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Abstract: In this paper, we present a two-scale numerical method in which structures made up of composite materials are simulated. Th
method proposed lies within the context of homogenization theory and assumes the periodicity of the internal structure of the material
The problem is divided into two scales of different orders of magnitude: A macroscopic scale in which the body and structure of the
composite material is simulated, and a microscopic scale in which an elemental volume called a “cell” simulates the material. In this work,
the homogenized strain tensor is related to the transformation of the periodicity vectors. The problem of composite materials is posed a
a coupled, two-scale problem, in which the constitutive equation of the composite material becomes the solution of the boundary-value
problem in the cell domain. Solving various examples found in the bibliography on this subject demonstrates the validity of the method.
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Introduction division of the problem into two scales rests on a rigorous theo-
retical base. Suquetl982, 1987, on the other hand, uses the

Various multiscale methods have been developed to solve themethod of averageand finds that upon extending it to the non-
problems presented by the mechanical behavior of composite madlinear case, the macroscopic variables become coupled to the re-
terials. These methods can be included in the contexaiog- spective microscopic ones. This fact presents a significant diffi-
enization theoryin which the composite material problem is di- culty in considering the two-scale coupling, because it implies
vided into two different scales. Thus, the composite material is that the composite’s constitutive equation depends on an “infinite

assumed to be homogeneous omacroscopic scaléx;) and its number of internal variables.” For the purposes of obtaining a

behavior can be studied by taking a representative unit Volume,s:implified constitutive law for the composite, certain simplifica—
which is represented on a second scale calledmi@oscopic tions have been proposed, although these are only applicable to

- . .. simpler structural problems. In recent years, various methods
sca_le(yi). When the '”te"?a' stru_cture of the composite material is have been proposed as a solution to nonlinear two-scale prob-
periodic, the represgntatlvg unit volume is _ca_lllededi. The use lems. Ghosh{1996 proposes a nonconventional method in which
of these two scqles IS eq_uwalent 0 qlet_e_rmlmng t_h_e pro perties the represents the composite’s microstructure ufimge Voronoi
agien cor.nposn.e material under a limiting condition, i.e., when elementsand he uses the asymptotic expansion theory as a bridge
the cell’s dimensions tend toward zero.

. L between the two scales. Fish et @997 use thefield transfor-
One of the most relevant methods is themogenization

mation theory(Dvorak et al. 1994 as well as asymptotic expan-
theoryproposed and developed by Sanchez-Palei€180, Ben- sion theory. In all cases, the use of these methods seeks to reduce
soussan et a[1978), and Duvaut1976), which is formulated in

! . . computational effort, although it may also result in a loss of pre-
terms of theasymptotic expansion theorpue to their work, the cision.
In this work, we propose a double-scale method using standard
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Now, on the macroscopic level, the periodicity vectors are infini-
tesimally small(|D|— 0). Consequently, on a macroscopic scale,
this value tends toward a limit

. {ﬂd] _ lﬂ(yp-ypo)] ox
im|—|=lim| —————— |=—=F ©)
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Therefore,

d=FD (4)

whereF=homogenized deformation gradient tensbhis simple
change of scale allows us to obtain the macroscopic strain tensor
using classical continuum mechanics. The square of the length of
the new periodicity vectors is

Fig. 1. Periodicity vectors in theD configuration and the new
periodicity vectorad on the updated configuration of cell doma

points at which the material coordinatéshave the same relative
position in the neighboring cells are called periodic points. For |d2=D'F'FD (5)
example, in Fig. 1, any point in the cell domain is indicated?y
in the neighboring cells, these same points are indicated, and
these are called periodic points. The relative position between
said points determines the base of the vecthat will hence-

and the difference between the square of the length of the new
periodicity vectors and the periodicity vectors in the reference
configuration is

forth be referred to as periodicity vectaidso known as the cell’s |d]?2-|D|>*=[D"FT][FD]D'D
base vectons they possess specific dimensions and directions re-
lated to the cell domain. |d|2- |D[?= 2DTED (6)
Thus, the Green Lagrange tensor is obtained as a measure of
Changing between the Two Scales strain on a macroscopic scale
: . ~ 1 . 1| oFT oF
For heterogeneous materials, concepts such as stress or strain can E= E[F F-1]= A | (7)

be understood as values that are dependent upon the scale. For
example, when seen macroscopically, the composite material MaYrhe tensoE can be called th@omogenized strain tensand is

be considered a homogeneous material, in which case, each POINLssociated with the change of periodicity vectors. Moreover, it

of the co_mposne _has an effective stress or st_raln value. Howe_ver’coincides with the classic equation of taeerages theorySuquet
at the microscopic level, there may be considerable fluctuatlonslgsa.

in the values of these variablése., at the macroscopic refer-

ence. In the change from the microscopic variables to the mac- ~ 1

roscopic ones, the hypothesis of local periodicity is used E= <E(y)>9c: V. E(y)dVe ®)
(Sanchez-Palencia 198 his hypothesis is a consequence of the e Ve

minimization of energy, as a result of which the microscopic vari- where(E(y)),, =microscopic strain field§),=domain of the cell;
ables within the cell are equal to the respective variables of neigh-andvc:volurﬁe contained i),

boring cells but may be very different from those of more distant

cells.

Homogenized Stress Tensor and Equilibrium

Equation
Homogenized Strain Tensor

The Cauchy equilibrium equation on the microscopic scale, at cell
Consider thaf), represents a cell domain of a composite material level, may be written as
(represented in material space¥assee Fig. 1 and that this cell
dqmain is _characterized by the_periodicity vedmrY =Y o _If N f Uijnjd5:f paidV—J pbdV (9)
this domain then undergoes displacement, the local periodicity s v Ve
hypothesis ensures that the composite material, despite its conse- ) ) . i
quent deformation, retains its periodicity relationship with its "€ domain of the cell is very small from the macroscopic point
neighboring cells. In other words, the deformed cells, together Of View (Vc—0). Consequently, the value of the forces of volume
with their neighboring cells, all undergo the same transformation. and inertia are also small and tend to zero. This equation ensures

C

Consequently, the new periodicity vectarsnay be written as equilibrium in the domain of the cell:
d=Y,=Yp=D+(Up=Upg) 1) lim (f oijnjds> = lim (f (pay - pbi)dV> =0 (10
Ve—0 S Ve—0 Ve

where up—upy=difference in displacement between the periodic

points. The transformation of the space of the cells is associatedwhere S.=boundary surface of the celltj;=microscopic stress
with the change of periodicity vectors. The partial derivative of field; and n;=unitary normal vector of the surface elemet&
these vectors is Observe that the orientation of the two surface elements located at
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1 1
f[—f aijdv}ﬁjds+f {—f pbidV]dVZO (14)
v V.
s Vely, v Vely,

