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Summary: Herein, microscale approaches were explored to determine the homogenized
properties of short fibre reinforced polymer material. The analytical homogenization fol-
lows the shear lag principle to approximate elastic modulus in the case of longitudinally
oriented short fibres. For the finite element-based homogenization, a periodic 3D rep-
resentative volume element of the composite is constructed to apply forward numerical
homogenization. This unit cell is discretized by tetrahedral 3D finite elements resulting in
a periodic mesh. An effective spring element method was further developed to homogenize
the properties of short fibre-reinforced material. The reduced order spring method pre-
dicted the elastic properties almost equally to the finite element-based homogenization. A
novel bio-based polyamide matrix with 40% glass fibre content and a traditional polyamide
with 30% glass fibre reinforcement serve for the application and validation of the devel-
oped micromechanical methods. An additional effectivity parameter must be considered
to capture the manufacturing imperfections of the injection molding process. This pa-
rameter can be calibrated based on experimental data from tensile testing. The developed
numerical frameworks show good potential for extensions to more advanced modelling of
the composite, such as nonlinear behaviour or failure mechanism.

1 Introduction

Predicting the homogenized mechanical properties of short fibre-reinforced polymer
(SFRP) is challenging. The reinforcing fibres’ location, length and orientation may be
random and hardly predictable. Additionally, manufacturing techniques for processing
SFRP may suffer from imperfections which could also affect the mechanical performance



of the composite. All these aspects introduce an extra difficulty in estimating the me-
chanical properties compared to long fibre-reinforced polymers (LFRP). For instance, the
principle of the well-known rule of mixture (RoM) cannot be directly applied, as short
fibres receive the load from the matrix by shear, even in a perfectly longitudinal loading
direction and longitudinally aligned fibre orientation. Due to this effect, the homogenized
elastic properties depend on the distribution and the length of the fibres. The nonlinear
mechanical behaviour and the failure mechanism are accordingly challenging to predict
with traditional methods.
The target of the numerical homogenization methods is to reduce the time-consuming and
complicated test amounts. SFRP was experimentally characterized in several works [1]
[2] [3]. SFRP micromechanical homogenization is carried out in [4] and [5]. The forward
finite element method (FEM) for the homogenized properties of 2D or 3D inhomogenous
materials has an extensive literature. Along forward homogenization, a micromechanical
representative volume element (RVE) is selected to model the smallest repeating unit of
the material. This discretized RVE can be used to calculate the homogenized properties of
the composite. FE-based elastic homogenization was explored by [6] [3] [7] [8] [9]. Various
micromechanical nonlinear homogenization methods were explored in [10] [3] [11] [12] [2]
[13] to model the nonlinear behaviour of the composite.
In this paper, the elastic properties of a glass fibre-reinforced traditional polyamide (PA)
material and a novel bio-based PA material are analyzed. The traditional composite has
a fibre volume of 30 %, while the bio-based alternative has 40 % glass fibre content.
The stress-strain relationship of the pure glass fibre, pure bio-based thermoplastic, pure
traditional thermoplastic are plotted in Figure 1. The stress-strain curves are derived
from standard quasistatic tensile tests. The novel bio-based PA has around 30 % lower
elasticity (Em) than the traditional PA. The elasticity of the glass fibre (Ef ) is 70 GPa.
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Figure 1: Stress-strain relationship under tensile testing of the pure matrices and fibre
material

Analytical and numerical homogenization techniques will be revealed in order approxi-
mate the mechanical properties of the bio-based and traditional SFRPs. The main target
of this research to find an effective method to understand the material behaviour. This
gives the chance to optimize the novel bio-based composite, and therefore help its indus-
trialization.
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2 Analytical homogenization

For short fibre reinforcement, the shear lag [14] approach can be used to analytically
estimate the elasticity of the material considering longitudinal fibre orientations. The
method is based on the load transfer mechanism in discontinuous fibres. The theory in-
troduces a critical length (lc). Below this length, the reinforcing fibres do not contribute
with their total loading capacity. Figure 2 demonstrates the shear and normal stress
distribution of a single discontinuous fibre. An RVE of a single short fibre and its sur-
rounding matrix is taken to derive the homogenized elastic properties of the composite
as it is seen in Figure 2. The outer diameter of the single-fibre RVE is chosen to meet
the prescribed fibre-volume fraction (ϕ). This can be modified based on Tucker [15] by
applying Cox, Hexagonal or Square packing.
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Figure 2: Single fibre normal stress and shear stress distribution

Based on the shear stress distribution of the single-fibre RVE, [14] derives eq. 1 for the
longitudinal Young’s Modulus of purely longitudinally oriented short fibres. In eq. 1, Ef

and Em indicate the elastic modulus of the fibre and the matrix materials, while l stands
for the fibre length.

