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Composite Material Behavior Using a Homogenization
Double Scale Method

S. Oller1; J. Miquel Canet2; and F. Zalamea3

Abstract: In this paper, we present a two-scale numerical method in which structures made up of composite materials are simu
method proposed lies within the context of homogenization theory and assumes the periodicity of the internal structure of the
The problem is divided into two scales of different orders of magnitude: A macroscopic scale in which the body and structu
composite material is simulated, and a microscopic scale in which an elemental volume called a “cell” simulates the material. In
the homogenized strain tensor is related to the transformation of the periodicity vectors. The problem of composite materials i
a coupled, two-scale problem, in which the constitutive equation of the composite material becomes the solution of the boun
problem in the cell domain. Solving various examples found in the bibliography on this subject demonstrates the validity of the
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Introduction

Various multiscale methods have been developed to solv
problems presented by the mechanical behavior of composit
terials. These methods can be included in the context ofhomog-
enization theory, in which the composite material problem is
vided into two different scales. Thus, the composite materi
assumed to be homogeneous on amacroscopic scalesxid and its
behavior can be studied by taking a representative unit vol
which is represented on a second scale called themicroscopic
scalesyid. When the internal structure of the composite materi
periodic, the representative unit volume is called acell. The use
of these two scales is equivalent to determining the properti
a given composite material under a limiting condition, i.e., w
the cell’s dimensions tend toward zero.

One of the most relevant methods is thehomogenizatio
theoryproposed and developed by Sanchez-Palencia(1980), Ben-
soussan et al.(1978), and Duvaut(1976), which is formulated in
terms of theasymptotic expansion theory. Due to their work, th

1Departamento de Resistencia de Materiales y Estructuras
Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo
Campus Norte UPC, 08034 Barcelona, Spain(corresponding author).
E-mail: sergio.oller@upc.es

2Departamento de Resistencia de Materiales y Estructuras
Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo
Campus Norte UPC, 08034 Barcelona, Spain. E-m
canet@cimne.upc.es

3Departamento de Resistencia de Materiales y Estructuras
Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo
Campus Norte UPC, 08034 Barcelona, Spain. E-m
zalamea@cimne.upc.es

Note. Associate Editor: Henry K. Stolarski. Discussion open
June 1, 2005. Separate discussions must be submitted for individu
pers. To extend the closing date by one month, a written request m
filed with the ASCE Managing Editor. The manuscript for this paper
submitted for review and possible publication on October 29, 2002
proved on July 20, 2004. This paper is part of theJournal of Engineer-
ing Mechanics, Vol. 131, No. 1, January 1, 2005. ©ASCE, ISSN 07

9399/2005/1-65–79/$25.00.

JOUR

 J. Eng. Mech., 2005, 
division of the problem into two scales rests on a rigorous t
retical base. Suquet(1982, 1987), on the other hand, uses
method of averagesand finds that upon extending it to the n
linear case, the macroscopic variables become coupled to t
spective microscopic ones. This fact presents a significant
culty in considering the two-scale coupling, because it imp
that the composite’s constitutive equation depends on an “in
number of internal variables.” For the purposes of obtainin
simplified constitutive law for the composite, certain simplifi
tions have been proposed, although these are only applica
simpler structural problems. In recent years, various met
have been proposed as a solution to nonlinear two-scale
lems. Ghosh(1996) proposes a nonconventional method in wh
he represents the composite’s microstructure usingfinite Vorono
elements, and he uses the asymptotic expansion theory as a b
between the two scales. Fish et al.(1997) use thefield transfor-
mation theory(Dvorak et al. 1994), as well as asymptotic expa
sion theory. In all cases, the use of these methods seeks to
computational effort, although it may also result in a loss of
cision.

In this work, we propose a double-scale method using stan
continuum mechanics, in which we hold that the values of
macroscopic variables derive from the hypothesis that the
posite’s microstructure is periodic. Thus, the auxiliary tens
known as concentration or localization tensors, are not used
solution is arrived at by means of the numerical coupling of
two scales using thefinite element method.

Periodic Structure Division

The periodic distribution of the constituent materials creates
tain symmetries, which allow us to divide the composite mat
into structural units called cells. This virtual division of the co
posite is achieved by means of material surfaces, which we
call sides. Thus, a composite material represented as a
dimensional space can be divided into cells of four sides(two
pairs of periodic sides) called quadrilateral cells, or into cells

six sides(three pairs of periodic sides) called hexagonal cells. The
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points at which the material coordinatesXi have the same relativ
position in the neighboring cells are called periodic points.
example, in Fig. 1, any point in the cell domain is indicated bP;
in the neighboring cells, these same points are indicated
these are called periodic points. The relative position betw
said points determines the base of the vectorsD that will hence
forth be referred to as periodicity vectors(also known as the cell
base vectors); they possess specific dimensions and direction
lated to the cell domain.

Changing between the Two Scales

For heterogeneous materials, concepts such as stress or str
be understood as values that are dependent upon the sca
example, when seen macroscopically, the composite materia
be considered a homogeneous material, in which case, each
of the composite has an effective stress or strain value. How
at the microscopic level, there may be considerable fluctua
in the values of these variables(i.e., at the macroscopic refe
ence). In the change from the microscopic variables to the m
roscopic ones, the hypothesis of local periodicity is u
(Sanchez-Palencia 1987). This hypothesis is a consequence of
minimization of energy, as a result of which the microscopic v
ables within the cell are equal to the respective variables of n
boring cells but may be very different from those of more dis
cells.