Obviously, the body forces per unit volume have been considered
(since on a macroscopic scale their magnitudes can be signifi-
can). This effect may be assumed as the average of the volume

forces(B) inside the cell, or

~ 1
b, = v pb;dV = constant (15

Substituting Eqs(11) and(14) in Eq. (13), and transforming the
surface integral by using the divergence theorem, results in

directions (16)

Fig. 2. Forces acting on the cell boundaries are equal but in opposite 5
J 6'” ’jdV+ f bidV: 0
V, V,

Cc [

Eq. (16) is valid for any arbitrary volumé/; therefore, it is also
periodic pointgsee Fig. 2 has unitary normal vecto®, andn,) valid when choosing very small domaiftseing the limit the cell
in opposite directions. The principle of action and reaction en- domain(Q— Q;Q.—0)]. Then,
sures that the surface forcést(n)dS, in the two surface ele- _
ments are equal but in opposite directions. This is known in the gjjj+b=0 a7
literature on homogenization as an antiperiodic force field on the
cell's sides(Lene 1986.

A second-order tensar; is defined as the average of the forces
acting on the cell’s sides:

and thus we obtain theomogenized local equation of static equi-
librium.

Basis of the Elastic Problem of Macro- and

f Yo ndS Microscales
~ S . . . .
o= (11 Let us consider a body, which occupies a redibtthat is formed
f yin;ds by a composite material of a fine periodic structure. The boundary
S of domain(} is denoted byi(}, in which ¢Q, is the part of the

boundary for which the displacements are knoy@irichlet's
conditiong and d€), is the part of the boundary for which the
surface forces are knowiNewman’s condition The structure of
this material also allows it to be divided into very small structural
units (cells). This domain is denoted by spafk, such that, by

wherek andr=contracted indices. Thus, if the effect of the vol-
ume forces is disregardéd; ;=0), using the divergence theorem
gives the following theory of averages equation:

y S, oo dV ordered repetition, the body of the composite matefiatan be
v YirGir v krTir 1 restored. Moreover, two scales of differing orders of magnitude
Gij=— =—= == oydv (12 are assumed, in such a way that the particles of doflaian be
) _ eI Ve labeled in accordance with their position within a spaceéat a
yk]dV ydeV . . . .
v. v. macroscopic level while the position of the cell’s particles can

[ [

_ be labeled within a local spagg (at a microscopic level There-
The overall surface force(n) is defined as the average of the fore, at the macroscopic level, the problem of composite materials
forces on the cell sideS;, that is determined by the direction of & pecomes a boundary-value problem of homogeneous materials, in
(macroscopig unitary vectorn, which we look for displacement and stress figld&), o (x)] that
satisfy the following equations:

J Yo dS 1 Macroscopic scale:
. R R (
t(n) = = N, = _J adV [Ny (13 do(x) ~ . L
ety +b=0 equilibrium equation i)
viindS ¢ X
S

~ 1 _ o
Because the value of the right-hand side of the equation is a linear { 0= VJ o(xy)dV; constitutive equation i)
function that depends on the direction of vecfor(i.e., T,(A) Ve

=5,A,), and since the tensar fulfills, on the macroscopic level, u(x) =u(x) displacements or(},

the same requirements as the stress tems@in homogeneous o(x):n=t(x) forces ong(),

material3, tensoro is henceforth called thBomogenized stress \ (19)
tensor

Furthermore, if the entire composite material's dom&n On the other hand, at the microscopic level, the cell boundary
(which is formed by an infinite number of cellis considered, the  conditions must reproduce the material microstructure conditions
static equilibrium equation may be written as follows: locally. The periodicity vectors obtained under microscopic strain
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are then formulated in agreement with the local periodicity hy- There are several ways of solving this equilibrium equation under
pothesis periodic boundary conditions, although, in this work, the
Lagrange Multiplier Method is use\). However, the latter has
d-D=uy—Up (19 several disadvantages, such as an increase in the number of equa-

points; D= periodicity vector defined between these points in the terms that are produced in the diagonal of the stiffness matrix,
microscopic reference configuratiof); and d=new periodicity which can create computation difficulties. The latter can be solved
vector resulting from the strain fielsee Fig. 1 In the case of Dby implementing the contour conditions imposed by Anthoine
small strains, if only the symmetric part of thelocity gradient (1999, who divided the Lagrange multipliers into two groups,

tensor called thedeformation rate tensafor stretching tensor is and A, which represent the forces in the respective periodic
considered and the influence of the antisymmetric part of the nodes of the boundary of a cell, and whose magnitude depends on
Velocity gradient tensorca"ed thespin tensor(or Vorticity ten- the relative dISp|acement of the boundary nodes of this cell. The

sor), can be rejected, the relative displacement between the celiStationary solution of the augmented functional with Lagrange
boundary’s periodic points can be approximated(Bglamea et ~ Multipliers is as follows:

al. 1999a 1
1T Kk 1) =17, T (k 1) — T (k. .1)—-
Up—Up=E-D (20) H—2U K-U-U"-f+N - (ky-U-U)+ N+ (k,-U-Up)
This relative displacement condition between boundary points 1
- S g o + =\ = N - (A =Ny (23
represents a field of periodic displacements. Additionally, the o T A2 17 A2

forces that develop on the cell boundary have the same modulus_ _ - _ _
but in Opposite directions. Then, the pr0b|em on a microscopic This leads to the following well-conditioned linear equation sys-
scale,y;, is reduced to solving the following boundary-value tem:

roblem in the cell domaif)_:
P | e kK kI kI ] [u] [t

Microrscopic scale: kp I =1 [N [=| U (29
0 kp =1 1 A u
o) =0 equilibrium equation i) P ? '
y where K =augmented stiffness matrix at the cell level; ang
{ &(y)=C(y):E(y) constitutive equation i), 21) establishes the periodic order distribution on the boundary de-

~ o grees of freedom. This last matrix has a value of -1 on each
Up—Upo=ED periodic displacements off), restricted degree of freedom, a value of +1 on the corresponding
Lt =tho periodic forces om(), periodic degree of freedom, and a value of O in the rest of the
matrix position.l =identity matrix; andU=displacement vector.
Obviously, this results il\;=N\,, which represents the periodic
forces in the boundary celf;=force vector; andJ, =nodal rela-
tive displacement for the periodic degree of freedom of the
boundary cell nodes.

