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Abstract

Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake
loading is performed in this paper on the basis of a hysteretic moment-curvature
relation. Unlike previous analytical moment-curvature relations which take into
account the flexural deformation only with the perfect-bond assumption, the
proposed relation considers the rigid-body-motion due to anchorage slip at the fixed
end, which accounts for more than 50% of the total deformation, using an equivalent
flexural stiffness. The advantage of the proposed relation, compared with the layered
section approach and multi-component model, may be on the easiness 1n application
to a complex structure composed of many elements and on the reduction in
calculation time and memory space. The use of curved unloading and reloading
branches inferred from the stress-strain relation of steel and consideration of the
pinching effect caused by axial force make it possible to describe the structural
response more exactly. Finally, correlation studies between analytical and
experimental results are conducted to establish the applicability of the proposed
model to the nonlinear dynamic analysis of RC structures.

Keywords: RC Frame, Earthquake Loading, Anchorage Slip, Pinching Effect,
Bauschinger Effect, Moment-Curvature Relationship

1 Introduction

Since the first introduction of a bilinear moment-curvature relation by Clough and
Johnson [2] the various mechanical models for the hysteretic moment-curvature
relation have been introduced to analyze the behavior of RC beams subject to cyclic
loadings. Such models include cyclic stiffness degradation and further modifications
to take into consideration the pinching effect due to the shear force and the strength
degradation after yielding of steel. In addition, by using the bilinear hysteretic curve
instead of trilinear, a more simplified model has been proposed. Nevertheless, these



models still have limitations in simulating exact structural behavior of RC columns
because of the exclusion of the bond-slip, fixed-end rotation effect, axial force and
Bauschinger effect. On these backgrounds, a curved hysteretic moment-curvature
relation is introduced. Unlike the previously proposed models, the bond-slip and
fixed-end rotation effect are taken into account by defining the initial loading branch
on the basis of the monotonic moment-curvature relation considering these eftects.
The following curved hysteretic unloading and reloading branches are defined, and
the pinching effect caused by the axial force is also taken into consideration. The
validity of the proposed model is established by comparing the analytical predictions
with results from experimental and previous analytical studies.

2 Proposed Moment-Curvature Relation

The proposed model can basically be divided into four different regions.

A(d, M)

Figure 1 : Proposed Moment-Curvature Relationship

Region 1 (an initial elastic branch with stiffness £l in Figure 1) : Unlike the

previously introduced hysteretic models, the bond-slip effect and fixed-end rotation
effect are already taken into consideration while defining the initial stiffness £/, in
Figure 1.

Region 2 (curved region of point A to point B in Figure 1) : In this region, moment-
curvature curve is assumed with following relation:
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where the hardening parameter p is changed according to the loading history and
assumed to have the ratio between a slope EI,, which represents a modified flexural



stiffness of the initial elastic stiffness EI,, and EI,, which means the slope of a
straight line connecting the point D(¢,, M) and the point C(@,,,,, M) at the i-t/

load reversal. The points D(¢,,M,) and A(¢,,M,) will be updated after each

curvature reversal.

Region 3 (linear region from point B to point C in Figure 1) : Since the structural
behavior in this region represents the proportional increment of the load carrying
capacity, the moment-curvature curve is assumed with the following linear relation

M - EIE:‘ *¢+ (Mnmx _EIZI '¢ma:~:) (2)

where EI, is the slope of straight-line connecting the points B(¢ ,M, ) and

C(o¢... .M, ) atthe i-th load reversal.

Region 4 (yielding region after the point C in Figure 1) : The second branch of the
primary moment-curvature curve can be expressed as

M = EIH] @ T (Mmax o E]!D ‘ ‘?ma:-:) (3)

where EI,, is flexural stiffness of monotonic envelope after yielding.

