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Abstract. In the context of nonlinear multi-scale problems, the inverse estimation of macro-
scopic distribution of some microscopic parameters based on macroscopic measurements poses
significant challenges. These challenges arise from (1) the high computational cost to solve the
complex forward problem, and (2) the need for derivatives of the complex multi-scale forward
model, which combines macro-scale and micro-scale simulations, both of which are typically
nonlinear. To address these challenges, we propose a novel approach that combines ensemble
Kalman inversion for derivative-free inverse estimation and a physics-informed deep learning-
based model order reduction (DL-MOR) to accelerate the micro-scale simulation. We evaluate
the performance of our method using a non-linear hyper-elastic model. The results demon-
strate the effectiveness of DL-MOR in significantly speeding up the micro-scale simulation and
enabling relatively accurate estimation of the microscopic parameter using only macro-scale
boundary measurements.

1 INTRODUCTION

In the domain of nonlinear multi-scale problems, an important objective is to estimate
the macroscopic distribution of microscopic parameters based on macroscopic measurements
and, ultimately, facilitate the construction of the digital twin of the model. However, the
näıve solution of multi-scale models incorporating micro-structures, referred to as the full-scale
problem, requires fine discretization, resulting in significant computational challenge - extremely
large degrees of freedom. To address this issue, the multi-scale method [6, 7, 9, 18] has been
proposed. This method tackles the computational difficulties by solving the problem separately
at different scales and coupling the results of micro-scale and macro-scale simulations to obtain
the final results. Notably, two multi-scale approaches, namely the asymptotic homogenization
method [6, 7] and the computational homogenization method, also called the Finite Element
Squared (FE2) method, [9, 18], have been developed. These approaches stem from different
aspects and theories but share similar mathematical formulations. In this paper, the FE2

method serves as the basic building block of an inverse solver in the multi-scale context.
The inverse problem for multi-scale models has also attracted considerable attention in the

research community, as is evident from the studies such as [1, 2, 21], among others. In general,
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inverse estimation in a multi-scale context poses significant challenges due to two main factors.
Firstly, the forward solver used for the multi-scale model is computationally expensive, even
with the implementation of the FE2 method. This computational challenge is further exacer-
bated since numerous forward multi-scale problems need to be solved for parameter estimation.
Secondly, the complexity of the multi-scale forward simulation necessitates the computation
of derivatives with respect to the unknown parameter, which entails solving a coupled nonlin-
ear macro-scale problem, multiple nonlinear micro-scale simulations, and corresponding adjoint
problems. We now briefly discuss the state of the art with respect to these two challenges.

To accelerate the computation of forward solves, recent advancements in scientific machine
learning (SciML) and model order reduction (MOR) techniques have gained significant atten-
tion. Machine learning-based MOR methods have emerged as a promising approach due to
their ability to effectively handle non-linearities and their non-intrusive nature. They eliminate
the need for hyper-reduction methods typically required in conventional MOR approaches [12],
and for complex hand-designed coding. These machine learning-based MOR methods can be
broadly categorized into two types: linear manifold methods, such as POD-GPR [10], POD-
NN variants like PDNN [13], PRNN [5], etc.; and non-linear manifold methods, such as latent
variable learning via autoencoders [8] and operator learning [17], etc. These methods have
found applications in the context of multi-scale models, as demonstrated in studies like [11, 16].
However, the offline training phase associated with these methods still incurs high computa-
tional costs, since it necessitates a significant number of expensive full-order solutions for the
training data. Moreover, neural networks trained with limited data may struggle to generalize
effectively due to the overfitting, and the training phase often overlooks the underlying physi-
cal information. To address these challenges, drawing inspiration from recent developments in
physics-informed machine learning, e.g., [5, 19], we proposed a non-intrusive, physics-informed
two-tier deep network (TTDN) [14] for accelerating forward simulations.

Multi-scale inverse problems have been previously addressed using deterministic and
Bayesian inversion techniques, as seen in studies such as [1, 21]. However, these conventional
methods typically rely on first-order derivatives of the forward model with respect to the
parameters of interest. Obtaining such derivatives in the context of multi-scale models, which
involve coupling between micro and macro scales, is challenging. To overcome this limitation,
derivative-free methods, including ensemble Kalman inversion (EnKI) [3, 15, 20], have emerged
as alternatives to derivative-based optimization methods. EnKI has demonstrated promise
in the inverse estimation of multi-scale models, as exemplified by [2], which presents an
application and convergence proof of EnKI in this context. Building upon the foundations
laid by [2], we aim to enhance parameter estimation by introducing several improvements.
Firstly, instead of a linear asymptotically homogenized model, we consider a non-linear model
based on computational homogenization. Secondly, in place of intrusive conventional reduction
techniques, we use the non-intrusive TTDN approach. Lastly, we enhance the EnKI method
by employing the Tikhonov regularized variant in [3] and incorporating advanced techniques
such as the non-constant step accelerator proposed in [4]. These modifications collectively
contribute to the improvement of parameter estimation in the multi-scale inverse problem.