Eq. (21) above represents the microscopic static equilibrium
equation(disregarding the effect of the volume forge3his
equation must hold for each and every point of the cell domain
during the evolution of the mechanical processes. This is a well-
formulated problem of contour values whose solution represents
the equilibrium of forces at the microscopic level. This equilib-
rium represents the balance of forces inside the domain with
regard to the boundary cell forces.

The behavior of the component materials is represented by the
expression in the second equation in E&fl), in which C is the
local constitutive tensor. In this case, the constitutive equation of
component materials may represent any kind of mechanical be-
havior (elastic, plastic, viscous, ejcin Eq.(21), we can see the
displacement and periodic force conditions in the boundary of the

Basis of the Inelastic Problem
of Macro- and Microscales

A linear and nonlinear range characterizes the behavior of com-
posite materials. Consequently, in a loaded composite solid, it is
possible that one or more compounding materials may reach the
elastic threshold, developing plasticity, degradation, fractures,
- etc., at the microstructural level. In each of these cases, the whole
cell o), which are at the same time related to the strain teBsor  composite material behaves in a nonlinear manner. Nonlinear be-
at the macroscopic level. Consequently, the two problems arehayior in homogenization theory was introduced by SugLes2,
coupled, and therefore, tiselution of the problem on the mac- 1987, The writer concludes that “the behavior of the composite
roscale is obtained following a classic procedure, that is, using gepends on an infinite number of internal variables,” which en-
the equilibrium equation in a discrete solsee Zienkiewicz and  tajls great difficulties due to the enormous computational effort
Taylor 1993, which requires that the microscopic boundary-value jnyolved. In later works, the writer makes certain peculiar simpli-
problem conditions be satisfied in each point of the macro domain fications taking into account the nature of each component mate-
Q. This task involves an infinite number of problems at the mi- g (see, for example, Lene 1986; Suquet 1987; Devries et al.
croscopic level. However, despite the difficulties involved, the 1989 The aforementioned writers also devise certain constitutive
microscopic problem can be solvedn a discrete way, by using  equations for certain compound materiésavas et al. 1995 In
the finite element method to write the elastic microscopic equilib- g| of these cases, the proposals are approximate and only appli-
rium equation(Zienkiewicz and Taylor 1991 cable to particular composites, and they cannot be generalized.
int/ .\ _ eext_ _ It was Fish who proposed the first solutidRish et al. 1997;
o) =F=10 K-U=f (22 Fish and Shek 1999using the theory of asymptotic expansion to
whereK =assembled stiffness matrix at cell level=nodal dis- obtain the governing equations in each of the two scales. In this
placement vector; antkforce vector in the boundary of the cell. case, the behavior of the composite results of solving a cell for
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each numerical integration point. However, to reduce the compu- 1 1

tational cost, not all the cells are solved in a nonlinear manner; otat= —f oty = vf (ot + ¢AALdV

using an algorithm, the nonlinear behavior points of the macro- cIV, e Ve

scale are identified depending on their stress/strain levels, and et T AL AL

only the cells associated with these points are solved. Also, the =0 +{C}"RETTAL (26)

averages of the internal variables are only stored for each of the
cells displaying nonlinear behavior. This brings a certain loss of ) _ o
precision in the nonlinear resolution of problems. tensor at the time+At (otA={CT}*AL E¥AY  during the linear-

A second proposal based on the theory of asymptotic develop-ization step of the equilibrium equation. Once the homogenized
ment was presented by GhogBGhosh et al. 1996; Lee et al.  stress tensor is obtained in each pa@it*,, the nonlinear process
1999, in which the behavior of the composite is obtained using for the solution of the equilibrium equation is followed in the
Voronoi's finite elements, which allow an entire cell to be repre- traditional way.
sented by just one of these finite elements. The finite elements The nonlinear equilibrium equation of the solid using the finite
provide correct results at the macro- and microscale level; never-element procedure can be written as unbalanced forces between
theless, in their interior, the microstructure’s details are not de- the internalf{™ and externaf2" forces:
scribed.

The present work shows an alternative to the two formulations 0=Alfy" = fP¥ge= Afilo (27
mentioned above. The conceptual bases have been partially pre- 0
sented in various publication&Zalamea et al. 1998, 1999a,b, In this case,Ae represents the assembling operator from the
2000, 2002; Zalamea 2091The theory is based on the direct elementary level forces to the whole struct¢Zéenkiewicz and
formulation of governing equations in each sc@ee the section  Taylor 1993. These unbalanced forces can be eliminated during
entitled, “Basis of the Elastic Problem of Macro- and Micros- the linearization stagé+1) at timet+At, in the neighborhood of
cales” for the elastic formulationwhich renders the use of the the current equilibrium force state. For this purpose, it is neces-
theory of asymptotic expansion unnecessary. A further character-sary to enforce the equilibrium balance in this current state
istic is that the analysis of each scale is carried out by the finite +1) and express this condition by means of a Taylor series ex-
element method and by imposing the boundary conditions in the pansion truncated in its first variation, which leads to the follow-
microscale by means of the Lagrange multipliggsis. (23) and ing:

(24)]. Also, during the linearization of nonlinear problems, the , ) )

equilibrium equation in the macroscales is solved using one cell 0= TARJGA + TK LG AU, TG (28)
for each integratiqn point, althoygh the parallelization strat.egy is Eq. (28) is a linearized equilibrium equation in whidK ][],
L_Jsed _to prevent high co_mputat|onal costs. Theref(_)re, during therepresents the tangent stiffness for the whole solid dortsee
linearization of the nonlinear problem, a process in parallel for Zienkiewicz and Taylor 1991 Its mathematical expression de-

each cell is solved plus an entire composite material process. The ~r ) o
ds orC', which represents the tangent constitutive tensor that

internal variables are stored in each point of integration at the PN N , , .
microscale level. corresponds to the constitutive homogenized law in each point of

