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Abstract This paper aims to present a coupled solution
strategy for the problem of seepage through a rockfill dam
taking into account the free-surface flow within the solid as
well as in its vicinity. A combination of a Lagrangian model
for the structural behavior and an Eulerian approach for the
fluid is used. The particle finite element method is adopted
for the evaluation of the structural response, whereas an Eule-
rian fixed-mesh approach is employed for the fluid. The free
surface is tracked by the use of a level set technique. The
numerical results are validated with experiments on scale
models rockfill dams.

Keywords PFEM · Level set · Lagrangian–Eulerian
coupling · Seepage · Non-linear Darcy · Bingham plastics

1 Introduction

Many dams and dikes exhibit now a higher potential to expe-
rience overtopping during exceptional flood events. Climate
change induced by global warming is, for instance, one of
the main causes that might lead to more devastating flooding.

While in a concrete dam an overflow is not likely to affect
the integrity of the structure, in an embankment dam it usually
compromises the dam body [11]. If a dam or dike fails, loss
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of life and economic damage are direct consequences of such
event. That is the reason why there is an increasing interest
on the study of rockfill dams during extreme phenomena.

The analysis of the possible consequences of an acciden-
tal overspill is still impossible or very imprecise and the
necessary economical measures for solving the problem are
therefore inefficient. An appropriate computational method
would help reducing the cost of the investments needed in
dam safety and emergency plans for rockfill dams.

The possibility of studying the behavior of water through-
out and over the dam in case of a sudden change of the
upstream conditions and its effect on the rockfill is currently
limited by the absence of a suitable numerical tool. This
should simulate the sudden dynamic change in the seepage
and flow condition and predict the subsequent onset and evo-
lution of breaching in the rockfill slope. The current work
aims to contribute to this field, creating and validating a new
computational method of general applicability for simulat-
ing, with a unique formulation, the flow throughout and over
the dam while failure occurs together with the dam structural
response.

Traditionally the coupled problem of soils or rock and
water is faced using a multiphase material whose behavior is
governed by the coupling between the different phases: soil,
water and air. The first mathematical models describing the
coupling of the solid and fluid phases were developed by Biot
[2]. Nevertheless his work was only suitable for linear elas-
tic materials and its extension to non-linear problems with
large deformations was carried on only several years later by
Zienkiewicz and Shiomi [41]. Its should be mentioned that
important steps forward in this field have been made recently
by Lewis and Schrefler [14], Coussy [21] and De Boer [3].
These well established approaches in geomechanics were not
considered as an alternative in the present work for the fol-
lowing reasons:
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– The possibility of accurately following the transient
regime of the water flow throughout and over the rockfill
is a key point of the model. The coupling of these two phe-
nomena would be very challenging using the traditional
models, needing the transferring of interface conditions
between the free surface problem and the seepage one.
On the contrary, in the present work this is automatically
taken into account with a unique fluid formulation.

– Considering the saturation level and the interaction
between air and water in the partially saturated pores,
becomes useless. In fact, according to experimental evi-
dence the problem of interest can be considered fully
drained, being the pores interconnected.

– Due to the time scale of the exceptional flooding, which
can be of the order of minutes or maximum hours, the
dam rockfill material can be considered as rigid (avoid-
ing any elastic response in the unyielded region) and its
compressibility can be neglected.

– The capability of tracking the material yield surface is
not needed.

Both fluid and structure balance equations have to be
derived from the imposition of the global equilibrium. For
that purpose in the following sections the “monolithic” global
problem is used to obtain the balance equations for the struc-
ture. Once the fluid and the structural problems are defined,
the coupling strategy is presented. Different kinematic frame-
works are used for the fluid and the structural problem: an
Eulerian and a Lagrangian approach respectively. This choice
leads to the definition of a staggered loosely-coupled scheme.
A key point of the coupled tool is the possibility of transfer-
ring information between the moving and the fixed mesh. For
such purpose a mapping between non matching meshes has
been developed.

All the algorithms presented in this paper are implemented
inside Kratos multiphysics [9] available on-line at http://
kratos.cimne.upc.edu.

2 Mathematical model

Let us consider the balance equations of the global coupled
problem in a domain � for time t ∈ (0, T ) which can be
written as follows

ρs∂t us + ρsas · ∇sus + ∇ p′
s

− 2∇ · μ∇sus − ρsbs + ρ f ∂t u f + ρ f a f · ∇u f

+ ∇ p f − 2∇ · μ f ∇suf − ρ f nb f = 0;
nρ f ∇ · u f + ρs∇ · us = 0;

(1)

where the sub indexes s and f indicates the structural and the
fluid variables respectively. The degrees of freedom (DOFs)
of the problem are us and p′

s , i.e. the structural velocity and

the effective pressure respectively, p f , the fluid pressure and
u f , the so called Darcy velocity. The latter is the fluid veloc-
ity averaged on the total areal. This velocity is related to
the fluid velocity averaged on the empty area (u f ), by the
Dupuit-Forchheimer equation [19] u f = nu f where n is the
porosity. as and a f are the structural and fluid convective
velocity. In the problem of interest we shall take a f = u f in
an Eulerian framework and as = 0 since the structural prob-
lem will be treated using a Lagrangian technique. μ and μ f

are the structural apparent viscosity (that will be discussed
later on) and the fluid dynamic viscosity respectively.

The assumption of incompressibility is made for the global
problem as well as for the fluid and structural problems.

The fluid and structural density are related by the defi-
nition of global density ρ. This can be either a dry density
ρs = (1 − n)ρs if the node is not immersed in water, or a
nodal saturated density ρsat

ρ := ρsat = nρ f + (1 − n)ρs+ = nρ f + ρs . (2)

Finally b f and bs are the fluid and structural external force
vectors.

2.1 Fluid model

The classical approaches of fluid flow in porous media are not
applicable for the analysis of water motion within the rockfill
of a dam. Traditionally water is considered in slow motion or
as a stationary load [40]. On the contrary we are interested in
the possibility of following the rapid transition of the water
level within a rockfill slope as well as in its surroundings for
identifying the beginning of the failure mechanism.