Homogenized Strain Tensor

Consider thatVc represents a cell domain of a composite mat
(represented in material space asYi; see Fig. 1) and that this ce
domain is characterized by the periodicity vectorD=Yp−Yp0. If
this domain then undergoes displacement, the local period
hypothesis ensures that the composite material, despite its c
quent deformation, retains its periodicity relationship with
neighboring cells. In other words, the deformed cells, toge
with their neighboring cells, all undergo the same transforma
Consequently, the new periodicity vectorsd may be written as

d = yp − yp0 = D + suP − uP0d s1d

whereuP−uP0=difference in displacement between the perio
points. The transformation of the space of the cells is assoc
with the change of periodicity vectors. The partial derivative

Fig. 1. Periodicity vectors in theD configuration and the ne
periodicity vectorsd on the updated configuration of cell domainVc
these vectors is
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n
r

t

-

]d

]D
=

]syp − yp0d

]sYp − Yp0d
s2d

Now, on the macroscopic level, the periodicity vectors are in
tesimally smallsuDu→0d. Consequently, on a macroscopic sc
this value tends toward a limit

lim
D→0

F ]d

]DG = lim
D→0

F ]syp − yp0d

]sYp − Yp0d
G =

]x

]X
= F s3d

Therefore,

d = FD s4d

whereF=homogenized deformation gradient tensor. This simple
change of scale allows us to obtain the macroscopic strain t
using classical continuum mechanics. The square of the len
the new periodicity vectors is

udu2 = DTFTFD s5d

and the difference between the square of the length of the
periodicity vectors and the periodicity vectors in the refere
configuration is

udu2 − uDu2 = fDTFTgfFDgDTD

udu2 − uDu2 = 2DTẼD s6d

Thus, the Green Lagrange tensor is obtained as a meas
strain on a macroscopic scale

Ẽ =
1

2
fFTF − I g =

1

2
F ]FT

]D

]F

]D
− IG s7d

The tensorẼ can be called thehomogenized strain tensorand is
associated with the change of periodicity vectors. Moreove
coincides with the classic equation of theaverages theory(Suque
1982):

Ẽ = kEsydlVc
=

1

Vc
E

Vc

EsyddVc s8d

wherekEsydlVc
=microscopic strain field;Vc=domain of the cel

andVc=volume contained inVc.

Homogenized Stress Tensor and Equilibrium
Equation

The Cauchy equilibrium equation on the microscopic scale, a
level, may be written as

E
Sc

si jnjdS=E
Vc

raidV−E
Vc

rbidV s9d

The domain of the cell is very small from the macroscopic p
of view sVc→0d. Consequently, the value of the forces of volu
and inertia are also small and tend to zero. This equation en
equilibrium in the domain of the cell:

lim
Vc→0

SE
Sc

si jnjdSD = lim
Vc→0

SE
Vc

srai − rbiddVD = 0 s10d

where Sc=boundary surface of the cell;si j =microscopic stres
field; and nj =unitary normal vector of the surface elementdS.

Observe that the orientation of the two surface elements located at

131(1): 65-79 
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periodic points(see Fig. 2) has unitary normal vectors(n1 andn2)
in opposite directions. The principle of action and reaction
sures that the surface forcesf = tsnddSc in the two surface ele
ments are equal but in opposite directions. This is known in
literature on homogenization as an antiperiodic force field on
cell’s sides(Lene 1986).

A second-order tensors̃ j is defined as the average of the for
acting on the cell’s sides:

s̃i j =

E
Sc

yksirnrdS

E
Sc

yknjdS

s11d

wherek and r =contracted indices. Thus, if the effect of the v
ume forces is disregardedssi j ,j =0d, using the divergence theore
gives the following theory of averages equation:

s̃i j =

E
Vc

yk,rsirdV

E
Vc

yk,jdV

=

E
Vc

dk,rsirdV

E
Vc

yk,jdV

=
1

Vc
E

Vc

si jdV s12d

The overall surface forcet̃sn̂d is defined as the average of
forces on the cell sidesSc, that is determined by the direction o
(macroscopic) unitary vectorn̂,

t̃sn̂d = 3ESc

yksrnrdS

E
Sc

ykndS 4n̂k = F 1

Vc
E

Vc

sdVGn̂k s13d

Because the value of the right-hand side of the equation is a
function that depends on the direction of vectorn̂ (i.e., t̃isn̂d
=s̃ikn̂k), and since the tensors̃ fulfills, on the macroscopic leve
the same requirements as the stress tensors (in homogeneou
materials), tensors̃ is henceforth called thehomogenized stre
tensor.

Furthermore, if the entire composite material’s domainV
(which is formed by an infinite number of cells) is considered, th

Fig. 2. Forces acting on the cell boundaries are equal but in opp
directions
static equilibrium equation may be written as follows:

JOUR
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E
S
F 1

Vc
E

Vc

si jdVGn̂jdS+E
V
F 1

Vc
E

Vc

rbidVGdV= 0 s14d

Obviously, the body forces per unit volume have been consid
(since on a macroscopic scale their magnitudes can be s
cant). This effect may be assumed as the average of the vo

forcessb̃d inside the cell, or

b̃i =
1

Vc
E

Vc

rbidV= constant s15d

Substituting Eqs.(11) and (14) in Eq. (13), and transforming th
surface integral by using the divergence theorem, results in

E
Vc

s̃i j ,jdV+E
Vc

b̃idV= 0 s16d

Eq. (16) is valid for any arbitrary volumeV; therefore, it is als
valid when choosing very small domains[being the limit the ce
domainsV→Vc;Vc→0d]. Then,

s̃i j ,j + b̃i = 0 s17d

and thus we obtain thehomogenized local equation of static eq
librium.

Basis of the Elastic Problem of Macro- and
Microscales

Let us consider a body, which occupies a regionV that is formed
by a composite material of a fine periodic structure. The boun
of domainV is denoted by]V, in which ]Vu is the part of the
boundary for which the displacements are known(Dirichlet’s
conditions) and ]Vt is the part of the boundary for which t
surface forces are known(Newman’s condition). The structure o
this material also allows it to be divided into very small struct
units (cells). This domain is denoted by spaceVc, such that, b
ordered repetition, the body of the composite materialV can be
restored. Moreover, two scales of differing orders of magni
are assumed, in such a way that the particles of domainV can be
labeled in accordance with their position within a spacexi (at a
macroscopic level), while the position of the cell’s particles c
be labeled within a local spaceyi (at a microscopic level). There-
fore, at the macroscopic level, the problem of composite mat
becomes a boundary-value problem of homogeneous materi
which we look for displacement and stress fields[usxd, s̃sxd] that
satisfy the following equations:

Macroscopic scale:

5
]s̃sxd

]x
+ b̃ = 0 equilibrium equation inV

s̃sxd =
1

Vc
E

Vc

ssx,yddVc constitutive equation inV

usxd = ūsxd displacements on]Vu

s̃sxd:n = t̄sxd forces on]Vt

6
s18d

On the other hand, at the microscopic level, the cell boun
conditions must reproduce the material microstructure cond

locally. The periodicity vectors obtained under microscopic strain
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are then formulated in agreement with the local periodicity
pothesis

d − D = up − up0 s19d

where up and up0 represent the displacement of two perio
points;D=periodicity vector defined between these points in
microscopic reference configurationXi; and d=new periodicity
vector resulting from the strain field(see Fig. 1). In the case o
small strains, if only the symmetric part of thevelocity gradien
tensor, called thedeformation rate tensor(or stretching tensor), is
considered and the influence of the antisymmetric part o
velocity gradient tensor, called thespin tensor(or vorticity ten-
sor), can be rejected, the relative displacement between th
boundary’s periodic points can be approximated by(Zalamea e
al. 1999a)

up − up0 > E ·D s20d

This relative displacement condition between boundary p
represents a field of periodic displacements. Additionally,
forces that develop on the cell boundary have the same mo
but in opposite directions. Then, the problem on a microsc
scale, yi, is reduced to solving the following boundary-va
problem in the cell domainVc:

Microscopic scale:

5
]ssyd

]y
= 0 equilibrium equation inVc

ṡsyd = Csyd:Ėsyd constitutive equation inVc

up − up0 = ẼD periodic displacements on]Vc

tp = − tp0 periodic forces on]Vc

s21d

Eq. (21) above represents the microscopic static equilibr
equation(disregarding the effect of the volume forces). This
equation must hold for each and every point of the cell dom
during the evolution of the mechanical processes. This is a
formulated problem of contour values whose solution repre
the equilibrium of forces at the microscopic level. This equ
rium represents the balance of forces inside the domain
regard to the boundary cell forces.

The behavior of the component materials is represented b
expression in the second equation in Eq.(21), in which C is the
local constitutive tensor. In this case, the constitutive equatio
component materials may represent any kind of mechanica
havior (elastic, plastic, viscous, etc.). In Eq. (21), we can see th
displacement and periodic force conditions in the boundary o

cell ]Vc, which are at the same time related to the strain tensẼ
at the macroscopic level. Consequently, the two problems
coupled, and therefore, thesolution of the problem on the mac-
roscale is obtained following a classic procedure, that is, u
the equilibrium equation in a discrete solid(see Zienkiewicz an
Taylor 1991), which requires that the microscopic boundary-va
problem conditions be satisfied in each point of the macro do
V. This task involves an infinite number of problems at the
croscopic level. However, despite the difficulties involved,
microscopic problem can be solvedin a discrete way, by usin
the finite element method to write the elastic microscopic equ
rium equation(Zienkiewicz and Taylor 1991):

f intssd = fext = f ⇒ K ·U = f s22d

whereK =assembled stiffness matrix at cell level;U=nodal dis-

placement vector; andf=force vector in the boundary of the cell.
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There are several ways of solving this equilibrium equation u
periodic boundary conditions, although, in this work,
Lagrange Multiplier Method is usedsld. However, the latter ha
several disadvantages, such as an increase in the number o
tions and bandwidth of the stiffness matrix, as well as the
terms that are produced in the diagonal of the stiffness m
which can create computation difficulties. The latter can be so
by implementing the contour conditions imposed by Anth
(1995), who divided the Lagrange multipliers into two groupsl1

and l2, which represent the forces in the respective peri
nodes of the boundary of a cell, and whose magnitude depen
the relative displacement of the boundary nodes of this cell.
stationary solution of the augmented functional with Lagra
multipliers is as follows:

P =
1

2
UT ·K ·U − UT · f + l1

T · skp ·U − Urd + l2
T · skp ·U − Urd

+
1

2
sl1 − l2dT · sl1 − l2d s23d

This leads to the following well-conditioned linear equation
tem:

3K kp
T kp

T

kp I − I

kp − I I
4 ·3U

l1

l2
4 = 3 f

Ur

Ur
4 s24d

where K =augmented stiffness matrix at the cell level; andkp

establishes the periodic order distribution on the boundary
grees of freedom. This last matrix has a value of −1 on
restricted degree of freedom, a value of +1 on the correspo
periodic degree of freedom, and a value of 0 in the rest o
matrix position.I =identity matrix; andU=displacement vecto
Obviously, this results inl1=l2, which represents the period
forces in the boundary cell;f =force vector; andUr =nodal rela
tive displacement for the periodic degree of freedom of
boundary cell nodes.

Basis of the Inelastic Problem
of Macro- and Microscales

A linear and nonlinear range characterizes the behavior of
posite materials. Consequently, in a loaded composite solid
possible that one or more compounding materials may reac
elastic threshold, developing plasticity, degradation, fract
etc., at the microstructural level. In each of these cases, the
composite material behaves in a nonlinear manner. Nonlinea
havior in homogenization theory was introduced by Suquet(1982,
1987). The writer concludes that “the behavior of the compo
depends on an infinite number of internal variables,” which
tails great difficulties due to the enormous computational e
involved. In later works, the writer makes certain peculiar sim
fications taking into account the nature of each component m
rial (see, for example, Lene 1986; Suquet 1987; Devries e
1989). The aforementioned writers also devise certain constit
equations for certain compound materials(Aravas et al. 1995). In
all of these cases, the proposals are approximate and only
cable to particular composites, and they cannot be generali

It was Fish who proposed the first solution(Fish et al. 1997
Fish and Shek 1999), using the theory of asymptotic expansion
obtain the governing equations in each of the two scales. In

case, the behavior of the composite results of solving a cell for

131(1): 65-79 
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each numerical integration point. However, to reduce the co
tational cost, not all the cells are solved in a nonlinear man
using an algorithm, the nonlinear behavior points of the ma
scale are identified depending on their stress/strain levels
only the cells associated with these points are solved. Also
averages of the internal variables are only stored for each o
cells displaying nonlinear behavior. This brings a certain los
precision in the nonlinear resolution of problems.

A second proposal based on the theory of asymptotic dev
ment was presented by Ghosh(Ghosh et al. 1996; Lee et
1999), in which the behavior of the composite is obtained u
Voronoi’s finite elements, which allow an entire cell to be rep
sented by just one of these finite elements. The finite elem
provide correct results at the macro- and microscale level; n
theless, in their interior, the microstructure’s details are no
scribed.

The present work shows an alternative to the two formula
mentioned above. The conceptual bases have been partiall
sented in various publications(Zalamea et al. 1998, 1999a
2000, 2002; Zalamea 2001). The theory is based on the dire
formulation of governing equations in each scale(see the sectio
entitled, “Basis of the Elastic Problem of Macro- and Micr
cales” for the elastic formulation), which renders the use of t
theory of asymptotic expansion unnecessary. A further chara
istic is that the analysis of each scale is carried out by the
element method and by imposing the boundary conditions i
microscale by means of the Lagrange multipliers[Eqs. (23) and
(24)]. Also, during the linearization of nonlinear problems,
equilibrium equation in the macroscales is solved using one
for each integration point, although the parallelization strate
used to prevent high computational costs. Therefore, durin
linearization of the nonlinear problem, a process in paralle
each cell is solved plus an entire composite material process
internal variables are stored in each point of integration a
microscale level.