3  Modification of Moment-Curvature Relation

3.1 Axial Force Effect on Moment-Curvature Relation

A(Qr M)

Figure 2 : Considering the axial force effect

When a RC column is subject to an axial load P, the ultimate resisting moment M
increases almost proportionally to the axial load P until the RC section reaches the
balanced failure point in the P — M intersection diagram. In advance, as well known
through the experimental studies [5,8,12], the hysteretic moment-curvature relation



of a RC section subject to an axial load represents a marked pinching of loops
because the axial force acts to close open cracks and causes a sudden increase in
stiffness after crack closing. To reflect the axial force effect into a hysteretic
moment-curvature relation, modifications of the monotonic skeleton curve and of
the unloading and reloading branches are required. Firstly, the monotonic skeleton

moment-curvature curve for a RC beam (OEC in Figure 2) proposed by Kwak and
Kim [4] in which bond-slip effect and fixed-end rotation effect are taken into
consideration needs to be modified to include an axial force effect. If it is assumed

that the line OIM in Figure 2 corresponds to the monotonic skeleton curve and the

line DFM in Figure 2 to the straight line asymptote for the beam without an axial

force, respectively, then the modified asymptote DBC in Figure 2 can be
constructed on the basis of the energy equilibrium condition. Since the external

work by an axial force lower than the balanced load P, can be ignored due to the

negligibly small axial deformation, the internal energy represented by the area
within the hysteretic loop must maintain a constant value regardless of the applied
force. This implies that the area of the triangle ADBF will be the same as that of the

triangle AFMC in Figure 2. Point B in Figure 2 which defines the modified crack
closing point, is finally determined through the calculation of the constant & in

Figure 2. When the constant k is represented by &k =(M, —M,.) (M, —M,), it

can be simplified as the following equation from the area equality of two triangles
(ADBF = AFMC):
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3.2 Consideration of Fixed-End Rotation

The behavior of the critical region at the beam-column joint of relatively short-span
beams may be greatly affected both by the shear and also by the details of anchoring
the beam reinforcements. In particular, slippage of the main bars from the anchorage

zone accompanies the rotation of the beam fixed-end, & ,, which cannot be

simulated with any mechanical model, and this rigid body deformation may be
increased as the deformation increases. To account for the fixed-end rotation in the
numerical analyses, it is common to reduce the stiffness, EI, in the moment-
curvature relation for the elements located at the ends of beam with the range of the
plastic hinge length( see Figure 3 (b) and Figure 4). If a beam with the rotational

stiffness k, at both ends is subjected to a horizontal force P, as shown in Figure 3
(a), the corresponding horizontal drift A, can be obtained.
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Where the first term means the contribution by the bending deformation of the beam
and the second term by the end rotational stiffness &, .

When the same force acts on a beam with the reduced stiffness EI,, at the both

ends, as shown in Figure 3 (b), the horizontal deflection A, also can be calculated
by the moment area method. From the equality condition of A, =A,, the equivalent
stiffness EI,, can be determined by
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Where B =all-2a+4/3a%), a=1,/L

The same derivation procedure for the cantilevered beam is applied the equivalent
stiffness EI,, obtained in this case ahs the same form with Eq. (6) except the

parameter [ has the form of [ = 0:(1 —a+1/ 30:2)
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(a) Simplified Model with £, (b) A Simplified Model with E7,,

Figure 3 : Consideration of the Equivalent Stiffness

From the above equation, if the stiffness ratio ¢, is defined by «, = EI/ El,, the

modified curvature can be expressed as ¢’ =« ¢, where ¢, represent the

curvature at the fixed-end of the beam due to the flexural behavior. In advance, the
modified stiffness of the initial elastic branch, EI,, and that of the following

inelastic branch, EI,, can be defined by EIj, = EI,,/a,from the relations of
M, = Elo$, = EI,§, = El,a,¢, and M-M,=El,(¢p-¢,) = EI, ¢ —¢)
where ¢, and M, are the curvature and moment at the yielding of a section,

respectively (see Figure 4).



However it is almost impossible to conduct experiments on all the beam elements
used in a structure to obtain the rigid body rotation or deflection of each member. In
this case, the relation between the steel stress and crack width, introduced on the
basis of analytical or experimental studies, can be utilized [3,6,7,9] By assuming that
a half of the crack width, when the steel yields at the laterally loaded RC beams,

corresponds to the anchorage slip of the reinforcing bar, A ,, the rotational stiffness
k,can be defined by

0,=——, ky=—> (7)

where ¢ is the distance from the extreme compression fiber to the neutral axis. The
neutral axis depth ¢ maintains an almost constant value of ¢ =« -d from the initial
cracking up to the yielding of the reinforcing steel.
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Figure 4 : Modification of Monotonic Envelope Curve

After calculation of the stiffness reduction ratio «,, the modified stiffness of the

initial elastic branch and that of the inelastic branch can be calculated.. In addition,
the modified stiffness EI,, and EIj, instead of the initial stiffness £/, and EI,,,

are used as the asymptotes in defining the subsequent unloading and reloading
curves. Figure 4 shows the modified monotonic moment-curvature envelope curve.

