.

As shown in Figure 29, the FC under the no-load is lower
than the mean, while that under the full-load is much larger.
Although the FC under the half-load is closer to the mean
compared to the no-load and full-load, it is still inferior to

the synthesized cycle. It seems that the FC of the average
measurements is better than the constant load; however, it is
not as superior as the best-synthesized cycle. When the
synthesized cycle is utilized to simulate the FC, the relative
error is less than 2.5% for different initial SOC. More im-
portantly, its absolute error is within the allowance of the
standard deviation, which means the synthesized cycle can
better reflect the variation of the passenger load. In other
words, the proposed method is effective for constructing a
representative driving cycle considering the random passenger
load. Moreover, the initial SOC has an impact on the esti-
mation accuracy of the FC under the same load. It is evidently
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Figure 28: Comparison of SOC and FC between average passengers and synthesized. (a) SOC changing and (b) fuel consumption.

Table 4: Fuel consumption comparison of the synthesized cycle and measured data.

Initial SOC� 0.8 Initial SOC� 0.6 Initial SOC� 0.4

Measured data Mean FC (L/100 km) 16.53 18.75 21.32
Std. dev. (L/100 km) 0.42 0.44 0.53

No-load FC (L/100 km) 15.15 17.47 19.99
Relative error (%) − 14.15 − 6.83 − 6.24

Half-load FC (L/100 km) 18.09 20.35 22.65
Relative error (%) 9.44 8.53 6.24

Full-load FC (L/100 km) 21.27 23.58 26.40
Relative error (%) 28.68 25.76 23.83

Average FC (L/100 km) 17.65 19.97 22.45
Relative error (%) 6.77 6.51 5.3

Synthesized cycle FC (L/100 km) 16.94 19.09 21.66
Relative error (%) 2.48 1.8 1.59
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improved relative to the decrease of the initial SOC. (e main
reasonmay be that the working time of the PHEB under the CS
mode is increased as the initial SOC is decreased.

5. Conclusions

To take into account the random passenger load in a course
of the driving cycle synthesis, this paper proposed a method
to construct a typical driving cycle based on a bus route,
simultaneously considering the information of the velocity,
road slope, and the random passenger load. (e main
findings are concluded as follows:

(1) To promote the accuracy of the synthesized driving
cycle and conveniently for considering the random
passenger load, kinematic segments were partitioned
according to the distance of the adjacent bus stop.
(e velocity profile of each station-based interval was
synthesized by the Markov chain Monte Carlo
(MCMC) method. (e validation results demon-
strated that there was an acceptable deviation be-
tween the statistical properties of the synthesized
driving cycle and the measured cycles, as well as the
higher matching degree.

(2) To integrate the information of the passengers into
the synthesized driving cycle, the measured pas-
senger data were divided corresponding to the off-
peak and peak hours. (e variation of passenger
numbers between different bus stops was analyzed
and discovered to have the Markov property.
(erefore, the Markov chain-based method together
with Monte Carlo simulation and maximum likeli-
hood estimation was applied to determine the most
possible passenger load for each bus stop.

(3) (e fuel consumption (FC) of the PHEB was sim-
ulated on the basis of the best-synthesized driving
cycle while contrasting to the mean FC of the later
measured data. Moreover, the influence of the
passenger load and the initial SOC of the battery

were also analyzed. (e results demonstrated that it
was of great significance to consider the passenger
load during the driving cycle synthesis, due to its
considerable impact on the FC and driving mode.
Moreover, the synthesized driving cycle had an
excellent performance on the estimation of the FC
compared to the solution that the passenger load was
treated as a constant or adopting the average of the
historical measured data. (e relative error was only
2.48%, 1.8%, and 1.59% when the initial SOC was,
respectively, defined as 0.8, 0.6, and 0.4. (e syn-
thesized driving cycle had great benefits for the
PHEB design or performance estimation.

(e proposed methodology is based on a fixed bus route,
yet it also can be extended to other bus routes with the
information of the historical driving data and the passenger
flow is known. In future, the development of telematics and
large data technology will greatly facilitate the acquisition of
the historical driving data, and more attention will be fo-
cused on accurate driving cycle construction with sufficient
data, as well as the real-time driving cycle construction.
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Supplementary Materials

(e file named “Driving data.xls” contains part of the
measured driving data for the studied bus route. (e file
named “Passenger data.xls” contains the collected data of the
passenger numbers for different bus stops. (Supplementary
Materials)
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