The nonlinear solution that uses the linearization proce
maintains the validity of the homogenized strain and stress
sors (see sections entitled, “Homogenized Strain Tensor”
“Homogenized Stress Tensor and Equilibrium Equation”) and the
governing equations formulated in the macro- and micros
(see section entitled, “Basis of the Elastic Problem of Macro-
Microscales”). However, the microscale definition of the con
tutive equation should be changed[Eq. (21)], to take into accoun
the nonlinear behavior of the material(e.g., damage, plasticit
viscoelasticity, viscoplasticity, fractures, etc.). A generic nonlinea
constitutive equation at the microscale level is summarized i
following expression:
Free energy for the single compounding material,

F = FsE,ad

Free variable: Strain tensor,

E = ¹Su s25d

Internal variables,

a = hakj, conk = 1, . . . ,n

Dependent variable: Stress tensor,

ṡ = ṡsF,Ė,ad

The constitutive equation for the composite at the current tit
+Dt is expressed in the following incremental expression

coincides strictly with Eq.(12):
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s̃t+Dt =
1

Vc
E

Vc

st+DtdV=
1

Vc
E

Vc

sst + ṡt+DtDtddV

= s̃t + hC̃Tjt+Dt:Ẽ
˙ t+DtDt s26d

where hC̃Tjt+Dt represents the homogenized tangent constit

tensor at the timet+Dt sṡ̃t+Dt=hC̃Tjt+Dt : Ẽ
˙ t+Dtd, during the linear

ization step of the equilibrium equation. Once the homogen
stress tensor is obtained in each points̃t+Dt, the nonlinear proce
for the solution of the equilibrium equation is followed in
traditional way.

The nonlinear equilibrium equation of the solid using the fi
element procedure can be written as unbalanced forces be
the internalfk

int and externalfk
ext forces:

0 = A
Ve

bfk
int − fk

extcVe = uDfkuV s27d

In this case,AVe represents the assembling operator from
elementary level forces to the whole structure(Zienkiewicz and
Taylor 1991). These unbalanced forces can be eliminated du
the linearization stagesi +1d at timet+Dt, in the neighborhood o
the current equilibrium force state. For this purpose, it is ne
sary to enforce the equilibrium balance in this current stasi
+1d and express this condition by means of a Taylor serie
pansion truncated in its first variation, which leads to the foll
ing:

0 > ifDfkgV
t+Dt + ifK kr

T gV
t+Dt · i+1fDUrgV

t+Dt s28d

Eq. (28) is a linearized equilibrium equation in whichfK kr
T gV

represents the tangent stiffness for the whole solid domain(see
Zienkiewicz and Taylor 1991). Its mathematical expression d

pends onC̃T, which represents the tangent constitutive tensor
corresponds to the constitutive homogenized law in each po
the composite solid. The unbalanced or residual force in the
is eliminated following a Newton–Raphson solution unti
spreads to zero, a situation that is known as the convergen
the nonlinear process toward the real solution.

Thus, in the present work, we approached the solution u
the numerical finite element method. The result is a ge
method in which the macroscopic constitutive equation dep
exclusively on the microscopic fields.

Determination of the Elastic Constitutive Tensor
for Composite Materials

The global elastic constitutive law for composites, in which th
are no slips between the components, can be written as

s̃sxd = C̃sxd:Ẽsxd s29d

Starting from a strainẼ, the elastic behavior of the material
obtained through the elastic homogenized constitutive te

C̃sxd. This is a fourth-order tensor and has 81 components. S
assumes that the elastic homogenized constitutive tensor
the classic symmetries if the composite has the periodic dis
tion of its component:

C̃ijkl = C̃jilk = C̃kli j s30d

The property of this material makes the problem easier to s

In fact, for the orthotropic elastic material, one must only obtain
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nine independent elements of the elastic constitutive tensor
macroscopic stress tensors̃ can be obtained directly from th

global strainẼ, using the elastic homogenized constitutive ten

C̃sxd, which is defined by means of the cell information of
composite material.

The method designed to obtain these elastic constants
lated to the procedure followed, both for the theory of aver
and in asymptotic expansion theory. It allows different pertu
tions (small displacements) to be applied to the cell in order
activate the different elastic constants of the composite. Sinc

not possible to solve the expressionC̃sxd=s̃sxd ^ fẼsxdg−1 [be-

causeC̃sxd is a fourth-order tensor, whiles̃sxd and Ẽsxd are two
second-order tensors, and it therefore has an infinite numb
solutions], the homogenized constitutive tensor for the compo
material in any cell is obtained by the perturbation procedure
problem is considered as a system of equations on principal
directions: A different displacement perturbation is applied
each of the directions and, in this case, a unique solution fo
composite constitutive tensor is obtained.

For instance, the elastic constitutive tensor can be writte
two-dimensional problems, in plane stress or plane strain as

C̃sxd = 3C̃xxxx C̃xxyy 0

C̃xxyy C̃yyyy 0

0 0 C̃xyxy

4 s31d

The following fields of strains are applied by way of pertur
tion:

Ẽ1sxd = hẼxx,0,0j

Ẽ2sxd = h0,Ẽyy,0j s32d

Ẽ3sxd = h0,0,2Ẽxyj

For each of these strain fields, the homogenized stress ten

obtained:s̃(Ẽ1sxd), s̃(Ẽ2sxd), s̃(Ẽ3sxd). Next, the coefficients o
the constitutive tensor are obtained, which are, in this case
following:

C̃xxxx= s̃xx„Ẽ1sxd…/Ẽxx

C̃xxyy= s̃xx„Ẽ2sxd…/Ẽyy

C̃yyyy= s̃yy„Ẽ2sxd…/Ẽyy s33d

C̃yyxx= s̃yy„Ẽ1sxd…/Ẽxx

C̃xyxy= s̃xy„Ẽ3sxd…/2Ẽxy

The analytical demonstration of this constitutive tensor symm
hypothesis is not trivial. The various writers who have expla
the asymptotic expansion theory have presented this demo
tion. Using this numerical implementation, or periodicity fu
tion, the following symmetry hypothesis is satisfied:

˜ ˜
Cyyxx= Cxxyy s34d
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Consequently, if we apply other strain fields to the cell in
the elastic range and the homogenized stress tensor is ob
this tensor coincides with the homogenized stress preceded
constitutive homogenized elastic tensor.