4 Numerical Application

In order to establish the applicability of the proposed hysteretic moment-curvature
relation, a RC column subject to a cyclic loading and a RC frame subject to a
dynamic loading are investigated and discussed. The specimens are COLUMN?2
experimented by Low and Moehle [5] and a frame (RCF2) experimented by Clough
and Gidwani [1].



4.1 COLUMN?2
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Figure 6 : Load-Deflection Relation of COLUMN?2

COLUMN?2 was analyzed by Filippou et al. [11] on the basis of the layered section
approach and Figure 6 shows the obtained load-deflection relation. The numerical
results by Filippou et al. also simulate the ultimate resisting capacity effectively
because the axial force effect is included in their formulation by considering the
axial force equilibrium condition on a section. However, the layered section
approach represents slightly stiffer structural behavior than the experimental data.
This difference seems to be caused by ignoring the bond-slip effect and fixed-end
rotation. Since the layered section approach is based on equilibrium and
compatibility conditions between each imaginary layer, the bond-slip effect cannot
be taken into account, and unrealistic stiffer structural behavior deepens as the
deformation increases, following overestimation of the energy absorbing capacity of
a structure. Especially, the stiffness degradation is generally accompanied by a
decrease of shear stiffness as the deformations increase. However, the layered
section approach has a limitation in simulating this phenomenon because it is
basically based on the bending behavior. On the other hand, the proposed model
effectively simulates the stiffness degradation and pinching phenomenon caused by
the application of axial load. This result seems to be arisen from the fact that the



bond-slip effect and fixed-end rotation have already been included during
construction of the monotonic skeleton curve of the moment-curvature relation.
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Figure 7 : Ideal Model of RCF2 Figure 8 : Input Accelerogram Record

Figure 9 and Figure 10 show the final numerical result of RCF2 at the bottom story.
As shown in Figure 9 and Figure 10, a direct application of the Takeda model [10],
which was designed for a beam element without an axial load, leads to an incorrect
structural response. The difference between the Takeda model and the experimental
data seems to be caused by the linearized approximation of unloading and reloading
curves and by not considering the bond slip effect and fixed-end rotation. In
addition, the classical hysteretic moment-curvature relations for the beam element
do not take into account the increase of the ultimate resisting moment and the
pinching phenomenon due to the axial load. On the other hand, the proposed model
effectively estimates the ultimate resisting capacity and simulates the pinching
phenomenon even at the large deformation stage. Accordingly, a more exact
prediction of structural responses for RC columns and/or prestressed concrete beams
subject to an axial force explains the importance of the axial force effect indirectly.
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Figure 9 : Load-Deflection Relation of RCF2 at the Bottom Story
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Figure 10 : Time-Displacement Relation of RCF2 at the Bottom Story

5 Conclusion

The present study concentrates on the introduction of a moment-curvature relation of
a RC section that can simulate the cyclic behavior of RC columns and RC frame.
Unlike most mathematical or mechanical models found in the literature, the
proposed model has taken into account the bond-slip effect, Bauschinger effect of
the steel, axial force effect and fixed-end rotation effect. In advance, a modification
of the hysteretic moment curvature relation to consider an increase of the ultimate
resisting capacity and the pinching phenomenon in the axially loaded RC columns 1s
also introduced on the basis of the energy conservation. However, differently from
many numerical and mechanical models considering the strength degradation, this
effect is still not included in the proposed model. An additional concern for the
strength degradation under cyclic loading beyond the yield strength may be required
to estimate the exact damage level undergone by a section after a certain number of
cycles. Through correlation studies between analytical results and experimental
values from typical RC column tests, the following conclusions are obtained: (1)
The inclusion of pinching effect is important in structures dominantly affected by an
axial force; (2) to accurately predict the structural behavior of the beam to column
subassemblage where the nonlinear response is concentrated, a modification of the
moment-curvature relation to consider the fixed end rotation is strongly required; (3)
to effectively simulate axially loaded RC columns, the axial load effect must be
considered; and finally (4) the proposed model can be effectively used to predict the
structural response of RC columns under cyclic loadings, and its application can be
extended to the dynamic analysis of a frame structure.
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