XI International Conference on Computational Methods in Marine Engineering

Validation Study of Roughness Effect on Full-scale CFD Prediction of a Selfpropelled Tanker for Straight Run and Zigzag Maneuvering

Md. Alfaz Hossain^{1,*}, Hiroyuki Hatakenaka¹, Daisuke Arai², Keisuke Tajima², Kenta Koike² and Konobu Kimura¹

¹ Furuno Electric Co. Ltd., Research & Innovation Center, Nishinomiya City, Hyogo Prefecture, Japan.

> ² Shin Kurushima Sanoyas Shipbuilding Co. Ltd. Kurashiki City, Okayama Prefecture, Japan.

> > * alfaz.hossain.ys@furuno.co.jp

ABSTRACT

Full-scale ship CFD prediction are on increasing interest throughout the world. Surface roughness significantly influences the hydrodynamic performance of ships, particularly at full-scale, where its effects are more pronounced. There have been many studies on the effect of roughness on varying scale as well as full-scale ship performance prediction using CFD. However, due to the lack of real sea trial data, a very few numbers of studies have been conducted on the validation. Mikkelsen and Walther (2020) did validation study on the effect of roughness in full-scale ship resistance prediction for a ro-ro vessel and a general cargo vessel. Sakamoto et al. (2020) investigated the capability of viscous CFD, with surface roughness embedded in the turbulence model, to simulate a free running maneuvering for a tanker in full-scale and validated against sea trial data. Recently, Matsuda and Katsui (2024) determined an optimal roughness length scale for full-scale ship CFD simulation by aligning the computed wake distribution with Ryuko-maru's full-scale measured data.

This study investigates the impact of hull roughness on the full-scale ship CFD prediction for a tanker. Validation study has been carried out against the sea trial data under realistic operational conditions. CFD simulations were performed based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations of FINE/Marine software. At first, extensive CFD validation study was performed in model scale for both full load and ballast conditions at different rudder angle. Then self-propulsion simulation at full-scale was performed with and without roughness model. Body force propeller model was used for the propeller thrust. Full-scale Zigzag maneuvering simulation was also performed with and without roughness model. All the full-scale CFD simulation results were compared to the sea trial measurements. The findings reveal that surface roughness can lead to substantial deviations in full-scale ship CFD predictions, emphasizing the need for accurate roughness modelling in full-scale simulations. This study shows how proper roughness modelling can improve the accuracy of full-scale CFD prediction both in straight run and Zigzag maneuvering conditions.

References

- H. Mikkelsen and J. H. Walther. Effect of roughness in full-scale validation of a CFD model of self-propelled ships. Applied Ocean Research, Volume 99, June 2020. ISSN 00298018. doi: 10.1016/j.apor.2020.102162 URL https://backend.orbit.dtu.dk/ws/portalfiles/portal/236202260/AOR2019_V11.pdf
- N. Sakamoto, R. Suzuki, T. Ohmori, H. Kobayashi and K. Ohashi. Model and Full-scale CFD of the Esso Osaka under 35deg Turning Circle Maneuver in Deep Water. The Japan Society of Naval Architects and Ocean Engineers Autumn lecture, 2020. URL https://www.jstage.jst.go.jp/article/conf/31/0/31_165/ pdf
- S. Matsuda and T. Katsui. Ship Flow of the Ryuko-maru Calculated by the Reynolds Stress Model Using the Roughness Function at the Full-scale. J. Mar. Sci. Eng. May 2024. doi: https://doi.org/10.3390/jmse12050783