Analytical Determination of the Quasi-Tangential
Inelastic Constitutive Tensor for Composite
Materials

In nonlinear problems, a tangential or algorithmic homogen
constitutive tensor is required to allow convergence with
smallest possible number of iterations. However, the algorit
constitutive tensor is quite difficult to obtain for each kind
composite material cell. An incremental iterative method for s
ing the nonlinear system of the equilibrium equation, such a
modified Newton–Raphson method, can be applied using the

tic constitutive tensorC̃sxd [Eq. (31)], although the computation
effort is enormous. Nevertheless, an alternative way can be
which produces quite satisfactory results. In this paper, a m
based on the “quasi-tangential” homogenized constitutive te
is used to obtain the stiffness, a quasi-tangentialK T for the mac
rostructure, from the values obtained from the previous itera
This operation may be carried out in various ways(Dennis and
More 1977; Crisfield 1980). In this paper, we present an appro
mate method to obtain the constitutive tensor of the tange
composite material at each point of the solid. We suppose th
constituent law of the composite material in each point ca
written as

ṡ̃sxd = C̃Tsxd:Ẽ˙ sxd s35d

This law can be broken down in the following way:

ṡ̃ = sC̃ + C̃
˙ d:Ẽ˙ s36d

where C̃=elastic composite material’s constitutive tensor;

C̃
˙

=rate of this elastic tensor that is to be fulfilled by the tange

condition of the constitutive tensorC̃T. Therefore, the followin

expression ofC̃
˙

can be obtained from Eq.(36):

ṡ̃ − C̃:Ẽ
˙

= C̃
˙
:Ẽ
˙ ⇒ C̃

˙
= sṡ̃ − C̃:Ẽ

˙ d ^ Ẽ
˙ −1 s37d

For the reason stated in the previous section, Eq.(37) above ha
infinite solutions. Nevertheless, because all that we want to o

is an approach to the tangential constitutive tensorC̃T, severa

additional restrictions to the rate constitutive tensorC̃
˙

can be
imposed to diminish the indetermination degree and obta

unique solution. To this end, we suppose that the rate tensC̃
˙

maintains the same symmetries as the elastic tensorC̃ [see Eq
(30)]; we also suppose that many of the terms are null[see the
equivalence with Eq.(31)]. In this case, the solution can easily

obtained. In this work,C̃
˙

is obtained by the procedure descri
for the determination of the elastic constitutive tensor of the c

posite materialC̃ (see section entitled, “Determination of

Elastic Constitutive Tensor for Composite Materials”).

131(1): 65-79 
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Macro- and Microstructural Coupling

To solve the problems concerning composite materials by
homogenized method presented herein, a macro- and micro
tural coupling is proposed that uses the finite element metho
two scales(see Ghosh et al. 1996; Fish et al. 1997 for o
methods that use two-scale coupling). Thus, an overall equilib
rium of forces over the entire solid is imposed on the macrosc
scale, while on the microscopic scale the behavior of the com
ite material is solved. Thus, each point of the numerical inte
tion of the macrostructure’s finite element represents a boun
value problem on the microscopic scale. This means tha
governing law for the composite material behavior is a nume
constitutive equation; in this case, this macroscopic law is s
driven (because of the boundary condition imposed on the c).
The internal variables for the entire composite material co
spond to all the internal variables in the whole cell domain.
must therefore simultaneously solve the overall macrostru
with many cells of composite materials, as many cells as ther
numerical Gauss points in the macrostructure. The solutio
obtained once all the boundary-value problems fulfill the equ

Fig. 3. Algorithm for solving composite mat
rium equations. Fig. 3 and the Appendix show the algorithms that

JOUR

 J. Eng. Mech., 2005, 
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solve the composite material problems on two scales by mea
the finite element method. Their coupling implementation is
ried out using a parallel virtual machine(Geist et al. 1994). This
software creates a virtual data processing system constitut
one or more computers, in which several processes are hand
the same time. Therefore, one process solves the macro
problem, while one or more parallel processes solve the prob
at the microscopic level. These processes are synchronize
information is passed from one machine to the other when n
sary. Nevertheless, as each of the boundary-value problem
microscopic scale is an independent problem, this implemen
allows us to solve the cell problems in one or several proces
depending on their availability.

Influence of Local Effects

In this section, we present the influence and treatment of
effects, such as point loads and particular boundary conditio
homogenization theory for the periodic distribution in the so
This theory has a rigorous formulation based on the fulfillme

roblems using atwo-scale finite element method
erial p
the following ideal suppositions:
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1. The composite material has the periodic distribution o
components, which allows the virtual division in equa
sized domains calledY cells.

2. The cell contains the internal structure of the composite
terial and is very small compared to the overall struc
sY!Vd.

These two assumptions are contained in thelocal periodicity
hypothesis, which demands that the stress and strains fields
cell domain are the same as for the neighboring cells. This
cept allows us to divide the problem into two scales, in which
microscopic variables fluctuate significantly, while the co
sponding macroscopic variables change very smoothly. C
quently, the local periodicity hypothesis is the main foundatio
most of the methods based on homogenization theory. Exam
of this fact can be seen in the averages theory, in the asym
theory, and obviously also in the formulation proposed in
work. There are works that do not accept the local period
hypothesis when dealing with steep gradients of macros
variables or in the presence of local effects, such as bou
influences, fractures, etc.(Fish and Markolefas 1993; Fish a
Wagiman 1993; Fish et al. 1994). These writers have tried
obtain the elastic problem solution at the macrostructure lev
means of homogenization theory. Their formulations accep
field periodicity hypothesis on the microscopic scale, and w
there are steep gradients for local effects, they introduce a p
bation term in the displacement fields. In other works, the o
lapping of the high-density meshes of finite elements(multigrid
technique) is used in the domain of high-gradient variables, an
these places the periodic formulation introduces these pert
tion terms. These techniques are usually combined with
minimization algorithms in the finite element solution. This

Fig. 4. Simplified representation of a quasi-periodic field functi

Fig. 5. Internal structure of a composite material with a square a
of fibers and its cellular division into quadrilateral cells
72 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2005
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mulation increases the complexity of the problem, and it is
clear that they give better results.