The nonlinear solution that uses the linearization procedure the composite solid. The unbalanced or residual force in the solid

maintains the validity of the homogenized strain and stress ten-1

is eliminated following a Newton—Raphson solution until it
sors (see sections entitled, “Homogenized Strain Tensor’ and spreads to zero, a situation that is known as the convergence of
“Homogenized Stress Tensor and Equilibrium Equatjarid the

the nonlinear process toward the real solution.
governing equations formulated in the macro- and microscales

where {CT}t*t represents the homogenized tangent constitutive

Thus, in the present work, we approached the solution using

(see section entitled, “Basis of the Elastic Problem of Macro- and the numerical finite element method. The result is a general
Microscales). However, the microscale definition of the consti- Method in which the macroscopic constitutive equation depends
tutive equation should be changgh. (21)], to take into account ~ €Xclusively on the microscopic fields.
the nonlinear behavior of the materi@.g., damage, plasticity,
viscoelasticity, viscoplasticity, fractures, t& generic nonlinear o ) o
constitutive equation at the microscale level is summarized in the Determination of the Elastic Constitutive Tensor
following expression: for Composite Materials
Free energy for the single compounding material, ) o ) ) )
The global elastic constitutive law for composites, in which there
O =d(E,a) are no slips between the components, can be written as

Free variable: Strain tensor,

E=V (25 Starting from a strairE, the elastic behavior of the material is
Internal variables, obtained through the elastic homogenized constitutive tensor

EZ(X). This is a fourth-order tensor and has 81 components. Suquet
assumes that the elastic homogenized constitutive tensor shows
Dependent variable: Stress tensor, the classic symmetries if the composite has the periodic distribu-
tion of its component:

(x) = C(x):E(x) (29)

a={oy}, conk=1,...)n

5 =0(D,E,a)

The constitutive equation for the composite at the current time Cisa = Ciinc = Cua (30
+At is expressed in the following incremental expression that The property of this material makes the problem easier to solve.
coincides strictly with Eq(12): In fact, for the orthotropic elastic material, one must only obtain
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nine independent elements of the elastic constitutive tensor. The

macroscopic stress tensor can be obtained directly from the
global strainE, using the elastic homogenized constitutive tensor

a(x), which is defined by means of the cell information of the
composite material.

Consequently, if we apply other strain fields to the cell inside
the elastic range and the homogenized stress tensor is obtained,
this tensor coincides with the homogenized stress preceded by the
constitutive homogenized elastic tensor.

The method designed to obtain these elastic constants is re- ) o ] )
lated to the procedure followed, both for the theory of averages Analytical Determination of the Quasi-Tangential

and in asymptotic expansion theory. It allows different perturba-
tions (small displacemenigo be applied to the cell in order to

activate the different elastic constants of the composite. Since it is

not possible to solve the expressiéﬂix):&(x)®[E(X)]‘1 [be-
causeC(x) is a fourth-order tensor, while(x) andE(x) are two

Inelastic Constitutive Tensor for Composite
Materials

In nonlinear problems, a tangential or algorithmic homogenized
constitutive tensor is required to allow convergence with the
smallest possible number of iterations. However, the algorithmic

second-order tensors, and it therefore has an infinite number ofconstitutive tensor is quite difficult to obtain for each kind of

solutiong, the homogenized constitutive tensor for the composite

composite material cell. An incremental iterative method for solv-

material in any cell is obtained by the perturbation procedure. The jng the nonlinear system of the equilibrium equation, such as the
problem is considered as a system of equations on principal stresgnogified Newton-Raphson method, can be applied using the elas-

directions: A different displacement perturbation is applied in

each of the directions and, in this case, a unique solution for the

composite constitutive tensor is obtained.
For instance, the elastic constitutive tensor can be written, in
two-dimensional problems, in plane stress or plane strain as

[ 0 (31)

CX)’XY

The following fields of strains are applied by way of perturba-
tion:

E1() ={E4,0,0}

E,(0 ={0,E,,,0} (32)

yy

Es(x) ={0,0,&,}

For each of these strain fields, the homogenized stress tensor is

obtained:&(ﬁl(x)), G(Ez(x)), 6(E3(x)). Next, the coefficients of

tic constitutive tenso€(x) [Eq.(31)], although the computational
effort is enormous. Nevertheless, an alternative way can be found
which produces quite satisfactory results. In this paper, a method
based on the “quasi-tangential” homogenized constitutive tensor
is used to obtain the stiffness, a quasi-tangertiafor the mac-
rostructure, from the values obtained from the previous iteration.
This operation may be carried out in various waiennis and
More 1977; Crisfield 1980 In this paper, we present an approxi-
mate method to obtain the constitutive tensor of the tangential
composite material at each point of the solid. We suppose that the
constituent law of the composite material in each point can be
written as

o(x) = CT(x):E(X) (35)
This law can be broken down in the following way:
o=(C+C)E (36)

where C=elastic composite material’s constitutive tensor; and

the constitutive tensor are obtained, which are, in this case, theC=rate of this elastic tensor that is to be fulfilled by the tangential

following:
Coox= T E1(0)/Ex
Creyy= T E2X)/Eyy
E:yyyy: ayy(EZ(X))/ ~Eyy (33
Cyyn= Ty (E1(X)/Ey
Cryry= O (Es(X))/2E,,

The analytical demonstration of this constitutive tensor symmetry
hypothesis is not trivial. The various writers who have explained

the asymptotic expansion theory have presented this demonstra-

tion. Using this numerical implementation, or periodicity func-
tion, the following symmetry hypothesis is satisfied:

nyxx= C><><yy (34)
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condition of the constitutive tens@”. Therefore, the following

expression ofC can be obtained from E36):

6-CE=CEOC=(G-CE)oE? (37)
For the reason stated in the previous section,(B@). above has
infinite solutions. Nevertheless, because all that we want to obtain
is an approach to the tangential constitutive tenSér several
additional restrictions to the rate constitutive ten€rcan be
imposed to diminish the indetermination degree and obtain a
unigue solution. To this end, we suppose that the rate te@sor

maintains the same symmetries as the elastic te&smee Eq.
(30)]; we also suppose that many of the terms are fsdke the
equivalence with Eq:31)]. In this case, the solution can easily be

obtained. In this workC is obtained by the procedure described
for the determination of the elastic constitutive tensor of the com-

posite materialC (see section entitled, “Determination of the
Elastic Constitutive Tensor for Composite Materials”
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Fig. 3. Algorithm for solving composite material problems usingna-scale finite element method