E0 = Ef ∗ ϕ ∗

(
1−

tanh(βl
2
)

βl
2

)
+ Em ∗ (1− ϕ), (1)

where β depends on the RVE geometry (Figure 2) and shear modulus of the matrix
(Gm):

β2 =
Gm

Ef

(
2π

Af ∗ ln(rf/R)

)
. (2)

Hypothetically, some of the short fibres may not be perfectly bonded with the matrix,
which results in the ineffectiveness of some fibres within the composite volume. To model
this effect, the longitudinal elasticity formula in eq. 1 was modified with an additional
parameter (peff ) to model the ineffective fibres. This parameter can be then calibrated
based on experimentally characterized data.

E00,eff = Ef ∗ peff ∗ ϕ ∗

(
1−

tanh(βl
2
)

βl
2

)
+ Em ∗ (1− ϕ) (3)
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To homogenize the varying short fibre lengths, a weighted average formulation was
established in eq. 4. N represents the total number of recognizable fibre lengths, while ni

corresponds to the occurrence of the given fibre length within the composite. The fibre
lengths and their occurrence can be determined from computer tomography (CT) scans of
the tested specimen. The exact experimental setup and CT scan images are not detailed
in this work.

E0 =
N∑
i=1

ni ∗ E00,i

N
(4)

With the formulation from eq. 4, the reduced longitudinal elasticity can be captured.
Nevertheless, direct comparison with the experimentally characterized Young’s Modulus
is only possible if the varying orientation of the fibres in the manufactured specimen is
considered. CT scan images can typically record the fibre orientation tensor (Aii) of a
test specimen. This diagonal tensor indicates the probability of the fibre orientations in
the three rectangular coordinate directions. The effect of the varying fibre orientations is
not further analyzed in this work.

3 Numerical homogenization

Beyond the presented analytical method in section 2, FEM and the reduced order spring
element method (SEM) were implemented to virtually characterize the homogenized prop-
erties of SFRP. Both methods works with a numerically discretized RVE that models
several randomly distributed fibres in transverse and longitudinal directions. While in
the analytical approach, only a single-fibre RVE was considering perfect packing.

3.1 Finite Element Method (FEM)

A Python tool was developed that can generate a 3D short-fibre RVE geometry in
the form of a cuboid. The unit cell dimension, the fibre length and diameter, and the
fibre volume fraction can be selected as parameters. The tool assigns random locations of
the fibres avoiding collisions between them, meanwhile fulfilling 3D periodicity. Fibres are
positioned aligned, but rotation around an arbitrary vector is possible. Linear tetrahedral
finite elements are used for the discretization which is carried out through a Python-Gmsh
tool. A thin 3D-meshed interface layer between the fibres and matrix is optional, but
inactivated for the linear elastic homogenizations. Calculations are carried out in Abaqus
software, applying periodic boundary conditions and prescribed strains in the six principal
directions [16]. The RVE tool is summarized in Figure 3.
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Figure 3: Homogenization tool using FE-meshed micro RVE

Convergence studies were carried out to find the ideal mesh size and RVE dimensions.
For the analysis of RVEs with perfectly longitudinally aligned fibres, the transversal di-
mensions of the cuboid are selected as 4 times the fibre diameter. In the longitudinal
direction, the RVE should be around 2.5 times larger than the fibre length to achieve
convergence. Depending on the geometric setup of the composite, such an RVE requires
about 30.000 nodes for the FE discretization. The number of degrees of freedom even
increases rapidly, in case a 3D interphase layer is desired (e.g. for nonlinear elastoplastic
simulation).

3.2 Spring Element Method (SEM)

A spring element method is presented to predict the homogenized properties of per-
fectly longitudanally oriented short fibre composite material. SEM was first proposed by
Okabe et al. [17] as a reduced order alternative compared to FEM. Tavares et al. [18]
implemented the Spring element method to model the failure of LFRP considering ran-
dom fibre distribution. This framework was further developed to adjust the capabilities
for modelling short fibre-reinforced materials.

Tavares et al. [18] tackled only high-fibre content, high-fibre elasticity composites, the
longitudinal matrix contribution was neglected, and the matrix only contributed to the
stiffness in the form of transversal shear springs. To model the contribution of the matrix
to the longitudinal elastic modulus of the composite, a new formulation is proposed in
this work. Between the longitudinal fibre elements, longitudinal matrix spring elements
are introduced. For that reason, the linear transversal shear springs were upgraded to
quadratic springs to add the new longitudinal matrix springs to the system. So, the new
approach considers linear longitudinal spring element (SE) for the fibres and matrix and
quadratic lateral SE for the matrix.