On the other hand, the typical problem of evaluating the
saturation level of the pores loses its importance in the case
studied due to the large dimension of the granular material.
Under these circumstances, in fact, the pores can be con-
sidered always interconnected and the problem fully drained
[38]. It should be pointed out that a key point for the complete
fluid simulation of the hydrodynamic effect of an overtopping
is the capability of the code to simulate at once, not only the
seepage, but also the fluid flow upstream, downstream and
over the rockfill. For that purpose the balance equations are
derived considering the flow inside a generic porous material.
This way the equations automatically reduce to the classical
Navier-Stokes equations when porosity is equal to one, that
is, when no porous medium is present.

A similar approach has been used by Nithiarasu and
coworkers [20] to study the natural and forced convective
flux in a cavity filled by a variable porosity medium.

The balance equation for the fluid problem are obtained
imposing the conservation of mass and linear momentum in
within a fixed control volume (the details of the derivation
can be found in [12])
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ρ f ∂t u f + ρ f u f · ∇u f + n∇ p f

−2∇ · μ f ∇su f − ρ f b f n + nD = 0; (3)

∇ · u f = 0; (4)

In Eq. 3, D is the matricial form of the resistance law
which is known as the Darcy term. It represents the dissi-
pative effects due to the interaction between the solid and
the fluid part. The resistance law should be chosen among
the possible quadratic or exponential forms proposed in the
literature [38]. In fact this cannot be taken in its linear form
(Darcy’s law) due to the characteristics of the problem that
exceed the Darcy’s law range of validity [34].

In this work the Ergun correlation has been chosen. The
main purpose of this model is to treat with a unified for-
mulation the free surface flow in presence or absence of a
porous rockfill material. Between the existing options, this
model was chosen since the D term automatically goes to
zero when n → 1 (open air).

Calling E1 and E2 the Ergun coefficients, the resistance
law is

D = E1u f + E2u2
f

= μ f

k
u f + 1.75√

150

ρ f√
k

|u f |
n3/2 u f .

(5)

where k is the permeability defined as

k := n3 D2
50

150(1 − n)2 . (6)

where D50 is an equivalent diameter of the porous material1

and

E1 := 150 · (1 − n)2

n3 · μ

D2
50

; (7)

and

E2 := 1.75 · (1 − n)

n3 · ρ f

D50
; (8)

2.2 Structural model

The simulation of the structural response of a slope made
of granular material has been treated using a continuous
approach despite the intrinsic incoherent nature of the rock-
fill. This is an acceptable choice under the assumption that
the rockfill size is small with respect to the overall size of the
structure.

It should be mentioned that in recent years, the impor-
tant advances in computer performance and in parallel com-
puting have allowed the simulation of large domains taking

1 D50 is the diameter of the sieve at which the 50 % of the material
passed.

into account the behavior of every single particle of a gran-
ular slope. The family of the so called discrete (or distinct)
element methods (DEM) is reaching widespread popularity
in the computational mechanics community. The basic idea
is that every particle is a discrete element interacting with
the others considering its mechanical and material proper-
ties [29,39].

The adoption of a continuous approach implies the choice
of a suitable constitutive law. Many plastic or rigid-plastic
constitutive models are commonly used in geomechanics to
describe the structural response of an incoherent non-cohe-
sive material [40]. It is usually accepted that a rockfill slope
has the capability to support a certain amount of shear stress
with almost no elastic strains before starting large defor-
mation. When the yield stress is reached the material starts
to flow until arriving at a stable configuration. It should be
remarked that the behavior of the yielded material is more
similar to the flowing of a fluid than to the process of defor-
mation of a solid. In the literature there exists a wide category
of fluids which exhibits a rigid behavior until reaching a yield
threshold. They are part of the family of the so called non-
Newtonian fluids.

These aspects, together with the natural way of manag-
ing large deformations in fluids, lead us to concentrate on
variable viscosity models for the calculation of the structural
response instead of any other plastic or damage models. Con-
sequently, a non-Newtonian constitutive law was adopted for
the rockfill body.

The Bingham bilinear behavior might induce numerical
difficulties, hence smooth laws are usually preferred. Some
authors [15] attempted to simulate the so called bi-viscosity
model but their predictions lead to inconsistencies. Conse-
quently, in the present work the regularized model proposed
by Papanastasiou [27] is chosen as a starting point for the
development.

Following the ideas presented in [27], the 3D Bingham
regularized relation2 is

τ s = 2

[
μs + τ0

γ̇

(
1 − e−mγ̇

)]
εs(us), (9)

where m is a regularization parameter that controls the
approximation to the bilinear model as shown in Fig. 1. The
apparent viscosity is therefore defined as

μ̃(γ̇ ) = μs + τ0

γ̇

(
1 − e−mγ̇

)
, (10)

2 In 3D the equivalent strain rate γ̇ and yield stress τ0 are defined as
the second invariants of the rate of strain tensor (ε) and of the deviatoric
part of the stress tensor (τ ), respectively.

γ̇ =
(

1

2
εs : εs

) 1
2

τ0 =
(

1

2
τ s : τ s

) 1
2
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Fig. 1 Newtonian and Bingham fluid compared with the regularized
model for increasing values of the m parameter

Referring to Eq. 10, the problems connected with the singu-
lar point of the bi-linear model are avoided here. In fact, in
the un-yielded zone the shear strain rate μ̃ = μ + τ0 m as
γ̇ → 0.

The Bingham model was originally conceived for materi-
als with a fixed yield stress.

For granular materials, the definition of the yield stress
depends on:

– The characteristics of the rockfill (its internal friction
angle).

– The effective stress.

The model proposed in the present work has its origin in a
classical Bingham constitutive relation, but using a pressure
sensitive yield stress τ0 defined using a Mohr–Coulomb fail-
ure criteria without cohesion.