Macro- and Microstructural Coupling solve the composite material problems on two scales by means of
the finite element method. Their coupling implementation is car-
To solve the problems concerning composite materials by the ried out using a parallel virtual machiriGeist et al. 199% This
homogenized method presented herein, a macro- and microstrucsoftware creates a virtual data processing system constituted by
tural coupling is proposed that uses the finite element method onone or more computers, in which several processes are handled at
two scales(see Ghosh et al. 1996; Fish et al. 1997 for other the same time. Therefore, one process solves the macroscopic
methods that use two-scale couplin@hus, an overall equilib-  problem, while one or more parallel processes solve the problems
rium of forces over the entire solid is imposed on the macroscopic at the microscopic level. These processes are synchronized and
scale, while on the microscopic scale the behavior of the compos-information is passed from one machine to the other when neces-
ite material is solved. Thus, each point of the numerical integra- sary. Nevertheless, as each of the boundary-value problems on a
tion of the macrostructure’s finite element represents a boundary-microscopic scale is an independent problem, this implementation
value problem on the microscopic scale. This means that theallows us to solve the cell problems in one or several processors,
governing law for the composite material behavior is a numerical depending on their availability.
constitutive equation; in this case, this macroscopic law is strain
driven (because of the boundary condition imposed on the.cell
The internal variables for the entire composite material corre- Influence of Local Effects
spond to all the internal variables in the whole cell domain. We
must therefore simultaneously solve the overall macrostructureIn this section, we present the influence and treatment of local
with many cells of composite materials, as many cells as there areeffects, such as point loads and particular boundary conditions, in
numerical Gauss points in the macrostructure. The solution is homogenization theory for the periodic distribution in the solids.
obtained once all the boundary-value problems fulfill the equilib- This theory has a rigorous formulation based on the fulfillment of
rium equations. Fig. 3 and the Appendix show the algorithms that the following ideal suppositions:
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Fig. 6. Internal structure of a composite material with a hexagonal
array of fibers and its cellular division into hexagonal cells

Fig. 4. Simplified representation of a quasi-periodic field function

mulation increases the complexity of the problem, and it is not
clear that they give better results.

A significant gradient of the macroscopic variable fields at a
certain structural point involves a perturbation of these fields in
the neighboring cells, which apparently contradicts the basic pe-
riodicity hypothesis. However, it should be understood that this
hypothesis is only an idealization of the field’s variation, which
(Y<Q). . ) )

These two assumptions are contained in [deal periodicity supposes that the macroscopic vangble ;uﬁgrs slight chan.ges. For
hypothesis, which demands that the stress and strains fields in theexample, let us suppose that there is a S|g_n|f|cant S@mTa‘”
cell domain are the same as for the neighboring cells. This Con_gradlent bgtween two macrostructures, Points A arise# Fig. 4,
cept allows us to divide the problem into two scales, in which the TaX) ahnd o5(X)]. he h o h ideali h b
sponding macroscopic variables change very smoothly. Conse-f ' | | int of vi c v it i d
quently, the local periodicity hypothesis is the main foundation of rom a general scale point of view. Lonsequently, 1t IS SUppose

most of the methods based on homogenization theory. Examplesthat’ between Points A and B, there are a great number of cells, so

of this fact can be seen in the averages theory, in the asymptoticthat th? Cha'?ge of st.ress between the cell Iocateq at Point A and
theory, and obviously also in the formulation proposed in this the neighboring C?” is very small, and so on, until we reaph the
work. There are works that do not accept the local periodicity ?e” Iocated.at Point B. The r?"’." prqblem 'dn‘fers from the 'd?"%‘"
hypothesis when dealing with steep gradients of macroscopic'zed one, since, due to_the finite dimension of the cellz a f_|n|te
variables or in the presence of local effects, such as boundarynumber of them may .eX'St betwe.en Aand B, as s.hown in Fig. 4
influences, fractures, et¢Fish and Markolefas 1993; Fish and Eor example,_on the r!ght-hanq s!de_of the same f'gl.”?’ th_e varia-
Wagiman 1993: Fish et al. 1994These writers have tried to tion of the microscopic fl_elds is indicated. This varlqtlon is un-
obtain the elastic problem solution at the macrostructure level by derstood as the field variable error made over a peuild_)ldat n
means of homogenization theory. Their formulations accept thetum represents cell length. Let us suppose that the dimension of

field periodicity hypothesis on the microscopic scale, and when trt1e cell d'T'nfhte.S ?Qd that thte ampltlitqudtethof the f'g!d .V‘?“;f‘b'e.
there are steep gradients for local effects, they introduce a pertur-> ays constant; 1t1s then easy to see that the error diminishes in
bation term in the displacement fields. In other works, the over-

lapping of the high-density meshes of finite elemegmisiltigrid

1. The composite material has the periodic distribution of its
components, which allows the virtual division in equally
sized domains callel cells.

2. The cell contains the internal structure of the composite ma-
terial and is very small compared to the overall structure

techniqueis used in the domain of high-gradient variables, and in 400 . —
these places the periodic formulation introduces these perturba- ‘ A W,ﬂw‘“‘
tion terms. These techniques are usually combined with error wor i
minimization algorithms in the finite element solution. This for- 300 o
£ 250 f
=
. Division of the . Z 200
——¢ % W
ORI g
»—-O-qOO ‘% 150 $ o "
20 | e —
OOy 100 | & /7 Matrix behavior
60 i g Fiber behavior
OB - g‘/ Square array {angle 0) «
@ id/ Square array (angle 45) -
5 R § e ‘ Hexag. array(an?leO)
’cOmposite ‘s L O 0 0.002 0.004 0.006 0.008 0.01
Strain Exx

internal structure h !

Fig. 7. Stress—strain curves for the plain strain of fiber, matrix, and
Fig. 5. Internal structure of a composite material with a square array square-arrayed cells, 45°-angle square cells, and hexagonal arrayed
of fibers and its cellular division into quadrilateral cells cells
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Table 1. Dimensions of the Cells

Cell type Fibers Diameter of fiber b h
Composite material (number of sides (%) (pm) (pm) (pm)
Square array Quadrilateral 55 10.0 11.9499 11.9499
Hexagon array Hexagonal 55 10.0 11.1206 12.8410

proportion to the decrease in dimensiand that, at the limit, it the plane. In this case, we attempted to determine the composite
tends to a periodic fieldsee upper part of Fig.)4 material’s behavior when subjected to uniaxial stress in a trans-