A significant gradient of the macroscopic variable fields
certain structural point involves a perturbation of these field
the neighboring cells, which apparently contradicts the basi
riodicity hypothesis. However, it should be understood that
hypothesis is only an idealization of the field’s variation, wh
supposes that the macroscopic variable suffers slight change
example, let us suppose that there is a significant stress(or strain)
gradient between two macrostructures, Points A and B[see Fig. 4
s̃Asxd and s̃Bsxd].

Furthermore, the homogenization theory idealizes the p
lem, since it considers that the dimensions of the cell tend to
from a general scale point of view. Consequently, it is supp
that, between Points A and B, there are a great number of ce
that the change of stress between the cell located at Point
the neighboring cell is very small, and so on, until we reach
cell located at Point B. The real problem differs from the id
ized one, since, due to the finite dimension of the cell, a fi
number of them may exist between A and B, as shown in Fi
For example, on the right-hand side of the same figure, the v
tion of the microscopic fields is indicated. This variation is
derstood as the field variable error made over a periodd that in
turn represents cell length. Let us suppose that the dimens
the cell diminishes and that the amplitude of the field vari
stays constant; it is then easy to see that the error diminish

Fig. 6. Internal structure of a composite material with a hexag
array of fibers and its cellular division into hexagonal cells

Fig. 7. Stress–strain curves for the plain strain of fiber, matrix,
square-arrayed cells, 45°-angle square cells, and hexagonal a
cells
131(1): 65-79 
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proportion to the decrease in dimensiond and that, at the limit,
tends to a periodic field(see upper part of Fig. 4).

The use of the periodicity hypothesis in those places tha
near to the macrostructure’s boundaries has also been ques
This topic has been studied by Sánchez-Palencia(1987), based on
asymptotic developments. To analyze the boundary effect i
field variable, the writer introduces an additional displacem
term,u1c, of the microscopic order, so that the displacement
continues to be written asu«=u0+«u1+«u1c. Subsequent to th
analysis, we can see that the influence of this additional ter
the macroscopic scale is not noticeable, since the gradient o
additional term«u1c vanishes very quickly. Numerical expe
ments show that the effect of this additional term is signifi
only in those cells that are on the border of the solid, when
are dumped in one period(Dumontet 1986). Nevertheless,
should be clarified that, even in this case, it is an approxima
although it is quite accurate for the remaining cells that are in
the macroscopic domain.

Consequently, if the border cell has very small dimension
relation to the macrostructure, the periodicity error on the bo
of the macroscopic domain tends to zero.

Examples of the Proposed Method

Transverse Behavior of a Matrix Reinforced
with Continuous Fibers when Subjected
to a Simple Test

To validate the formulation described in the present paper
solved the following example, presented by Jansson(1992), in
which asymptotic expansion theory was used. The solid is m
up of unidirectional fiber-reinforced aluminumsAl2O3d matrix
composite, in which the direction of the fibers is perpendicula

Table 1. Dimensions of the Cells

Composite material
Cell type

(number of sides)
Fiber

(%)

Square array Quadrilateral 5

Hexagon array Hexagonal 5

Fig. 8. Idealization of a cylindrical tube with internal press
(macroscopic structure)
JOUR
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the plane. In this case, we attempted to determine the com
material’s behavior when subjected to uniaxial stress in a t
verse direction. The problem was, in this way, reduced from
to two dimensions.

Two different cell arrays were studied. The first was a sq
array, as shown in Fig. 5. On the right-hand side of the s
figure, the division of this array into quadrilateral cells(four pe-
riodic sides) is shown. The second array was a hexagonal a
This array and its division into hexagonal cells(six periodic
sides) are shown in Fig. 6.

The composite material consists of a ductile aluminum a
matrix reinforced with long stiff alumina fibers. The bond
tween fiber and matrix is very strong(perfect adherence was
sumed). The fiber and matrix volume proportions are 55 and 4
respectively. The fiber’s diameter was 10.0mm. Consequentl
the cell dimensions are shown in Table 1.

The behavior of the fiber is assumed to be elastic and is
pic, while the aluminum matrix behavior is represented by
isotropic constitutive elastoplastic equation, which is in ag
ment with von Mises’ criterion. The mathematical expressio
the matrix hardening used in the two references is«equ

=ss0/Emodd ·ssequ/s0d (Suquet 1987). In this work, the elastopla
tic constitutive equation implemented follows the formula
presented by Simo and Hughes(1998) but does not have the sa
mathematical expression for the hardening; however, than
Jansson’s work(1992), it has been possible to obtain appro
mately the same behavior for this aluminum material over a
linear range. In this case, a linear kinematic hardening p

nonlinear isotropic hardening were considered asK̃sad=s0+Ha
+ssinf −s0d(1−exps−dad), in which the kinematic hardeningH
=1,000 MPa, and the difference between the initial yield s
ss0d and the saturation stressssinfd was 30 MPa at a saturati
velocity of d=300. The elastic properties of the component
terials are presented in Table 2.

An important detail in this example is the numerical lock
by the quasi-incompressible state generated in the matrix
rial. Jansson used nine-node isoparametric elements with
tive reduced integration to avoid locking. In this work, lock
was prevented by the implementation of the “B-bar” meth
which is based on the mixed formulation of the finite elem
method in three fields: displacement, stress and strain, and
node isoparametric elements are used.

A simple tension test may be reproduced by applying a

roscopic strainẼxx to the cell, while in a perpendicular directi
the cell’s strain is freed in such a way that the macroscopic s

Diameter of fiber
smmd

b
smmd

h
smmd

10.0 11.9499 11.9

10.0 11.1206 12.8

Table 2. Elastic Properties of the Component Materials

Composite
material

Young’s modulus
Emod

(MPa)
Poisson ratio

snd

Yield stress
s0

(MPa)

Matrix sAl2O3d 68,900.0 55 94.0

Fibers 344,500.0 55 —
s

5

5
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s̃yy in this direction must be zero. Thus, the transverse behav
the different materials is obtained. Moreover, as the squ
arrayed material presents a high degree of anisotropy, the b
ior of this material, when the square array is turned 45°, has
been found(the behavior of this material is obtained by Ghos
al. 1996). The stress–strain curves of the matrix material, fi
material, square array cells, 45°-angled square array cells, a
hexagonal array cells are shown in Fig. 7. The results obta
from the behavior of these materials coincide quite closely
the behavior obtained in the aforementioned references.