A micro connectivity system between two longitudinal fibre segments and one con-
necting matrix shear springs are shown in Figure 4. The newly formed quadratic spring
element and interconnecting longitudinal element are marked with orange colour.
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Figure 4: The new quadratic SE formulation

The effective area of the shear matrix element is expressed as

Am(r) = A1
m +

(A2
m − A1

m)

d
r, (5)

where

A1
m =

2πR1

n1

lz ; A2
m =

2πR2

n1

lz. (6)

The stiffness matrix of the finite element for the matrix is obtained as

Km =

∫ d

0

BT (r)GAm(r)B(r) dr, (7)

where

B(r) =
∂N(r)

∂r
, (8)

where N indicates the shape vector functions.
In the case of a quadratic finite element, the shape functions are:

N(r) = [N1(r) , N2(r) , N3(r)] =

[
1− 3r

d
+

2r2

d2
,
4r

d
− 4r2

d2
, −r

d
+

2r2

d2

]
. (9)

With quadratic shape functions, the stiffness matrix for the shearing SE yields

Ks
m =

G

d2

∫ d

0

9− 24r
d

+ 16r2

d2
−12 + 40r

d
− 32r2

d2
3− 16r

d
+ 16r2

d2

16− 64r
d

+ 64r2

d2
−4 + 24r

d
− 32r2

d2

Sym 1− 8r
d
+ 16r2

d2

Am(r) dr. (10)

After plugging in Am(r) = A1
m − A1

m

r

d
+ A2

m

r

d
into eq. 10, it is possible to find the

stiffness matrix as:

Ks
m =

G

d

1
2
A2

m + 11
6
A1

m −2
3
A2

m − 2A1
m

1
6
A2

m + 1
6
A1

m
8
3
A2

m + 8
3
A1

m −2A2
m − 2

3
A1

m

Sym 11
6
A2

m + 1
2
A1

m

 . (11)
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The new linear longitudinal interconnecting matrix element formulation corresponds to
the stiffness matrix of the longitudinal fibre elements from [18]. To model short fibre
materials, some longitudinal fibre segments are assigned to matrix elements. The random
distribution is realized with a constant longitudinal matrix segment length formulation.
In this sense, the SEM is more restricted to the FEM approach, where the longitudinal
fibre gaps are also randomly distributed.

4 Results and Discussion

4.1 Analytical distributions

The fibre length dependency on the longitudinal elastic modulus (E0 from equation eq.
1) by the shear lag model is shown in Figure 5. The distributions consider the fibre volume
content (ϕ1 = 0.3 and ϕ2 = 0.4) and matrix elasticity (Em,1 = 3100 and Em,2 = 2100 MPa)
according to the traditional and the new bio-based composites. Figure 5 also plots the
homogenized transverse elasticity (E90) through the inverse rule of mixture (iRom) that
is usually valid for LFRPs. A constant fibre diameter (df = 0.0012 mm) is considered.
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Figure 5: The longitudinal elasticity over the short fibre lengths

Figure 5 indicates the high drop of in the stiffness as the fibre length decreases. The
analytical distributions suggest that the traditional composite is slightly stiffer in the case
of very short fibre lengths. The aspect ratio (df/lf ) of the short fibre is close to 1, and the
longitudinal elasticity is near the transversal modulus. That results in a quasi-isotropic
configuration, where the stiffer traditional PA (Em,1) contributes more to the homogenized
elasticity. As the aspect ratio rises, the bio-based composite (ϕ2 = 0.4) becomes more and
more stiffer. That means that the higher fibre content compensates for the lower elasticity
of the bio-based PA (Em,2), as the reinforcing fibres are more and more loaded through
their increasing lengths. At very high aspect ratio regions, the homogenized stiffness ap-
proaches the elasticity from the RoM, which is applied regularly on LFRP materials.
In the contrary, based on experimental data, the traditional composite outperforms the
bio-based one in terms of stiffness. This already indicates that further modelling consid-
erations must be applied to estimate the actual elastic properties of the composite. The
derived weighted average eq. 4 of the composites are considerable softer, as expected from
the experimental characterization. Direct comparison with the experimental results is not
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possible as the analytical formulation considers perfectly longitudinal fibre orientations,
which is never exactly achieved in reality.
The fibre length weighted average elasticity from eq. 4 overestimates the expected longi-
tudinal elastic modulus with 30-35 % for the traditional composite, and with 45-50 % the
bio-based material. The reasons for this deviation must be explained with manufacturing
imperfections.
Based on the testing data of the traditional and bio-based material, the manufacturing-
related peff from equation eq. 3 was calibrated. The elasticity of the traditional composite
can be captured with peff = 0.65. At the same time, the bio-based material with higher
fibre volume fraction can be modelled with considerably lower peff = 0.38. That means
that due to the higher fibre volume, more fibres are ineffective in the material, which
brings a contra-productive effect on the material’s mechanical performance. For the cal-
ibration of peff , CT scan-based fibre length and fibre orientation distributions were also
considered, but this is not detailed in this work.

