Experimental Investigation on the effect of water ingress on the flexural and interlaminar properties of glass/vinylester composite for marine applications

Mr Alex Portela

Dr Niamh Nash

Mr Carlos Bachour

Dr Ioannis Manolakis (former Co-PI – now Sligo IT)

Dr Anthony Comer (PI)

Irish Composites Centre (IComp)

School of Engineering Bernal Institute

University of Limerick

Marine Aging of Polymers, Brest 28-29 August 2019

Contents

- Overview of FIBRESHIP H2020 project
- Background
- Objective of this study
- Experimental Details
- Results & Discussion
- Conclusions
- Acknowledgements

Ship Block Demonstrator (iXblue Shipyard, La Ciotat, France)

Overview

Composites dominate construction of small-to-medium length vessels (< 50 m)</p>

Restriction on use of composites on ships longer than 50 m !

Main Reason: Lack of design guidelines from certification bodies

Main issues: Safety - particularly Fire

The trend in aviation (e.g. B787, A350) demonstrates that adoption of composite technology in primary and secondary structures is feasible

Courtesy of Tuco Marine (FIBRESHIP partner) – ProZero range of offshore/patrol/service FRP vessels (8-18 m)

PROMARINE, OUEST composites SEMI RIGID Boat (JEC 2019)

Challenge

Bernal

Institute

www.ul.ie

- Enhance acceptance of composites in primary structures of ships > 50 m
- Recommend relevant changes in rules and regulations to the responsible bodies
- Create a niche market opportunity for the manufacture of large marine vessels in the EU

Engineering, production and life-cycle management for the complete construction of large-length FIBRE-based SHIPs

Irish Composites Centre

Partners

- 18 partners, 11 countries
- European shipyards: 3
- Naval architect/design/engineering companies: 4
- Ship owners & operators: 4
- R&D organisations: 4

UNIVERSITY of LIMERICE

• Classification/certification bodies: 3

Bernal

Institute

Lloyd's Register

ANEK LINES

FOINIKAS SHIPPING COMPANY

SOermar

Ateknea

COMP

www.anek.g

www.ul.ie

Technical Impact

- Feasibility of the concept of a composite large-length ship
- Reduce fuel consumption
- Lower greenhouse gas emissions
- Increase of payload cargo capacity
- Underwater noise reduction
- Reduce maintenance and life cycle costs

Bernal

Institute

Irish Composites Centre

Corrosion-free

Safehaven marine 11-18 m

Swedish Navy Visby > 70 m

Background

- Recent publication in Composite Part B (Available online August 10) <u>https://doi.org/10.1016/j.compositesb.</u> 2019.107271
- Objective: Evaluate and compare ILS, flexural properties and failure modes of four different material systems under short term immersion in water and diesel

Composites Part B: Engineering Available online 10 August 2019, 107271 In Press, Journal Pre-proof (?)

Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications

N.H. Nash *, A. Portela *, C. Bachour *, I. Manolakis * $\stackrel{\diamond}{\sim} ^1 \boxtimes$, A.J. Comer *, $\stackrel{\flat}{\sim} \stackrel{\otimes}{\sim}$

 Current study focuses on one material system for a longer duration (3 mths)

Evaluate the flexural, interlaminar shear properties and failure modes of a glass/vinylester laminate under dry and wet conditions.

Experimental Details

Experimental Details

Manufacturing of composite laminate

- Lay-up: 0₂₅ (4 layers of NCF)
- SAERTEX U-E-940 g/m²-LEO UD
- LEO Injection Resin 8500 from BÜFA

Bernal 👯

Institute

Quality Control

www.ul.ie

Cured ply thickness •

Laminate	Cured Ply Thickness
Range	0.64 ~ 0.66

Fibre Volume Fraction •

Laminate	ISO 14127:2008	ASTM 3171	
Fibre Volume %	55.3%	54.5%	

T_g and degree of cure ٠

Void Analysis (MS 0051)

Irish Composites Centre

Conditioning 1 and 2

✓ Procedure 1

✓ Procedure 2

Immersion Bath (Deionised water @ 35 °C)

Record water uptake (ASTM D5228)

Experimental Details

Test	Standard	Properties	Nominal Sample Dimensions	Number of Samples	
INTERLAMINAR SHEAR (ILS)	ISO 14130	APPARENT INTERLAMINAR SHEAR STRENGTH	30 mm X 15 mm X 3 mm	5 No immersion 5 after 1 mth immersion 5 after 2 mth immersion 5 after 3 mth immersion	
FLEXURE – 3 POINT BEND	ISO 14125	FLEXURAL STRENGTH FLEXURAL MODULUS	100 mm X 15 mm X 3 mm		

30:1

Results

Irish Composites Centre

UNIVERSITY of LIMERICK

Failure Mode: ILS

1 mth immersion 2 mths immersion 3 mths immersion (98% retention) (89 % retention) (86 % retention) 10kV X450 50µm X450 50µm 10kV Shear crack formation at fibre-

Shear crack formation at fibrematrix interface in 90° tows Micro-crack formation in the matrix plus shear crack formation at fibre-matrix interface in 90° tows Crack formation at 0° fibre-matrix interface plus shear crack formation at fibre-matrix interface in 90° tows

Failure Mode: Flexure

1 Month (97% retention)

2 Months (99% retention)

3 Months (96% retention)

Conclusions

Effect of hydrothermal aging on a glass/vinylester laminate were studied. The following observations and conclusion were drawn based on the results and analysis.

- Interlaminar shear strength appeared to decrease as the immersion time increased.
- A negligible change in flexural strength was observed.

Further analysis is currently underway to investigate these observations.

Acknowledgements

This work has been funded by the H2020 project FIBRESHIP (www.fibreship.eu) under grant agreement 723360

Thank you for your attention

www.fibreship.eu

http://cordis.europa.eu/project/rcn/210787_en.html

UNIVERSITY of LIMERICK