τ0 = p′
s tg(φ), (11)

where p′
s is the effective pressure and φ is the internal friction

angle. Equation 9 in 3D becomes

τ s = 2

[
μs + p′

s tg(φ)

γ̇

(
1 − e−mγ̇

)]
εs(us), (12)

and the resulting apparent viscosity is therefore

μ̃(γ̇ ) = μs + p′
s tg(φ)

γ̇

(
1 − e−mγ̇

)
, (13)

The idea of a pressure dependent yield stress has already
been exploited for instance in [28], where a frictional fluid
rehological model is used for the simulation of land slides.

The structural boundary value problem can therefore be
derived subtracting 3 and 4 from 1. Let us consider a struc-
tural domain �s and a time instance t ∈ (0, T ) the structural
problem becomes

ρs∂t us + ρsas · ∇sus + ∇ p′
s

− 2∇ · μ̃s∇us − ρsbs + (1 − n)∇ p f − D = 0

∇ · us = 0,

(14)

The problem is fully defined with the following boundary
and initial condition:

us(x, 0) = us 0(x) in �s,

us(x, t) = gs(x, t) on ∂�s D, t ∈ (0, T ),

n · σ s(x, t) = ts(x, t) on ∂�s N , t ∈ (0, T ),

(15)

where ∂�s D and ∂�s N = �s are the Dirichlet and the Neu-
mann boundaries respectively.

Remark 1 The D term in the coupled problem should take a
form slightly different than Eq. 5

D = n μ f

k
(u f − us) + 1.75√

150

ρ f n√
k

|u f − us |
n3/2 (u f − us).

(16)

where the relative velocity should be used. In practice, for
the problem of interest the structural velocity is small with
respect to the fluid one. Its effect is hence considered negli-
gible and it is not taken into account. This is not the case if
the same strategy is used in the calculation of, for example,
a landslide into a reservoir or any other problem in which
the structural velocity is comparable or even larger than the
fluid one.

3 Numerical approach

The fluid and the structural problems presented in the pre-
vious section are treated in two different kinematical frame-
works: the fluid problem is solved using an Eulerian fixed
grid approach whereas for the structural one, a Lagrangian
approach is preferred. This choice is the consequence of the
following considerations:

The structure suffers large deformation and shape changes.
For this purpose a Lagrangian approach results a natu-
ral choice. The particle finite element method (PFEM),
a Lagrangian technique with remeshing is the adopted
approach. On the other hand the fluid problem might be also
treated with a Lagrangian approach, but the need of a fre-
quent (and not parallel) remeshing would have considerably
slowed the calculation down. We therefore prefer to reduce
the fluid computational effort treating this part with a fixed
mesh approach and a level set technique to track the evolu-
tion of the free surface. An edge-based approach is chosen
since it is considered a more competitive choice than a tradi-
tional element based one [12] due to its simple parallelization
[30,33].
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3.1 Fluid numerical model

The fluid problem to be solved in a domain � for a time
instance t ∈ (0, T ) is given by Eqs. 3 and 4 with the follow-
ing boundary and initial conditions:

u f (x, 0) = u f 0(x) in �;
u f (x, t) = g f (x, t) on ∂�D, t ∈ (0, T );
n · σ f (x, t) = t f (x, t) on ∂�N , t ∈ (0, T );

(17)

where ∂�D and ∂�N = � are the Dirichlet and the Neu-
mann boundaries respectively. The weak form of Eqs. 3 and
4 is derived next using a Galerkin formulation. A mixed finite
element method is used.

The weak form of Eqs. 3 and 4 integrating by part the
viscous term is∫
�

w f ρ f ∂t u f d� +
∫
�

w f ρ f u f · ∇u f d�

+
∫
�

w f n∇ p f d� + 2
∫
�

∇w f : μ f ∇su f d�

+
∫
�

w f (E1u + E2|u f |u f )d�

−
∫
�

w f ρ f nb f d� −
∫

∂�N

w f · t f d� = 0 ∀w f ∈ V;

∫
�

q f ∇ · u f = 0 ∀q f ∈ Q; (18)

where, for a fixed t ∈ (0, T ), u f is assumed to belong to
the velocity space V ∈ H1(�) , and p f belongs to the pres-
sure space Q ∈ H1(�).w f and q f are velocity and pressure
weighting functions belonging to the velocity and the pres-
sure spaces respectively.

H1 continuity is required since the gradient of pressure
term is not integrated by parts, as explained in [30] where
a similar formulation is presented for a free surface incom-
pressible fluid solver.

Let Vh be a finite element space to approximate V , and
Qh a finite element approximation to Q. The problem is now
finding u f h ∈ Vh and p f h ∈ Qh such that

∫
�

w f hρ f ∂t u f hd� +
∫
�

w f hρ f u f h · ∇u f hd�

+
∫
�

w f hn ∇ p f hd� + 2
∫
�

∇w f h : μ f ∇su f hd�

+
∫
�

w f h(E1u f h + E2|u f h |u f h)d�

−
∫
�

w f hρ f nb f hd� −
∫

∂�N

w f h · t f hd� = 0

∀w f h ∈ Vh;∫
�

q f h∇ · u f hd� = 0

∀q f h ∈ Qh; (19)

3.1.1 Edge-based approach

An edge-based approach is used in order to optimize the cal-
culation of the fluid evolution. The idea is to express all the
integral operators of the classical Galerkin discretization in
terms of the neighboring contributions accessing each node
only once and taking advance of the Compressed Sparse Row
(C S R) matrix storing format and to pre-integrate all the nec-
essary terms at the beginning of the calculation.

Since symmetry is not exploited in the present implemen-
tation, the parallelization of an edge-base code is straight for-
ward [18]. Two nested loops are performed, the main loop
(which is the one to parallelize) is made over the mesh node
i , and the inner one is made over node j surrounding node i
(the edges connected to node i).

Full details on the implementation of the operators are
provided in [33] and [18].

3.1.2 Stabilized formulation

Since only simplicial P1/P1 elements are used in this work,
a suitable stabilization technique is necessary to overcome
pressure and convective instabilities. The Orthogonal Sub-
grid Scale OSS method introduced by Codina [5] is used. In
this case the space for the sub-grid scale is taken orthogonal
to the finite element one.