4.2 Numerical RVE Homogenizations

In this work, only RVEs with constant fibre length were analyzed. Therefore, the same
results can be generated through FE homogenization as through the analytical formulation
in section 4.1, considering perfectly aligned orientation and varying lengths of the fibres.
The analytical distributions were plotted in Figure 5, and they are used to compare with
the FE-based prediction.
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Figure 6: Analytical and FE-based Homogenization of longitudinal elasticity

Firstly, Figure 6 (a) shows the distributions for the traditional composite. The FE-
based homogenization shows an acceptable agreement with the analytical approach for
longer fibres (0.2− 0.3 mm). However, it strongly overestimates the analytically derived
elastic modulus at the low fibre length range.

The reason for that can be explained by the random location of the fibres in the
FE unit cell. Some RVEs may have larger distance between fibres, while others could
have some regions where some fibres are almost touching each other. The latter case
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introduces an extra local reinforcement effect that makes the estimate considerably stiffer
than the analytical formula. After some repeated executions of short-length fibre RVEs,
this hypothesis was confirmed. Two exemplary RVEs demonstrate this effect in figure 7.

(a) E0 = 10.600 MPa (b) E0 = 7600 MPa

Figure 7: FE-meshed RVEs with small fibre distance zones (a) and larger gaps (b)

After introducing a minimum fibre distance constraint to the RVE tool, the FE homog-
enizations delivered lower homogenized elastic properties at the very short fibre length
range.This effect can barely be observed in the bio-based material analysis, as the FE
calculations follow the analytical distribution in Figure 6 (b) very well.

Due to the higher fibre volume fraction of bio-based configuration, the fibres are way
more tightly packed within the RVE. Consequently, the above discussed randomly occur-
ring ”local reinforcement” by tiny gaps is less likely to happen.

The SEM was also tested on the configuration of the traditional composite. Simulations
were carried out with varying matrix length choices. The longitudinal gaps between the
fibres slightly affected the homogenized elastic property. The longitudinal matrix segment
lengths (lm) were tested as lm = lf , lm = 0.5 ∗ lf and lm = 0.25 ∗ lf . Figure 8 plots the
FE-homogenized and SE-homogenized longitudinal elastic properties of the traditional
composite (ϕ = 0.3).
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Figure 8: Comparison between FEM and SEM with varying matrix segment lengths using
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A 2D mesh of one slice of the SE-RVE applying the new quadratic formulation can be
seen in Figure 9 a), where the system of longitudinal fibre elements (full green), longitu-
dinal matrix elements (black circle) and shear matrix elements (red line) can be captured.
After the extrusion of a single 2D slice in the third direction, the full RVE is built. Figure
9 b) shows the RVE through longitudinal expansion. The red segments represent the
longitudinal matrix, while the blue springs indicate the reinforcing glass fibre elements.
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Figure 9: SE-meshed RVE

5 Conclusion

In this work, analytical and numerical micromechanical methods were presented to es-
timate the homogenized mechanical properties of two SFRP materials. The fibre length-
dependent behaviour of the SFRP is captured well through all methods (analytical for-
mulation, FEM and SEM). Manufacturing imperfections must be considered in order to
obtain realistic homogenized properties. Hence the effectivity parameter (peff ) was in-
troduced that can be calibrated for elastic homogenizations based on experimental data.
The analytical model and the SEM work well for elasticity but they have limitations in
modelling rotated fibre orientations. Varying fibre orientation can be modelled with FEM,
furthermore, extension to nonlinear elastoplastic homogenization is possible through 3D-
discretized cohesive zones. However, the computational effort of FE calculations increases
rapidly as more complex analyses are targeted. For that reason, the enhancement of the
SEM to a nonlinear solver shows great potential to reduce computational costs in predict-
ing the nonlinear stress-strain behaviour or failure simulation of SFRP materials. The
nonlinear SE homogenization approach already delivered very good results for quasistatic
[18] and dynamic [19] LFRP applications.
The presented homogenization methods help to improve the mechanical performance of
the novel bio-based composite. This innovative material can then replace conventional
SFRPs in industrial structural components using injection molding manufacturing.
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