In summary, our proposed numerical framework leverages three key components: compu-
tational homogenization for multi-scale problems, SciML-MOR to accelerate micro-scale com-
putations, and parallelizable, derivative-free EnKI for inverse estimation. We evaluate the
performance of this framework on a nonlinear hyper-elastic model. The results demonstrate
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significant speed-up and satisfactory generalization accuracy for micro-scale simulations, even
with limited full-order training data. These advancements ensure efficient computation of the
forward simulations. Moreover, using only boundary measurements from the macro-scale that
may be affected by noise, our framework enables effective inverse estimation of micro-scale
parameters in the multi-scale context.

2 REDUCED FORWARD MODEL

The present study focuses on the examination of a multi-scale model, which effectively
characterizes a material exhibiting a micro-structure at the micro-scale. In order to tackle this
model, a numerical method called computational homogenization is employed, while leveraging
the application of a Two-Tier Deep Network (TTDN) to significantly reduce the computational
burden associated with the forward simulations.

2.1 Multi-scale model

The computational homogenization theory enables the separation of scales through the uti-
lization of the Hill-Mandel condition [9, 18]. This approach divides the simulation into two
distinct components: the macro-scale simulation (MSS) and the micro-scale simulation (mSS).
In the macro-scale simulation, the boundary conditions of the full-scale problem are imposed,
while the constitutive law defined by the micro-scale simulation is applied. Conversely, in the
micro-scale simulation, the constitutive law of the full-scale problem is employed, but periodic
boundary conditions are enforced in accordance with the Hill-Mandel condition. The macro-
scale simulation is implemented in the full-scale domain ΩM, while the micro-scale simulation
is implemented in Ωm, which is the representative volume element (RVE) that represents the
micro-structure at the macro-scale point.

The multi-scale problem at hand is founded upon a hyper-elastic model. For macro- and
micro-scale simulations, the governing partial differential equations are, respectively, of the
form: 

∇ ·PM (FM(xM), s(xM)) = 0 on ΩM;

PM · n = tn on ∂Ωn;

uM = ud on ∂Ωd;

PM =
∫
Ωm

Pm dV.

(1)

and 
∇ ·Pm(xm) = 0; Pm = ∂E(Fm)

∂Fm
; Fm = I+∇um;

E(F) = 20
(
Tr(FT · F)− 3− 2 ln (detF) + (detF− 1)2

)
;

u+
m − u−

m = ε(FM − I) · (x+
m − x−

m);

P+
m · n+ = −P−

m · n−.

(2)

Here P, F, and u , respectively, represent the stress, strain, and displacement, the subscripts
”M” and ”m” represent the macro- and micro-scales, respectively, tn is the imposed traction at
the Neumann boundary ∂Ωn, ud is the enforced displacement at the Dirichlet boundary ∂Ωd,
ε represents the size of the RVE, + and − indicate opposite boundaries of the RVE, and s is a
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parameter of the micro-structure and is a function of the macro-scale point xM. In this setting,
the parameter for the micro-scale simulation is µ = (FM, s(xM)).

We note here that, to solve the macro-scale PDE, the stiffness KM = ∂PM

∂FM
, i.e., the derivative

of the micro-scale problem w.r.t. its parameter FM, is required.

2.2 Two-Tier Deep Network

To accelerate the forward simulation, we use TTDN for micro-scale simulation. The two-tier
deep network, which we refer to as NNt (where ”t” denotes ”total”) is a neural network based
regression from the parameter µ to the quantities of interest. It is a combination of two tiers
of network. The first tier, denoted by NNu, achieves the regression gu : µ 7→ ur

m, the reduced
vector of um. The second tier, denoted by NNp, realizes the regression gp : (ur

m,µ) 7→ pr
m,

the reduced vector of Pm. It can be understood as an approximation of the non-linearity, i.e.,
the constitutive law, in this problem, by using neural networks. Finally, the entire NNt has

the structure gTTDN : µ
NNu7−−→ ur

m → (ur
m,µ)

NNp7−−→ pr
m, where the second arrow represents the

concatenation of ur
m and µ.