Following strictly the operations outlined in [7,33], the
problem already presented in Eq. 19, with the insertion of
the convection and incompressibility stabilization terms, is:
find (u f h, p f h,πh, ξ h) in Vh × Qh × Vh × Vh such that

∫
�

w f h∂t u f hd� +
∫
�

w f hu f h · ∇u f hd�

+
∫
�

w f hn∇ p f hd� + 2
∫
�

∇w f h : ν f ∇u f hd�

+
∫
�

w f h(E1u f h + E2|u f h |u f h)d�−
∫
�

w f hnb f d�

−
∫
�

τ(u f h · ∇w f h)Ph
⊥(u f h · ∇u f h + E2|u f h |u f h)d�

= 0
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∀w f h ∈ Vh;
∫
�

q f h∇ · u f hd� +
∫
�

τ∇q f hPh
⊥(n∇ p f h)d� = 0

∀q f h ∈ Qh; (20)

where Ph
⊥ is the space of orthogonal projections Ph

⊥ =
I − Ph and Ph is the L2—projection onto Vh . That is

Ph
⊥(u f h · ∇u f h + E2|u f h |u f h) (21a)

= u f h · ∇u f h + E2|u f h |u f h − πh;
Ph

⊥(∇ p f h) = n∇ p f h − ξh; (21b)

with πh and ξh defined as∫
�

w f hπhd�

=
∫
�

w f h(u f h · ∇u f h + E2|u f h |u f h)d�; (22a)

∀w f h ∈ Vh∫
�

w f hξhd� =
∫
�

w f hn∇ p f hd�; ∀w f h ∈ Vh (22b)

The additional unknowns ξ and π can be easily expressed in
function of velocity and pressure through this equations.

Following the analysis of Codina [6], and considering the
additional presence of the Darcy term, τ is defined as

τi =
(

α

�t
+ 4ν f i

h2
i

+ 2|u f i |
hi

+ (E1 + E2|uf i|)
)−1

(23)

where hi is the mesh size taken equal to the minimum edge
length (li j ) of the edges i j surrounding node i . α is a param-
eter that controls the importance of the dynamic term in the
stabilization (α ∈ [0, 1]). In the case of pressure stabiliza-
tion we take α = 1, whereas for the convective term, α it is
taken equal to 0.01 therefore decreasing the importance to
1 %. Finally E1 and E2 are the Ergun’s coefficients defined
in 7 and 8 respectively but divided by the fluid density ρ f .

We note that the first three terms in 23 are very compara-
ble to the terms seen in Eqs. (3.9) and (3.10) in [35]. We also
note that it was proposed in [36] that the element lengths used
in the second term (diffusive term) and third term (advective
term) should be different, one being the diffusive element
length and the other one being the advective element length.
Nevertheless in the present work since the element length is
evaluated and stored just at the beginning of the calculations
it cannot be function of the velocity field. Furthermore, we
note that as a way to address the issues related to includ-
ing or not including the dynamic term in the stabilization,

Table 1 Matrices and vectors of the semi discrete form of Eqs. 25

Matrix term Continuum term

M̃i j

∑
j

∫
�

Ni N j d�

K̃i j K̃C
i j (ug f )

∫
�

Ni
(
u f g · ∇N j

)
d�

K̃μ
f i j

∫
�

ν f i ∇Ni · ∇N j d�

K̃D
i j (ug f )

∑
j

∫
�

Ni u f g N j d�

∇̃i j

∫
�

ni Ni ∇N j d�

D̃i j

∫
�

Ni ∇N T
j d�

F̃ f i

∫
�

ni Ni d�

Table 2 Stabilization matrices and vectors of system 25

Matrix term Continuum term

Su
i j

∫
�

τi (u f g · ∇Ni )(u f g · ∇N j + E2|uf g|N j )d�

Sπ
i j

∫
�

τi Ni (u f g · ∇N j + E2|uf g|N j )d�

Sp
i j

∫
�

τi ∇Ni · ∇N j d�

Sξ
i j

∫
�

τi Ni ∇N j d�

“element-vector-based” stabilization parameters were intro-
duced in [37] and successfully tested in [10].

3.1.3 Discretization procedure

System 20 can be rewritten in a semi discrete form as

M̃∂t u f + K̃C (
ug f

)
u f + ∇p f + K̃μ

f u f

+ K̃D (
ug f

)
u f + Suu f − Sππ − F̃ f = 0; (24a)

D̃u f + Spp f − Sξ ξ = 0; (24b)

M̃π − K̃C (ug f )u f = 0; (24c)

M̃ξ − ∇̃p f = 0; (24d)

where u f is the vector of nodal velocities and p f the vector
of nodal pressures. ug f is the fluid velocity on the Gauss
point. The operators take the form presented in Table 1 and
the stabilization operators Si are defined as shown in Table 2.
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In order to simplify the problem, Eqs. 24c and 24d can be
substituted in Eqs. 24a and 24b respectively, resulting

M̃∂t u f + K̃C (
ug f

)
u f

+∇p f + K̃μ
f u f + K̃D (

ug f
)

u f

+ Suu f − Sπ M̃−1K̃C (ug f )u f − F̃ f = 0; (25a)

D̃u f + Spp f − Sξ M̃−1∇̃p f = 0; (25b)

The residual of the momentum equations without the
dynamic term is defined as

r̃
(
u f , p f

) := K̃C (
ug f

)
u f + ∇p f + K̃μ

f u f

+ K̃D (
ug f

)
u f + Suu f

− Sπ M̃−1K̃C (ug f )u f − F̃ f ;

(26)

3.1.4 Fractional step solver using an explicit fourth order
Runge Kutta time scheme

The modified form of the Navier-Stokes equations is solved
using a fractional step algorithm.