The use of the periodicity hypothesis in those places that areverse direction. The problem was, in this way, reduced from three
near to the macrostructure’s boundaries has also been questionedo two dimensions.
This topic has been studied by Sanchez-Palefi€87), based on Two different cell arrays were studied. The first was a square
asymptotic developments. To analyze the boundary effect in thearray, as shown in Fig. 5. On the right-hand side of the same
field variable, the writer introduces an additional displacement figure, the division of this array into quadrilateral ceffeur pe-
term, u'S, of the microscopic order, so that the displacement field riodic side$ is shown. The second array was a hexagonal array.
continues to be written ag®=u®+sul+cu'®. Subsequent to the  This array and its division into hexagonal cellsix periodic
analysis, we can see that the influence of this additional term onsideg are shown in Fig. 6.
the macroscopic scale is not noticeable, since the gradient of this The composite material consists of a ductile aluminum alloy
additional termeu’® vanishes very quickly. Numerical experi- matrix reinforced with long stiff alumina fibers. The bond be-
ments show that the effect of this additional term is significant tween fiber and matrix is very stror(gerfect adherence was as-
only in those cells that are on the border of the solid, when they sumed. The fiber and matrix volume proportions are 55 and 45%
are dumped in one periodDumontet 1985 Nevertheless, it respectively. The fiber's diameter was 1@t. Consequently,
should be clarified that, even in this case, it is an approximation, the cell dimensions are shown in Table 1.
although it is quite accurate for the remaining cells that are inside  The behavior of the fiber is assumed to be elastic and isotro-
the macroscopic domain. pic, while the aluminum matrix behavior is represented by an

Consequently, if the border cell has very small dimensions in isotropic constitutive elastoplastic equation, which is in agree-
relation to the macrostructure, the periodicity error on the border ment with von Mises’ criterion. The mathematical expression of
of the macroscopic domain tends to zero. the matrix hardening used in the two references sig,

=(0% Emod) - (0eq/ 0°) (Suquet 198Y. In this work, the elastoplas-
tic constitutive equation implemented follows the formulation

Examples of the Proposed Method presented by Simo and Hugh@®998 but does not have the same
mathematical expression for the hardening; however, thanks to
Jansson’s work1992), it has been possible to obtain approxi-
mately the same behavior for this aluminum material over a non-
linear range. In this case, a linear kinematic hardening plus a

) ) ) . nonlinear isotropic hardening were considere&m):c°+Ha
To validate the formulation described in the present paper, We 4 (¢ - 50)(1—exf-3)), in which the kinematic hardening

solved the following example, presented by Jansg®92, in =1,000 MPa, and the difference between the initial yield stress
which asymptotic expansion theory was used. The solid is made((ro) and the saturation stre¢s™™) was 30 MPa at a saturation

up of unidirectional fiber-reinforced aluminuifAl,0;) matrix velocity of 5=300. The elastic properties of the component ma-
composite, in which the direction of the fibers is perpendicular to igrig1s are presented in Table 2.

Transverse Behavior of a Matrix Reinforced
with Continuous Fibers when Subjected
to a Simple Test

An important detail in this example is the numerical locking
by the quasi-incompressible state generated in the matrix mate-
rial. Jansson used nine-node isoparametric elements with selec-
tive reduced integration to avoid locking. In this work, locking
was prevented by the implementation of the “B-bar” method,
which is based on the mixed formulation of the finite element
method in three fields: displacement, stress and strain, and four-
node isoparametric elements are used.

R R R R

R.=200 A simple tension test may be reproduced by applying a mac-
roscopic strairg,, to the cell, while in a perpendicular direction
the cell’'s strain is freed in such a way that the macroscopic stress

R, =100
Table 2. Elastic Properties of the Component Materials
! b 3 Young’s modulus Yield stress
Composite Ermod Poisson ratio a?
INTEGRATION POINT - material (MPa) (v) (MPa)
Fig. 8. Idealization of a cylindrical tube with internal pressure Matrix (Al,05) 68,900.0 55 94.0
(macroscopic structuye Fibers 344,500.0 55 —
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Table 3. Dimensions of the Cells

Cell type Fibers Diameter of fiber b H
Composite material (number of sides (%) (pm) (pm) (pm)
Square array Quadrilateral 40 10.0 14.0125 14.0125
Hexagon array Hexagonal 40 10.0 13.0401 15.0574

a,y in this direction must be zero. Thus, the transverse behavior of Fig. 8, together with its dimensions and boundary conditions.

the different materials is obtained. Moreover, as the square-This problem must be solved in the present work on both scales,
arrayed material presents a high degree of anisotropy, the behavand Ghosh solves the same problem using nonconventional finite
ior of this material, when the square array is turned 45°, has alsoelements, called Voronoi elements, to represent the microstruc-
been foundthe behavior of this material is obtained by Ghosh et tyre, and the asymptotic expansion theory to represent the two
al. 1996. The stress—strain curves of the matrix material, fiber gqgjes.

material, square array cells, 45°-aqg|eq square array cells, an_d the o cylinders were studied, each made of a different compos-
hexagonal array cells are shown in Fig. 7. The results obtamedite material: A square-array material for the first, as shown in Fig.

IL%mb;mz\l/)igri\gt?arinog;t;r?stﬁemaaf'([)erg?rllser(ljt(i)cl)rr]::gere?glrt:ngfssely with 5, and a hexagonal array material for the second, as shown in Fig.
' 6. In both cases, the composite material was 40% fiber and 60%
matrix. The mechanical properties of these component materials

Thick Cylinder with Internal Pressure are identical to those in the previous examlable 2. The

The example consists of a cylindrical tube made of a composite dimensions of the cells are shown in Table 3.

material (see Table Band subjected to an internal pressure that N this case, in order to solve the problem for both scales, it is
increases from 0 to a maximum of 100 ME@hosh et al. 1996 necessary to solve the macrostructure and 240 @lelements
The symmetry of the cylinder allows us to carry out the study Wwith 4 integration points eagHor each load increment.

using a quarter of the tube’s cross section. This part of the struc- The result obtained with the first composite material can be
ture is divided into 60 linear quadrilateral elements, as shown in seen in Fig. 9, which shows four graphs of the macrostructure,

Graph 1. Finite e Graph 2.
elements mesh of : von Mises stress
tube. Displacements for P=10 Mpa.
for P=100 Mpa.
l20.6
f18.1
17.7
16.2
14.7,
"13.2;
s '11.8
4 10,3
B & : 8.84!
7.38"
i 1
Graph 3. Graph 4.
von Mises stress von Mises stress
for P=50 Mpa. for P=100 Mpa.
'
99.8 1154
I92.8 s
78.7 132
L 7L.7 124
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. " :;; ' 109
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]