NNt is trained via a pretraining strategy and semi-supervised learning. The associated loss
function is expressed below:

lossSS(gTTDN) =
1

MU

∑
(µm,um)∈ΞU

∥gu(µm)− um∥2 + 1

MP

∑
(um,µm,pm)∈ΞP

∥gp(um,µm)− pm∥2

+
1

MT

∑
µm∈ΞT

∥R(gTTDN(µ
m))∥2.

(3)

The two tiers, NNu and NNp, are pretrained individually in the beginning; see [14]. For

the network NNu, the training data ΞU = {(µm,ur,m
m )}MU

m=1 includes a sample of parameter µ
and reduced solutions, ur

m, via the full-order solver, which is expensive. The network NNp is

pretrained in an analogous manner using the training data ΞP = {(ur,m
m ,µm,pr,m

m )}MP

m=1. Here,
ur,m
m in ΞP is obtained by the pretrained NNu, i.e., u

r,m
m = gu(µ

m), and the reduced stress vector,
pr,m
m , is obtained by the evaluation of the constitutive law. The computation of the data ΞP

is relatively cheap since it does not involve the full-order PDE solver. These training data are
also used during supervised learning, as shown in the loss described by (3). The last part of
the loss function corresponds to the unsupervised learning, since ΞT = {µm}MT

m=1 contains only
the input to the network. Hence, this dataset is generated almost for free. Furthermore, R is
the reduced residual operator of the PDE in Pm. It is given by

R(pr
m) := ⟨tn, vr⟩∂Ωn

− ⟨Pr
m,∇vr⟩Ωm

, (4)

where vr is the reduced basis function and Pr
m is the stress corresponding to pr

m. It essentially
imposes physical information while training the network. It also allows us to generate less
expensive full-order data in ΞU , while still having good generalization ability by obtaining
large, but inexpensive data in ΞP and ΞT .

Via the TTDN method, the required ∂PM

∂FM
is accessible by an efficient back-propagation

algorithm. For further details about the TTDN method, please refer to [14].

4



Yankun Hong, Harshit Bansal and Karen Veroy

3 INVERSE ESTIMATION

In this section, we will introduce the (inverse) problem setting and briefly explain the math-
ematical details of the EnKI technique.

3.1 Problem Setting

In this work, the objective is to estimate the unknown parameter, denoted as s in (1), within
the macro-scale domain using a set of measured data obtained from the multi-scale forward
model G(s). To this end, it becomes crucial to determine what (specific) data points to measure
and where in order to ensure the most accurate inverse estimation. In the context of the solid
mechanics problem at hand, we assume that only boundary measurements at ∂ΩM are feasible.
The boundary measurements encompass uM,1, uM,2, ∇uM,1 · n⊥, and ∇uM,2 · n⊥. Here, the
subscripts 1 and 2 denote the components in the first and second directions, respectively, while
n⊥ represents the orthonormal vector to the boundary direction vector n. To identify the
measurements, we conduct forward simulations on a sample of s and compute the variances of
the candidate measurements from those simulations. Subsequently, we select the measurements
with the largest variances, employing a variance-based sensor selection method. We denote the
resulting measurement operator as H. Finally, the given data can be represented as y =
H ◦ G(st) + ϵ, where st stands for the true solution and ϵ ∼ N (0,Γ) represents Gaussian noise,
with Γ denoting the covariance.

With a prior of the form N (s0,C0), the inverse problem can be written as the Tikhonov
regularized optimization problem:

argmin
s

∥H ◦ G(s)− y∥Γ−1 + ∥s− s0∥C−1
0

. (5)

3.2 Ensemble Kalman Inversion

EnKI is a derivative-free method employed for inverse estimation, rendering it adaptable and
well-suited for complex forward models. The classical formulation of EnKI tends to disregard
the influence of prior information as the iteration progresses, potentially resulting in overfitting.
To emphasize the significance of prior knowledge, we utilize Tikhonov regularized EnKI, incor-
porating improved techniques to enhance convergence speed and robustness [3, 4, 15, 20]. These
improvements aim to strike a balance between the observed data and the prior information,
thereby improving the overall performance of the inverse estimation.