Pressure-splitting approaches of the fractional-step type
are very convenient due to their high computational effi-
ciency for flows at high Re. The fundamental idea is to solve
the momentum equation keeping the pressure fixed and later
correcting the pressure to guarantee the satisfaction of the
divergence constraint. The fractional step approach is tradi-
tionally presented in an implicit context, typically using a first
or second order backward differentiation formula (BDF1 or
BDF2 algorithm respectively) for the time integration of the
momentum equation. In practice it is typically observed that,
in dealing with free-surface problems, even fully implicit
schemes are limited to time steps for which the free sur-
face moves approximately one element length per time step.
Such heuristic constraint is equivalent in essence, to a restric-
tion on the practical Courant Friedrichs Lewy (CFL) number
approaching the unit value. This implies that explicit schemes
will be competitive provided that C F L ≈ 1 can be used and
meshes of sufficiently good quality can be generated. This
motivates the use of an explicit form of the fractional step
scheme (see [30]) based on the use of a fourth order Run-
ge Kutta (RK4) in dealing with the momentum equation.
This choice has a lower computational cost per step than
an explicit time integration technique since does not require
solving of a system of equations and its implementation is
highly parallelizable.

RK4 makes use of the solution at tn to evaluate the solu-
tion at time tn+1 by calculating the residual of the equations
at a certain number of intermediate steps.

In order to fully explain every stage of the integration
scheme applied to the momentum equation let us use the
definition of the stabilized residual obtained in Eq. 26.

The semi-discrete form of the momentum equations in
terms of the residuals at the intermediate stages is then

M̃
un+1

f − un
f

�t
= 1

6

[
r̃ f 1 + 2 r̃ f 2 + 2 r̃ f 3 + r̃ f 4

];
= 1

6

[
r̃ f (un

f , pn
f ) + 2 r̃ f (uθ1

f , pθ1
f )

+ 2 r̃ f (uθ2
f , pθ2

f ) + r̃ f (uθ3
f , pθ3

f )
]
;

(27)

where r̃ f (u
θi
f , pθi

f ) are the residuals of the momentum equa-
tions defined by Eq. 26 evaluated at θi intermediate stages.

To exactly evaluate the residual at each intermediate time
step, the solution of the continuity equation is required. This
would considerably reduce the efficiency, requiring a huge
computational effort. In order to overcome this issue, accord-
ing to [32], a linear variation of pressure is assumed in the
time step. It should be remarked that this assumption leads
the velocity field to be divergence free only at the end of the
step.

Redefining Eq. 26 as

r̃ f (u f , p f ) = r̃u
f (u f ) + r̃p

f (p f ); (28)

being r̃u
f (u f ) the part of the residual related to velocity and

r̃p
f (p f ) the part related to the pressure gradients. The resid-

uals become

r̃ f 1 := r̃ f (un
f , pn

f ) = r̃u
f (u

n
f ) + ∇̃pn

f ;
r̃ f 2 := r̃ f (uθ1

f , pθ1
f ) = r̃u

f (u
θ1
f ) + 1

2

(
∇̃pn

f + ∇̃pn+1
f

)
;

r̃ f 3 := r̃ f (uθ2
f , pθ2

f ) = r̃u
f (u

θ2
f ) + 1

2

(
∇̃pn

f + ∇̃pn+1
f

)
;

r̃ f 4 := r̃ f (uθ3
f , pθ3

f ) = r̃u
f (u

θ3
f ) + ∇̃pn+1

f .

(29)

And the global momentum equation 27 can be symboli-
cally rewritten as

M̃
un+1

f − un
f

�t
= 1

6

[
r̃u

f (u
n
f ) + 2 r̃u

f (u
θ1
f )

+2 r̃u
f (u

θ2
f ) + r̃u

f (u
θ3
f )

]

+1

2

[
∇̃pn

f + ∇̃pn+1
f

]
(30)

In order to decouple the solution for the velocity and pres-
sure, the traditional pressure splitting procedure is performed
and the fractional step velocity ũ f is inserted. This gives
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M̃
ũ f − un

f

�t
= 1

6

[
r̃u

f (u
n
f ) + 2 r̃u

f (ũ
θ1
f )

+2 r̃u
f (ũ

θ2
f ) + r̃u(ũθ3

f )
]

+ 1

2
∇̃pn

f ; (31a)

M̃
un+1

f − ũ f

�t
+ 1

2
∇̃(pn+1

f − pn
f ) = 0; (31b)

D̃un+1
f + Sppn+1

f − Sξ M̃−1G̃pn+1
f = 0; (31c)

where it has to be remarked that equation 31a only depends
on the pressure at the previous time step and on the interme-
diate fractional step velocities, leading to a slightly different
RK4 steps as explained later on.

From equation 31b

un+1
f = ũ f − �t

2
M̃−1∇̃(pn+1

f − pn
f ); (32)

that substituted in equation 31c gives

D̃ũ f − �t

2

˜
DQ−1

M∇̃(pn+1
f − pn

f ) + Sppn+1
f

− Sξ ˜M−1G̃pn+1
f = 0.

(33)

Finally substituting the discrete Laplacian (D̃M̃−1∇̃) by
the continuous one (L), the final system to be solved is:

M̃
ũ f − un

f

�t
= 1

6

[
r̃u

f (ũ
n
f ) + 2 r̃u

f (ũ
θ1
f ) + 2 r̃u

f (ũ
θ2
f )

+ r̃u
f (ũ

θ3
f )

]
+ 1

2
∇̃pn

f ; (34a)

�t

2
L

(
pn+1

f −pn
f

)
= D̃ũ f + Sppn+1

f − Sξ M̃−1G̃pn+1
f ;
(34b)

un+1
f = ũ f − �t

2
M̃−1∇̃

(
pn+1

f − pn
f

)
; (34c)

where the residuals of Eq. 34a are evaluated according to the
following steps

r̃u
f (u

n
f ); (35a)

ũθ1
f = un

f + M̃−1 �t

2

[
r̃u

f (u
n
f ) + ∇̃pn

f

]
; (35b)

r̃u
f (ũ

θ1
f ); (35c)

ũθ2
f = un

f + M̃−1 �t

2

[
r̃u

f (ũ
θ1
f ) + 1

2
∇̃pn

f

]
; (35d)

r̃u
f (ũ

θ2
f ) (35e)

ũθ3
f = un

f + M̃−1�t

[
r̃u

f (ũ
θ2
f ) + 1

2
∇̃pn

f

]
; (35f)

r̃u
f (ũ

θ3
f ); (35g)

3.1.5 Level set

Since the technique we propose is based on the use of a fixed-
grid approach, the solution method has to be completed by
the choice of a tracking method for the free surface and by
the choice of an approach to apply the boundary conditions
needed on the free surface.