Fig. 9. von Mises stress graphs for the composite macrostructure at three different pressure levels
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Graph 1. Finite Graph 2.
elements mesh of von Mises stress
Cell. Displacements for P=10 Mpa.
for P=100 Mpa.
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Graph 3. Graph 4.
von Mises stress von Mises stress
for P=50 Mpa. for P=100 Mpa.
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Fig. 10. von Mises stress graphs for the microstructure at three different pressure levels at the first integration point of the first finite element

(see Fig. 8

and Fig. 10, which shows four graphs of the microstructure that stress concentration in parts of the domain. These results coincide
correspond to the first integration point of the first finite element quite closely with those reportg@hosh et al. 1996for a pres-
(indicated in Fig. 8 In each of these two groups of figur@sac- sure of 100 MPgFigs. 9 and 1§ in spite of significant differ-
rostructure and microstructyreGraph 1 represents the division  ences in the kind of formulation, because they use Voronoi’s finite
of the structure into finite elements and mesh displacements at aelements. The results obtained using the hexagonal cells are simi-
pressure of 100 MPa. IGraph 2, the field of stress is presented lar to those already obtained using the square cell shown in Figs.
according to the von Mises plastic yield criterion when the pres- 9 and 10. This implies that a composite material with a hexagonal
sure applied is 10 MPa. In this case, the whole domain of the tubearray is also anisotropic in a nonlinear range.
is in the linear elastic range. The distribution of the stress on the
tube corresponds to the isotropic material in an approximate man-
ner, since the field of the stress is practically uniform in the cir-
cumferential directionGraph 3 presents the von Mises stress An example is presented in which the masonry of traditional brick
when the pressure applied reaches 50 MPa; at this pressure levels studied as a composite material. Moli(t996 carried out a
the nonlinear process begins in a few integration points. Finally, review of some of the most relevant ways of characterizing these
in Graph 4, the von Mises stress is shown when the pressure kinds of materials, which allows the difficulties and limitations of
reaches 100 MPa. In this case, part of the composite material is inexisting models to be verified. The example presented consists of
the nonlinear range and anisotropy is observed, which producesa masonry wall under a shear load laboratory test, in which a
micromodel is formulated to obtain the structural masonry’s be-
havior (Lourenco 1996; Zijl et al. 1997 The properties of the
Table 4. Properties of the Materials brick and the mortar are shown in Table 4. Perfect adherence
between the mortar and brick is assumed.

Homogenized Masonry as a Composite Material

Youn Tension  Compression . L
modul%s Poisson strength strzngth Fig. 11 shows the fracture distribution of two walls tested
Compounding Eo coefficient f, . under shear loads. Each wall measures 990 mm along the base by
material (N/mm?) (v) (N/mmn?) (N/mm?) 1,000 mm in height and has a window in its interior. The dimen-
. sions of the bricks used in the wall are 2462 100 mm. The
Brick 20,000 0.15 50 15.0 bricks are bonded together using 10 mm of cement mortar. The
Cement mortar 2,000 0.20 1.5 15.0

laboratory test consists in fixing the base of the wall and applying
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Vertical load
0.3 N/mm -

Vertical load
0.3 N/mm » ——

L b et b R

Wall -2-

Fig. 11. Two wall masonry fracture distribution under shear load

a distributed vertical load of 0.3 N/mm to its upper part. Once the
load is applied, a horizontal load is imposed on the top level
under displacement control.

strength threshold for friction. The cell that characterized the
composite consisted of a simple brick, and a mortar layer that was
5 mm thick surrounding it.

The wall was divided into 66 quadrilateral elements. Four
Gaussian numerical integration points were used in each finite
element. Consequently, the solution of the macrostructure for
each of the load increments was obtained in parallel with the 264
cells used.

The homogenization theory gives information on the results in
each of the scales. Therefore, we preferred to illustrate the degra-
dation or damage that took place in the walke Fig. 12 by
representing the average of the damage variable in each of the
cells.Graph 1, in Fig. 12, presents the discretization of the wall
into 66 quadrilateral finite elements. Graphs 2, 3 and4 in the
same figure, the average of the damage variable is presented. The
damage variable was drawn on the deformed wall, as a conse-
quence of the displacement level applied in each casaph 2
represents the wall damage when the horizontal displacement
reached 1.50 mm in the upper part of the wall. As shown, the

The numerical simulation of the behavior of each component damage of the wall began in two opposite window corners, pro-

material was carried out using isotropic damage mo@eliver et
al. 1990. Two different isotropic damage constitutive models

duced by the shear stresses, while tension stresses resulted in
damage in the lower right-hand area and in the upper left-hand

were used: In the first, the component materials were subjected toarea of the wallGraph 3 in Fig. 12 represents the damage when
exponential softening, and in the second, the fracture energy ofthe horizontal displacement reached 2.75 mm in the upper part of
the mortar was increased, representing the friction between mor-the wall. In Graph 4, the displacement imposed was 4.0 mm.

tar and brick after the mortar fracture. This introduced an artificial

One can observe the crushing damage in the lower left-hand area

Graph 1. Finite
elements mesh
of masonry wall.
i1 23
[
& TR EY
b

Graph 2. Damage variable
for 1,50mm of displacement.

I 23
1178

.126
' 7378-1
2171

Graph 3. Damage variable
for 2,75mm of displacement.

I 280
.224
.16

! .g58E-1

:.314E—1

Graph 3. Damage variable
for 4,00mm of displacement.

Fig. 12. Wall's deformed shape and damage level for three different load increments
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Graph 1. Finite Graph 2. Cell deformed mesh for
elements mesh of Cell. 1,5mm of displacement in the
upper part of wall (see Fig. 12).
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Graph 3. Shear strain for Graph 4. Shear stress for
1,5mm of displacement in the 1,5mm of displacement in the
upper part of wall (see Fig. 12). upper part of wall (see Fig. 12).
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Fig. 13. Wall cell representation of the third integration point of the fourteenth finite elefseptFig. 12, for a displacement of 1.5 mm in the
upper part of the wall(1) finite element discretizatior{2) deformed mesh(3) shear strain, an4) shear stress

and in the upper right-hand area of the wall. In this example, the each one of these points represents a cell in the microlevel do-
tension cracks took place in the mortar because it was the weakesinain. Consequently, the fields of the microscopic variables are
component, while the crushing by compression took place in the obtained in each of these points. For example, Fig. 13 presents
two compounds of the composite materiatick and mortay. four graphs of the cell of the composite material, that corresponds
As a result of homogenization theory, the two-scale solution to the third integration point of the fourteenth element of the
problem also provides a wealth of information on mechanical macrostructurgsee Fig. 12 when the displacement applied is
behavior at the microscale level. As explained above, the behaviorl.5 mm.Graph 1 in Fig. 13 shows the cell domain, subdivided
of the discretized composite material is obtained starting from the into 104 quadrilateral finite elements of four nod€saph 2 of
macrolevel mechanical solution for each integration point, so that the same figure shows the deformed mé&ataph 3 indicates the
field of shear strain in the domain of the cell, which shows the
mortar strain concentration, a@raph 4 presents the cell field of

50 ' ' ' ' shear stress.