Tikhonov regularized EnKI extends the given data with the prior by constructing the new

observation

[
s0
y

]
and the new observation uncertainty Γ̃ =

[
C0 0
0 Γ

]
. In this way, at each

iteration step, we update the estimated result by applying not only the observation information,
but also the prior, thus putting the emphasis on the prior. Finally, the Kalman update for n-th
iteration step is given by

sin = sin−1 +Kn ·
([

s0
y

]
+ ϵ̃in −

[
sin−1

H ◦ G(sin−1)

])
+ αnϵ̂

i
n, (6)

Kn =
[
I 0

]
·Qn · (Pn + βnΓ̃)

−1, (7)

where, denoting mn and Hn as the mean of {sin−1}Si=1 and {H ◦ G(sin−1)}Si=1, respectively, we
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define

Qn :=
1

S

S∑
i=1

(
sin−1 −mn−1

)
·
([

sin−1

H ◦ G(sin−1)

]
−
[
mn−1

Hn−1

])T

, (8)

Pn :=
1

S

S∑
i=1

([
sin−1

H ◦ G(sin−1)

]
−
[
mn−1

Hn−1

])
·
([

sin−1

H ◦ G(sin−1)

]
−
[
mn−1

Hn−1

])T

, (9)

and start the iteration from the initial ensemble {si0}Si=1 drawn independently from N (s0,C0).
The terms ϵ̃in, ϵ̂

i
n and βn in (6)-(7) correspond to the following modifications:

(i) Observation perturbation [15, 20, 22]. One can introduce a stochastic perturbation
ϵ̃in ∼ N (0, Γ̃) to the observation at each iteration step. Intuitively, this means that, as the
observation is corrupted by noise, the perturbation enables the algorithm to explore a larger
observation region for the true result.

(ii) Covariance inflation [4, 20]. Covariance inflation, ϵ̂in, can improve numerical stability
by decreasing the condition number of the covariance during the iteration. It is equivalent to
introducing inflation α2

nC0 to the covariance at each iteration if ϵ̂in ∼ N (0,C0).
(iii) Non-constant step size [4]. As an iterative method, the Kalman gain Kn in (6) can

be understood as an update of the step size. One can thus use a non-constant step size to
improve the convergence rate and stability by introducing a factor βn to Γ̃ in (7).

In [4], the authors provide the guidance for setting the value of the hyperparameters asso-

ciated to the above modifications. In this work, we set βn = β0n
−γ1 , αn = α0β

1
2
nnγ2−1, β0 =

2, α0 = 0.2, γ1 = 0.8, γ2 = 0.9.

4 NUMERICAL RESULTS

We examine a forward model as illustrated in Figure 1. We aim to estimate the radius r
of the hole in the micro-structure as a function of the macro-scale location xM. Since r has a
range which is set to be 0.1 ≤ r ≤ 0.3, we introduce a reparametrization

r =
0.2

1 + exp (−0.32s)
+ 0.1, s =

1

0.32
ln

(
r − 0.1

0.3− r

)
,

so that s ∈ R is unconstrained and the optimization is simplified. The macro-scale computa-
tional domain is divided into 3 blocks, with each block corresponding to a specific parameter
value. Consequently, the parameter for the inverse estimation is represented as s = (s1, s2, s3).

To establish the boundary conditions for the macro-scale, a fixed boundary is imposed on
the left edge of ΩM, while a traction boundary is applied on the right edge of ΩM. Additionally,
the RVE employed in the analysis has a size ε = 0.001.

4.1 Results of TTDN

The parameter range is set to (FM − I, r) ∈ (−0.08, 0.08)3 × [0.1, 0.3]. In this setting, we
evaluate the generalization ability of the TTDN method by training it with different sizes of the
training data and employing an early-stop strategy to avoid overfitting. The obtained results
are compared to the PDNN method, an existing machine-learning based MOR approach [13].

Figure 2 displays the algorithmic calculation time on the x-axis, which varies with the
size of the training data. The specific data sizes are detailed in Table 1. Table 2 provides
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Figure 1: Multi-scale model.

Figure 2: Relative error of PM and its derivative KM by PDNN method and TTDN methods versus different
size of the training data shown in Table 1. The upper edge of the bar is the 95%-quantile and the uppermost
line represents the maximum.

the percentage of computational time for each algorithmic process. From these figures and
tables, we make the following observations: TTDN effectively reduces computational time,
while yielding better generalization accuracy than what PDNN achieves. Notably, with a time
budget of 2.5 h (conf. 1), the accuracy achieved by TTDN surpasses that of PDNN, and is even
better than that of PDNN in conf. 3, with an offline running time of 10 h. This improvement
is attributed to generating significantly fewer full-order data points in ΞU , for example, 300
compared to 1500, despite incurring the cost of generating additional training data for the
constitutive law ΞP , which is significantly less expensive than ΞU . Additionally, the involvement
of the PDE in training enhances the physical consistency in the prediction, in the sense that
the algorithm predicts both um and Pm and employs them to mutually calibrate one another.