The level set method was conceived as a methodology to
follow moving interfaces. The interface is implicitly defined
as the zero-valued iso-surface of a given smooth function
[26]. As often done, the level set function is defined as a
signed distance function.

The developed technique consists of three parts:

– An extrapolation function: it defines the values of veloc-
ity, pressure and gradient of pressure on the nodes in the
non-fluid area close to the free surface.

– A tool for the calculation of the nodal distance in the
whole control domain once the new free surface has been
defined;

– A way to choose the pressure to be applied on the outer
nodes so that the pressure is approximately zero on the
free surface.

A detailed description of the procedure developed by the
authors can be found in [30].

3.2 Structural numerical model

The balance equation governing the structural problem
detailed in Eqs. 14 and 15 are written here in a more compact
form and considering the Lagrangian form of the problem.

Calling �s ⊂ R
d (where d is the space dimension) the

structural domain in a time interval (0, T ), the modified
Navier-Stokes equations are

ρs∂t us + ∇ p′
s − 2∇ · μ̃∇sus − ρsb= 0 in �s, t ∈ (0, T ),

∇ · us = 0 in �s, t ∈ (0, T ), (36)

where −ρsbs = −ρsbs +(1−n)∇ p f −D according to what
is explained in Remark 1. The problem is fully defined with
the boundary and initial conditions 15.

Using the Galerkin formulation the weak form of the struc-
tural problem becomes
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∫
�

wsρs∂t usd� +
∫
�

ws∇ p′
sd�

−
∫
�

ws∇ · 2μ̃∇susd� −
∫
�

wsρsbsd� = 0 ∀ws ∈ V,

∫
�

qs∇ · us = 0 ∀qs ∈ Q, (37)

where, for a fixed t ∈ (0, T ), us is assumed to belong to
the velocity space V ∈ [H1(�)]d of vector functions whose
components and their 1st derivatives are square-integrable,
and p′

s belongs to the pressure space Q ∈ L2 of square-inte-
grable functions. ws and qs are velocity and pressure weight
functions belonging to velocity and pressure space respec-
tively.

Performing the integration by part of the pressure and the
viscous terms, gives

∫
�

wsρs∂t usd� −
∫
�

p′
s∇ · wsd�

+ 2
∫
�

∇ws : μ̃∇susd� −
∫
�

wsρsbsd�

−
∫

∂�N

ws · hd� = 0 ∀ws ∈ V,

∫
�

qs∇ · usd� = 0 ∀qs ∈ Q, (38)

Let Vh be a finite element space to approximate V , and Qh

a finite element approximation to Q. The problem is now
finding us h ∈ Vh and ps h ∈ Qh such that

∫
�

ws hρs∂t us hd� −
∫
�

p′
s h∇ · ws hd�

+ 2
∫
�

∇ws h : μ̃∇sus hd� −
∫
�

ws hρsbsd�

−
∫

∂�N

ws h · ts hd� = 0 ∀ws h ∈ Vh,

∫
�

qs h∇ · us hd� = 0 ∀qs h ∈ Qh . (39)

3.2.1 Stabilized formulation

The choice of adopting equal order linear elements (P1/P1)
for the velocity and pressure, despite its simplicity, entails
the necessity of using a stabilization technique. An ASGS
stabilization technique is employed for that purpose.

Table 3 Elemental stabilization terms in ASGS for the non-Newtonian
element

Momentum equation
Pm

s (ws h) ∇qs h

τs 1

(
α

�t
+ 4μ̃

h2 ρs

)−1

Rm
s (us h) ∂t us h − ∇ · μ̃

ρs
∇sus h +∇ p′

s h − bs

Continuity equation

Pc
s (ws h) ∇ · ws h

τs 2
μ̃

ρs
Rc

s (us h) ∇ · us h

The stabilized form of the balance equations becomes

∫
�

ws hρs∂t us hd� −
∫
�

p′
s h∇ · ws hd�

+2
∫
�

∇sws h : μ̃∇us hd� −
∫
�

ws hρsbsd�

−
∫

∂�N

ws hts hd� +
∑

el

∫

�el

τs 1Pm
s · Rm

s d� = 0

∀ws h ∈ Vh,∫
�

qs h∇ · us hd� +
∑

el

∫

�el

τs 2Pc
s · Rc

sd� = 0

∀qs h ∈ Qh,

(40)

where Pm
s ,Rm

s ,Pc
s and Rc

s are defined in Table 3.
In a Lagrangian framework the convective term is not

present. Therefore only pressure stabilization is required.

3.2.2 Discretization procedure

The matrix form of the stabilized system of Eqs. 40 can be
written as:
[

M 0
0 0

]
·
[

u̇s

ṗs

]
+

[
(K + Sc) G
(D + Squ) Spq

]
·
[

us

ps

]
=

[
Fs

S f
q

]

(41)

where the operators are explicitly written in Table 4 and the
stabilization operators can be found in Table 5.

3.2.3 Bossak time integration scheme

A Bossak time integration scheme is used to advance in time
the momentum equations.