Thick Cylinder with Internal Pressure

The example consists of a cylindrical tube made of a comp
material(see Table 3) and subjected to an internal pressure
increases from 0 to a maximum of 100 MPa(Ghosh et al. 1996).
The symmetry of the cylinder allows us to carry out the st
using a quarter of the tube’s cross section. This part of the s
ture is divided into 60 linear quadrilateral elements, as show

Table 3. Dimensions of the Cells

Composite material
Cell type

(number of sides)
Fiber

(%)

Square array Quadrilateral 4

Hexagon array Hexagonal 4

Fig. 9. von Mises stress graphs for the com
74 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2005
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Fig. 8, together with its dimensions and boundary conditi
This problem must be solved in the present work on both sc
and Ghosh solves the same problem using nonconventional
elements, called Voronoi elements, to represent the micro
ture, and the asymptotic expansion theory to represent the
scales.

Two cylinders were studied, each made of a different com
ite material: A square-array material for the first, as shown in
5, and a hexagonal array material for the second, as shown i
6. In both cases, the composite material was 40% fiber and
matrix. The mechanical properties of these component mat
are identical to those in the previous example(Table 2). The
dimensions of the cells are shown in Table 3.

In this case, in order to solve the problem for both scales
necessary to solve the macrostructure and 240 cells(60 element
with 4 integration points each) for each load increment.

The result obtained with the first composite material ca
seen in Fig. 9, which shows four graphs of the macrostruc

Diameter of fiber
smmd

b
smmd

H
smmd

10.0 14.0125 14.0

10.0 13.0401 15.0

te macrostructure at three different pressure levels
s

0

0

posi
131(1): 65-79 
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and Fig. 10, which shows four graphs of the microstructure
correspond to the first integration point of the first finite elem
(indicated in Fig. 8). In each of these two groups of figures(mac-
rostructure and microstructure), Graph 1 represents the divisio
of the structure into finite elements and mesh displacement
pressure of 100 MPa. InGraph 2, the field of stress is present
according to the von Mises plastic yield criterion when the p
sure applied is 10 MPa. In this case, the whole domain of the
is in the linear elastic range. The distribution of the stress o
tube corresponds to the isotropic material in an approximate
ner, since the field of the stress is practically uniform in the
cumferential direction.Graph 3 presents the von Mises stre
when the pressure applied reaches 50 MPa; at this pressure
the nonlinear process begins in a few integration points. Fin
in Graph 4, the von Mises stress is shown when the pres
reaches 100 MPa. In this case, part of the composite materia
the nonlinear range and anisotropy is observed, which prod

Table 4. Properties of the Materials

Compounding
material

Young
modulus

E0

sN/mm2d

Poisson
coefficient

snd

Tension
strength

f t

sN/mm2d

Compressio
strength

fc

sN/mm2d

Brick 20,000 0.15 5.0 15.0

Cement mortar 2,000 0.20 1.5 15.0

Fig. 10. von Mises stress graphs for the microstructure at three
(see Fig. 8)
JOUR
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stress concentration in parts of the domain. These results co
quite closely with those reported(Ghosh et al. 1996) for a pres
sure of 100 MPa(Figs. 9 and 10), in spite of significant differ
ences in the kind of formulation, because they use Voronoi’s
elements. The results obtained using the hexagonal cells are
lar to those already obtained using the square cell shown in
9 and 10. This implies that a composite material with a hexag
array is also anisotropic in a nonlinear range.

Homogenized Masonry as a Composite Material

An example is presented in which the masonry of traditional b
is studied as a composite material. Molins(1996) carried out a
review of some of the most relevant ways of characterizing t
kinds of materials, which allows the difficulties and limitations
existing models to be verified. The example presented consi
a masonry wall under a shear load laboratory test, in whi
micromodel is formulated to obtain the structural masonry’s
havior (Lourenço 1996; Zijl et al. 1997). The properties of th
brick and the mortar are shown in Table 4. Perfect adher
between the mortar and brick is assumed.

Fig. 11 shows the fracture distribution of two walls tes
under shear loads. Each wall measures 990 mm along the b
1,000 mm in height and has a window in its interior. The dim
sions of the bricks used in the wall are 2103523100 mm. The
bricks are bonded together using 10 mm of cement mortar

rent pressure levels at the first integration point of the first finit
diffe
laboratory test consists in fixing the base of the wall and applying
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a distributed vertical load of 0.3 N/mm to its upper part. Once
load is applied, a horizontal load is imposed on the top l
under displacement control.

The numerical simulation of the behavior of each compo
material was carried out using isotropic damage models(Oliver et
al. 1990). Two different isotropic damage constitutive mod
were used: In the first, the component materials were subjec
exponential softening, and in the second, the fracture ener
the mortar was increased, representing the friction between
tar and brick after the mortar fracture. This introduced an artifi

Fig. 11. Two wall masonry fracture distribution under shear lo

Fig. 12. Wall’s deformed shape and
76 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2005
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strength threshold for friction. The cell that characterized
composite consisted of a simple brick, and a mortar layer tha
5 mm thick surrounding it.

The wall was divided into 66 quadrilateral elements. F
Gaussian numerical integration points were used in each
element. Consequently, the solution of the macrostructur
each of the load increments was obtained in parallel with the
cells used.

The homogenization theory gives information on the resu
each of the scales. Therefore, we preferred to illustrate the d
dation or damage that took place in the wall(see Fig. 12) by
representing the average of the damage variable in each
cells.Graph 1, in Fig. 12, presents the discretization of the w
into 66 quadrilateral finite elements. InGraphs 2, 3, and4 in the
same figure, the average of the damage variable is presente
damage variable was drawn on the deformed wall, as a c
quence of the displacement level applied in each case.Graph 2
represents the wall damage when the horizontal displace
reached 1.50 mm in the upper part of the wall. As shown
damage of the wall began in two opposite window corners,
duced by the shear stresses, while tension stresses resu
damage in the lower right-hand area and in the upper left-
area of the wall.Graph 3 in Fig. 12 represents the damage w
the horizontal displacement reached 2.75 mm in the upper p
the wall. In Graph 4, the displacement imposed was 4.0 m
One can observe the crushing damage in the lower left-hand

ge level for three different load increments
dama
131(1): 65-79 
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and in the upper right-hand area of the wall. In this example
tension cracks took place in the mortar because it was the we
component, while the crushing by compression took place in
two compounds of the composite material(brick and mortar).