4.2 Results of EnKI

As a first test, we impose 3% Gaussian noise to the observation, which means that the
standard deviation of the noise is around 3% of the observation value. The prior for this
test, and also for all the tests in the following, is s0 ∼ N (0, 3I), while the true solution is
st = [3, 0,−2]T . Furthermore, the number of particles in the ensemble is 18, while we have 3
parameters to be estimated. Figure 3 demonstrates the convergence behaviour of EnKI under
the aforementioned setting in the context of the problem at hand. Within 10 iteration steps, we
see that we reach the relative error of less than 0.5%, even though the observation is corrupted
by a 3% noise.
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Table 1: Data points in training data sets.

Configuration Time budget
TTDN PDNN

ΞU ΞP ΞU

1 2.5h 300 1800 375

2 5h 600 3600 750

3 10h 1200 7200 1500

4 12.5h 1500 9000 N/A

Table 2: Time components; ’rest’ includes time for NN training, reduced basis generation, etc.

TTDN PDNN
ΞU generation ΞP generation rest ΞU generation rest

percentage 70% 15% 15% 90% 10%

In fact, the Tikhonov regularized EnKI for such problem shows robustness under different
noise levels. The corresponding results are shown in Figure 4. It can be observed that, although
the resulting relative error increases as the noise level increases, we still achieve an L2 relative
error of less than 1% even when the observation is polluted by 15% noise. In addition, with
the size of the ensemble set to be 18, all the tests converge within 10 iteration steps.

Another important hyperparameter for EnKI is the number of particles used in the EnKI
technique. As is well known, it has a significant impact on the convergence rate and the
computational cost. Figures 5-6 show the corresponding results. Here, the noise level is set to
be 3%. Figure 5 shows the behavior of the relative error with respect to the iteration step. The
convergence of the one with 6 particles is the slowest. However, it also corresponds to the least
expensive iteration step, since the major computational cost for each iteration step is due to the
forward simulation for each particle. Figure 6 shows the same curves but with respect to the
required number of forward solutions, thereby representing the associated computational costs.
We observe that ensembles with excessively large sizes, such as 144 or 72, do not lead to faster
convergence. Conversely, using a small ensemble may risk high variance. In this example, with
only 3 quantities to be estimated, an intermediate ensemble size, e.g., of 18 particles, is preferred
to achieve a faster convergence speed. The reason why fewer particles seem to work well may
be due to the fact that the prior is close enough to the underlying true solution and, hence, is
informative. Consequently, fewer particles drawn from the prior can represent the behavior of
the forward solution sufficiently well. Further studies are required for an exhaustive and clearer
understanding of the observed behaviors.

Finally, we discuss the computational costs of the whole method. The offline cost, already
presented in Section 4.1, is around 12.5 h. The online cost is attributed to the implementation
time of the (reduced) EnKI technique. Considering the setting of Figure 6 as an example,
which includes 180 forward solutions for the multi-scale problem, each forward solve consumes
0.5min per CPU core. Upon running on a 6-core CPU, the online time is reduced to 15min.
Hence, the total computational cost is around 13 h. However, if MOR would not have been
employed in conjunction with the EnKI technique, recalling that micro-scale PDE and its
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Figure 3: Convergence of the EnKI of L2 error. Figure 4: Sensitivity to the noise.

Figure 5: Comparison of different sizes of ensemble
w.r.t. iteration steps.

Figure 6: Comparison of different sizes of ensemble
w.r.t. computational cost.

adjoint problems should be solved at all the quadrature points of the macro-scale domain at
every Newton iteration, a forward simulation would need more than 100 000 PDE solutions,
which is unaffordable on a 6-core CPU. It is also worth mentioning that the MOR techniques
will still play a crucial role in speeding up the simulations and, thereby, accelerating the inverse
estimation, even if one uses the best possible parallelized implementation (of the full-order
solver) applied on the most novel hardware architecture.

5 CONCLUSIONS

In this study, we employed Two-tier Deep Network (TTDN), a deep-learning-based Model
Order Reduction (MOR) method, to address the computational burden associated with a com-
plex multi-scale model. The application of TTDN yields substantial speed-ups in forward
simulations without compromising accuracy, all while minimizing data generation costs. These
speed-ups facilitate the use of Ensemble Kalman Inversion (EnKI) for inverse estimation in the
multi-scale model. Additionally, we demonstrate an effective and efficient inverse estimation
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for the micro-scale parameter, utilizing only macro-scale boundary measurements. It is worth
noting that the proposed algorithm is implementation-friendly, as EnKI is a derivative-free
method, and TTDN is a non-intrusive MOR method.
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