Equations 41 can be written in compact form as

Mv̇s + fs int (vs(t), t) = fs ext (t). (42)
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Table 4 Matrices and vectors of system 41 without stabilization terms

Matrix term Continuum term

Mu̇s

∑
el

∫
�el

ws hρs∂t us hd�

Kus 2
∑

el

∫
�el

ws h∇ws h : μ̃∇us hd�

Gp′
s −

∑
el

∫
�el

p′
s h∇ · ws hd�

Dus

∑
el

∫
�el

qs h∇ · us hd�

Fs

∑
el

∫
�el

ws hρsbsd�

hs 0

Table 5 Stabilization matrices and vectors of system 41

Matricial term Continuum term

Momentum equation

Squus −
∑

el

∫
�el

τ1∇qs h∇ · μ̃

ρs
∇sus hd�

Spq p′
s

∑
el

∫
�el

τs1∇qs h∇ ps hd�

S f
q −

∑
el

∫
�el

τs1∇qs hbs hd�

Continuity equation

Scus

∑
el

∫
�el

τs2∇ · ws h∇ · us hd�

The resulting residual of the momentum equations linear-
ized in time is

rs(vn+1−αB
s ) = −M

(
1 − αB

γ�t
vn+1

s

)
− fn+1

s int + fn+1
s ext

− M
[

1 − αB

γ�t
vn

s + (1 − αB)2

γ
Pvn

s − αBPvn
s

]
,

(43)

where vT
s = [us, p′

s] and PvT
s = [Pus, Pp′

s] are the vectors of
unknowns and

αB ∈
[
−1

3
, 0

]
, δ = 1 − 2αB

2
, β = (1 − αB)2

4
;

(44)

The famous α-method presented by Hilber Hughes and
Taylor in 1977was proven to be more accurate than Bossak
scheme when the numerical dissipation is maximal. How-
ever in this work the Bossak scheme was chosen because

it presents some implementation advantages for non-linear
problems as explained in [1].

3.2.4 Predictor multi corrector residual based strategy

The solution of the non linear problem is achieved using a
residual based approach. A quasi Newton method allows the
linearization of the non linear terms.

The final system to be solved, calling k the current itera-
tion and n + 1 the following time step is

− ∂rs(v
n+1,k
s )

∂vn+1
s︸ ︷︷ ︸

L H S

�vk
s = r(vn+1,k

s )︸ ︷︷ ︸
R H S

; (45)

In Eq. 45 �vk := vn+1,k+1 − vn+1,k and

∂rs(v
n+1,k
s )

∂vn+1
s

= − M

δ�t
− ∂f ,n+1,k

s int

∂vn+1
s

; (46)

3.2.5 The particle finite element method (PFEM)

The PFEM is a numerical method that uses a Finite Element
mesh to discretize the physical domain and to integrate the
differential governing equations [13]. The domain is mod-
eled using an Updated Lagrangian Formulation. All the vari-
ables are assumed to be known in the current configuration
at time t and they are brought to the next (or updated) con-
figuration at time t + dt . The finite element method (FEM)
is used to solve the continuum equations in a mesh built up
from the underlying nodes (the particles). This is useful to
model the separation of solid particles from the bed surface
and to follow their subsequent motion as individual particles
with a known density, an initial acceleration and a velocity
subjected to gravity forces [25].

It is important to remark that in PFEM each particle is
treated as a material point characterized by the density of
the solid domain to which it belongs to. The global mass
is obtained by integrating density at the different material
points over the domain. The quality of the numerical solu-
tion depends on the discretization chosen as in the standard
FEM. Adaptive mesh refinement techniques can be used to
improve the solution in zones where large gradients of the
fluid or the structure variables occur.

Since its first development especially focused on the sim-
ulation of free surface flows and breaking waves [13], PFEM
has been successfully used in a wide range of fields. Just to
mention some of them, it is used in FSI and coupled problems
[22,24,31], multi-fluid problems [17], contact problems and
geotechnical simulations [4,23] and fire engineering [16].
Moreover PFEM has also been successfully used in the
implementation of Bingham plastics model for the simula-
tion of landslides [8].
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The basic ingredients of PFEM can be summarized in:

• An Updated Lagrangian kinematical description of
motion;

• A fast remeshing algorithm;
• A boundary recognition method (alpha-shape);
• FEM for the solution of the governing equations;

3.3 Coupling

An explicit staggered coupling is used in the present work.
This is acceptable considering that:

• The adoption of a semi-explicit scheme for the fluid prob-
lem leads to the need of using time steps much smaller
than for the fully implicit structural problem, to ensure
stability. An implicit coupling would require adopting
the smaller time step, i.e. the one the fluid solver, for
both models, leading to an extremely expensive proce-
dure;

• The coupling between the two models is weaker in one
of the two directions. For the solution of the fluid prob-
lem, in fact, only the porosity distribution is needed to
be transfered by the structural model. In other words,
the shape of the rockfill slope or, more generally, the
one of the granular material has to be transfered to the
fixed fluid mesh. On the contrary the other way coupling,
the fluid pressure and velocity are essential to correctly
define the external forces acting on the rockfill mate-
rial.

In summary the structural Lagrangian model is mapped
on the Eulerian fixed mesh domain where, at the beginning
of the simulation, the only available information is the inflow
discharge and the control domain. The idea is that the fluid
analysis step is evaluated once the distribution of porosity is
mapped from the structural domain. The solution of the fluid
problem is then mapped on the Lagrangian structural mesh.
It is necessary to know the fluid pressure and the Darcy forces
in order to evaluate correctly the external force term of the
momentum equation in 36. Once this is done, the structural
response can be calculated. Therefore, the granular domain
deforms accordingly to the obtained velocity and pressure
fields. This new deformed granular domain is finally mapped
onto the Eulerian mesh in order to solve for the subsequent
time step.

An element transfer method (EMT) is implemented for the
mapping of the variable between the Eulerian fixed and the
PFEM moving meshes. The searching algorithm developed
uses a kd-tree data structure.

The main steps of the entire simulation process are shown
in Fig. 2 and the flow chart of the algorithm are schematically
summarized in the box below:

Coupling algorithm
Assuming known the solution of the coupled problem

at time step tn .

1. Map the configuration of the rockfill material in
terms of POROSITY distribution on the Eulerian
fluid domain;

2. SOLVE the water free surface flow problem calcu-
lating the VELOCITY and PRESSURE fields in an
EULERIAN fixed mesh;

3. Map the FLUID VELOCITY and PRESSURE
fields on the Lagrangian structural mesh;

4. Map the non linear DARCY TERM on the Lagrang-
ian structural mesh;

5. CALCULATE the structural response in a
Lagrangian mesh, using PFEM;

6. Go back to step 1.

4 Numerical examples. Application to the failure
of rockfill dams

In the present section the coupled model is validated through
a comparison with the experimental results on scale models
of rockfill dams in different seepage conditions, carried out
by the Universidad Politécnica de Madrid (UPM) (Fig. 3),
during the E-DAMS project (project of the National Plan
R+D of the Spanish Ministry of Science and Innovation I+D
BIA2010-21350-C03-00-2010-1013-).