Experimental Test: Wall -1 —— A . .
45} Experimental Test: Wall-2 - 1 Fig. 14 shows the curves of the horizontal load measured in
P A4 Homeg, Theory: Model 2~ | the base of the wall, against the displacement imposed on the

P T - ] upper part of the wall. The first numerical model’s solution using

e the homogenization theory coincides with the second model and
experimental results in the elastic range, but in the nonlinear
1 range the strength deteriorates rapidly due to mortar failure. In the
) second numerical model, the solution matches the real results
better in the nonlinear range. In this case, the fracture energy in
the mortar was increased to simulate artificial friction.

Horizontal Load {kN}

) 5 10 15 20 25 Conclusion
Horizontal Displacement [mm]
In this paper, the homogenization theory for the periodic internal
structure of nonlinear materials is formulated in two scéfeisro
and macr. This formulation is based on the homogenized strain

Fig. 14. Numerical and experimental comparison of horizontal load-
displacement behavior
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tensor related to the change of the periodicity vector and of the
homogenized stress tensor obtained by means of the classic aver-

age theory. 3.

The coupling between the micro- and macroscales was carried

out by means of the finite element method; a parallel strategy was4.
used to simultaneously solve the cells on the microscale and the5.
composite material on the macroscale. Each of the basic cells at6.

the microscale level was assigned to each numerical integration

point on the macroscale. 7.

Classic constitutive equations, such as damage, plasticity, vis-
coelasticity, viscoplasticity, etc., were taken into account when
defining the microscale’s mechanical behavior. Internal variables
were stored at each point at the microscale level.

To prevent the steep gradient in the macroscopic field vari-
ables that is produced by local boundary effects, a local refine-
ment of the finite element mesh was performed. In this way, we
were able to maintain the periodic condition on the boundaries of
the cells near to the perturbation.

A quasi-tangent inelastic tensor at the macroscale level was
used to define the inelastic constitutive law in the whole cell at
each numerical integration point on the macroscale. The elastic
constitutive tensor was obtained using the perturbation technique
at the same macroscale level.

The homogenization theory, in general, and the method pre-
sented here, in particular, give good results in comparison to other
approaches such as the mixing the@@ar et al. 200g, although
these comparisons highlight the need for improving effectiveness
in the solving of large problems.

Appendix. Two-Scales Algorithm for Studying
the Behavior of Composite Materials Using
the Finite Element Method

The algorithm in Fig. 3 describes the procedure proposed for the
analysis of the homogenized composite material using finite ele-8
ments on two scales.
1. Theglobal program (macroscopic scaleytarts with the ma-
trix initialization tasks; it reads the information on the mac-
rostructure and thiocal program’s address to solve thmi-
croscopic scaleproblem.
2.  Computation of the elastic homogenized constitutive tensor

C(x) through thelocal program (microscopic scale) 9

» Thelocal program initializes the database with the num-
ber of cells and reads the microstructure’s information.

» The local program calculates the stiffness matrix for the
cell using the homogenized constitutive tensor.

Composite Material9” The result is sent to thglobal
program.
The stiffness matrix for each finite element in the global
structure is obtaine@macroscopic scale)
The new load increment is applied.
The nodal forces for each finite element are computed.
The global structure’s system of equations is computed and
solved.
The acceptable stress level at each point in the macrostruc-
ture is verified by means of the constitutive equation. This
task is carried out by returning to tthecal program, and the

information on the homogenized straiﬁ(;x) at each integra-

tion point of themacroscopic scalds sent from theglobal

program to thelocal program:

e Thelocal program solves each of the cells sequentially.
This task reads the information on the microscopic prob-
lem (cell) from the database and applies it as a load strain

incrementE(x).
e The nodal forces are obtained.
e The system equation at the microstructure level is as-
sembled and solved under periodic boundary conditions.
* The acceptable microscopic stress lewe(g) are verified
by means of the respective constitutive equations for each
single material. If they cannot be verified, they should be
corrected. After this step, the cell's homogenized stress

o (X) and constitutive tenscﬁ':(x) are obtained.

e The balance condition is verified in the cell domain. If it
is not fulfilled, the balance condition must return to the
prior step and the convergence is reached following an
iterative strategy (Newton—Raphson procedure The
stress is then obtained for the macroscopic sodle,

* When all the cells have been solved, the information on
the homogenized stress and constitutive tensor are trans-
mitted to theglobal program.

Theglobal program receives the stress@gx) and the con-

stitutive tensorf:(x) in each integration point from the local

program. The subsequent step verifies the balance of the

forces in the global structure domgimacroscopic scalg If

the balance condition is not reached, it returns to Step 5 and

convergence is reached by means of successive iterations

(quasi-Newton’s method

The databases of trgdobal program are updated when the

problem converges in thenacroscopic scale If there are

further increments, it returns to Step 4.

e The databases of tHecal program are updated simulta-
neously(for all cells).

« The load increment is applied. In this case, the solution is 10 Theglobal program ends.

reached by imposing a preset macroscopic st%ﬂn)
[see EQ.(29)]. For this purpose, it fulfills the tasks that
follow.

e The nodal forces are obtained.

* The microstructure’s system of equations is assembled,
and then solved under periodic boundary conditions.

e The stresses on the microstructure are obtained using the
constitutive equatiofiEq. (21)]. In this case, the compos-
ite material displays elastic behavior. Subsequently, the
homogenized stress tensa@réx) are obtainedEq. (18)].

e The elastic homogenized constitutive tensor is calculated

by means of the perturbation procedL(T:réx) (see section
entitled, “Determination of the Constitutive Tensor for
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e Thelocal program ends.
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