As a result of homogenization theory, the two-scale solu
problem also provides a wealth of information on mechan
behavior at the microscale level. As explained above, the beh
of the discretized composite material is obtained starting from
macrolevel mechanical solution for each integration point, so

Fig. 13. Wall cell representation of the third integration point of
upper part of the wall:(1) finite element discretization,(2) deforme

Fig. 14. Numerical and experimental comparison of horizontal lo
displacement behavior
JOUR

 J. Eng. Mech., 2005, 
t
each one of these points represents a cell in the microleve
main. Consequently, the fields of the microscopic variables
obtained in each of these points. For example, Fig. 13 pre
four graphs of the cell of the composite material, that corresp
to the third integration point of the fourteenth element of
macrostructure(see Fig. 12), when the displacement applied
1.5 mm.Graph 1 in Fig. 13 shows the cell domain, subdivid
into 104 quadrilateral finite elements of four nodes.Graph 2 of
the same figure shows the deformed mesh.Graph 3 indicates the
field of shear strain in the domain of the cell, which shows
mortar strain concentration, andGraph 4 presents the cell field
shear stress.

Fig. 14 shows the curves of the horizontal load measure
the base of the wall, against the displacement imposed o
upper part of the wall. The first numerical model’s solution u
the homogenization theory coincides with the second mode
experimental results in the elastic range, but in the nonl
range the strength deteriorates rapidly due to mortar failure. I
second numerical model, the solution matches the real re
better in the nonlinear range. In this case, the fracture ener
the mortar was increased to simulate artificial friction.

Conclusion

In this paper, the homogenization theory for the periodic inte
structure of nonlinear materials is formulated in two scales(micro

rteenth finite element(see Fig. 12), for a displacement of 1.5 mm in t
h,(3) shear strain, and(4) shear stress
the fou
d mes
and macro). This formulation is based on the homogenized strain
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tensor related to the change of the periodicity vector and o
homogenized stress tensor obtained by means of the classic
age theory.

The coupling between the micro- and macroscales was ca
out by means of the finite element method; a parallel strategy
used to simultaneously solve the cells on the microscale an
composite material on the macroscale. Each of the basic ce
the microscale level was assigned to each numerical integ
point on the macroscale.

Classic constitutive equations, such as damage, plasticity
coelasticity, viscoplasticity, etc., were taken into account w
defining the microscale’s mechanical behavior. Internal varia
were stored at each point at the microscale level.

To prevent the steep gradient in the macroscopic field
ables that is produced by local boundary effects, a local re
ment of the finite element mesh was performed. In this way
were able to maintain the periodic condition on the boundari
the cells near to the perturbation.

A quasi-tangent inelastic tensor at the macroscale level
used to define the inelastic constitutive law in the whole ce
each numerical integration point on the macroscale. The e
constitutive tensor was obtained using the perturbation tech
at the same macroscale level.

The homogenization theory, in general, and the method
sented here, in particular, give good results in comparison to
approaches such as the mixing theory(Car et al. 2002), although
these comparisons highlight the need for improving effective
in the solving of large problems.

Appendix. Two-Scales Algorithm for Studying
the Behavior of Composite Materials Using
the Finite Element Method

The algorithm in Fig. 3 describes the procedure proposed fo
analysis of the homogenized composite material using finite
ments on two scales.
1. Theglobal program (macroscopic scale)starts with the ma

trix initialization tasks; it reads the information on the m
rostructure and thelocal program’s address to solve themi-
croscopic scaleproblem.

2. Computation of the elastic homogenized constitutive te

C̃sxd through thelocal program (microscopic scale).
• The local program initializes the database with the nu

ber of cells and reads the microstructure’s informatio
• The local program calculates the stiffness matrix for

cell using the homogenized constitutive tensor.
• The load increment is applied. In this case, the solutio

reached by imposing a preset macroscopic strainẼsxd
[see Eq.(29)]. For this purpose, it fulfills the tasks th
follow.

• The nodal forces are obtained.
• The microstructure’s system of equations is assem

and then solved under periodic boundary conditions.
• The stresses on the microstructure are obtained usin

constitutive equation[Eq. (21)]. In this case, the compo
ite material displays elastic behavior. Subsequently
homogenized stress tensorss̃sxd are obtained[Eq. (18)].

• The elastic homogenized constitutive tensor is calcu

by means of the perturbation procedureC̃sxd (see sectio

entitled, “Determination of the Constitutive Tensor for

78 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2005
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Composite Materials”). The result is sent to theglobal
program.

3. The stiffness matrix for each finite element in the glo
structure is obtained(macroscopic scale).

4. The new load increment is applied.
5. The nodal forces for each finite element are computed.
6. The global structure’s system of equations is computed

solved.
7. The acceptable stress level at each point in the macro

ture is verified by means of the constitutive equation.
task is carried out by returning to thelocal program, and the

information on the homogenized strainsẼsxd at each integra
tion point of themacroscopic scaleis sent from theglobal
program to the local program:
• The local program solves each of the cells sequentia

This task reads the information on the microscopic p
lem (cell) from the database and applies it as a load s

incrementẼ
˙ sxd.

• The nodal forces are obtained.
• The system equation at the microstructure level is

sembled and solved under periodic boundary conditi
• The acceptable microscopic stress levelsssyd are verified

by means of the respective constitutive equations for
single material. If they cannot be verified, they should
corrected. After this step, the cell’s homogenized s

s̃sxd and constitutive tensorC̃sxd are obtained.
• The balance condition is verified in the cell domain.

is not fulfilled, the balance condition must return to
prior step and the convergence is reached followin
iterative strategy (Newton–Raphson procedure). The
stress is then obtained for the macroscopic scales̃sxd,

• When all the cells have been solved, the information
the homogenized stress and constitutive tensor are
mitted to theglobal program.

8 Theglobal program receives the stressess̃sxd and the con

stitutive tensorsC̃sxd in each integration point from the loc
program. The subsequent step verifies the balance o
forces in the global structure domain(macroscopic scale). If
the balance condition is not reached, it returns to Step 5
convergence is reached by means of successive iter
(quasi-Newton’s method).

9 The databases of theglobal program are updated when th
problem converges in themacroscopic scale. If there are
further increments, it returns to Step 4.
• The databases of thelocal program are updated simulta

neously(for all cells).
10 Theglobal program ends.

• The local program ends.
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