Each experiment studies a scale model dam under a series
of incremental “steps of inflow discharge”. After each incre-
ment, the incoming discharge is maintained constant until
reaching the steady state (Fig. 4). When a breach appears
in the downstream slope, its stabilization is achieved before
measuring its advance.

Pressure at the bottom of the flumes is evaluated by a
sensors network. The deformation of the dam is analyzed
through the evolution of the so called length of failure. It is, by
definition, the horizontal projection of the distance between
the initial undeformed downstream toe and the highest point
of the failed area. The tracking of the failure line is performed
using a close-object-photogrammetry-technique. It consists
of taking a series of photos with a very short time interval
until the end of the simulation. Through the post process of
these data, the creation of a digital model of the deformed
dam is possible and the dynamic evolution of the breach is
followed with high precision.

In what follows an homogeneous dam is reproduced.
No impermeabilization is present. The characteristics of the
material used in the experiment are summarized in Table 6.
The height of the scale model is 1 m, its width 2.46 m. The
upstream and downstream slopes are both 1.5H :1V and the
crest is 20 cm.
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Fig. 2 Graphical summary of
the whole process

Fig. 3 Experimental setting of the UPM laboratories

Fig. 4 Evolution of the seepage
in the transient regime for a
given inflow condition
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Table 6 Properties of rockfill material

Porosity n 0.4052

Average diameter D50 35.04 mm

Dry density ρs 1490 kg/m3

Saturated density ρsat 1910 kg/m3

Apparent specific weight W 2500 kg/m3

Pore index Pi 0.68

Internal friction angle range φ [37◦−42.5◦]

Fig. 5 Fluid and dam qualitative initial models and boundary condi-
tions for the coupled analysis. Upper image the fluid Eulerian module.
Lower image the structural PFEM one

In Fig. 5 a schematic view of the fluid and structure bound-
ary conditions is shown. The mesh used for the fluid and the
structural model is composed of 16 347 and 3 400 linear tri-
angular elements respectively.

Four different incremental inflow discharges are consid-
ered to verify the capability of simulating the increment of
rockfill failure of the presented approach. Q1 = 25.46 l/s is
the first inflow discharge, experimentally no deformation of
the downstream slope was observed, Q2 = 51.75 l/s, Q3 =
69.07 l/s and Q4 = 90.68 l/s. When the stationary regime
for every boundary condition is achieved, the pressure head
distribution and the advance of failure B is measured.

In the present work it was assumed that a particle is to
be considered “moved” if its total numerical displacement is
higher than the average dimension of the granular material
(35 mm). This criterion was used in all the models analyzed
in order to allow a comparative analysis.

Figure 6 show on the lower part the digital model obtained
during the experiments, derived by the photogrammetric
analysis, and on the upper part the contour fill of the dis-
placements >35 mm. B0 is the horizontal projection of the
original slope of the downstream shoulder, whereas B in the
upper and lower images indicates the numerical and exper-
imental length of failure respectively. A summary of the
values and the relative errors in the three cases analyzed is
summarized in Table 7. A very good agreement is observed

Fig. 6 Comparison between experimental and numerical lengths of
failure for different inflow discharges. Upper image contour fill of
numerical displacement > 35 mm. Lower digital model of the deformed
slope in the experiments (plant view of the downstream shoulder)

123



818 Comput Mech (2012) 50:805–819

Table 7 Comparison between experimental (Bexp) and numerical
(Bnum ) length of failure for different discharges

Q [l/s] Bexp Bnum Error

25.46 0.0 0.0 0 %

51.75 0.71 0.68 4.2 %

69.07 1.08 1.04 3.7 %

90.68 1.56 1.58 1.3 %

Fig. 7 Bottom pressure distribution at stationary regime for different
discharges. Porosity n = 0.4, D50 = 35 mm. Numerical and experi-
mental comparison

between experimental and numerical length of failure in the
three cases.

The pressure head distributions obtained for the values of
inflow discharges simulated, are summarized in Fig. 7. This
shows that in the case with Q = 90.68l/s, the pressure head
presents a lower experimental value where the water exits
the dam. The contraction of the flux can be induced by the
absence of the rockfill that flowed away during the failure
process in the experiments. This leads to the conclusion that
the failed material in the numerical model settles faster than
in the real case. Its accumulation over the original toe of the
dam induces a higher value of pressure than in the exper-
iment. This problem might be corrected by evaluating the
superficial dragging induced by the water.

5 Conclusions

The main points of the present work can be summarized as
follows:

1. A fluid code able to simulate the free surface flow over
and throughout the rockfill have been developed. The
classical Navier-Stokes equations have been modified
to automatically account for a change in porosity val-
ues. The non linear seepage is evaluated using a qua-
dratic form of the resistance law. Ergun’s coefficients
have been chosen. The possibility of including variable
incoming discharges is included. A fixed mesh approach
has been used and a level set technique has been imple-

mented to track the evolution of the free surface both
outside and inside the rockfill.

2. A code to simulate the behaviour of a granular non-cohe-
sive material has been implemented. A non-Newtonian
modified Bingham law is used. This approach gives the
possibility of considering a pressure sensitive resistance
criteria. This was obtained by inserting a Mohr Coulomb
failure criteria in the Bingham relation. Since the rock-
fill is expected to undergo severe deformation during the
failure process, a Lagrangian approach is preferred to a
fixed mesh one. PFEM was the adopted technique.

3. A strategy to couple the models mentioned in points
one and two has been developed. This tool includes an
algorithm for the data mapping between non matching
meshes, being the structural and the fluid models in two
different kinematic frameworks (the Lagrangian and the
Eulerian one).
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