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Abstract: Elastic deformation and dynamics response of the linear structures due to
fluid loads are studied to understand the Fluid Structure Interaction (FSI). A modal
coupling solver is developed by solving dynamic equation of motion with external loads,
using the mode superposition method with the help of relevant mode shapes and natural
frequencies associated with the structure. Natural frequencies and mode shapes have been
pre-calculated and provided as input for the simulation. Modal coupling is integrated into
the Lagrangian Differencing Dynamics (LDD) method, utilizes finite differences within
the framework of Lagrangian context, and strong and implicit formulation of Navier-
Stokes equations to model the incompressible free-surface fluid. Elastic deformation of
the structure due to fluid force obtained from the flow solver is calculated in the modal
coupling algorithm using direct numerical integration. Then the elastic deformation is
imposed in the flow solver to account for change of the geometry and obtain new flow
pressure and velocity fields. The two-way coupling of fluid and structure is successfully
validated by simulating dam-break through an elastic gate. Since the LDD method works
directly on surface meshes, the simulation is quickly setup and direct coupling of structural
deformation eliminated the usual step of mapping of fluid results on the structural mesh
and vice-versa.
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1 INTRODUCTION

Fluid-Structure Interaction (FSI) stands out as a prevalent physical phenomenon in
engineering problems. However, effectively simulating FSI is intricate, prompting the
need for certain assumptions in both structural and fluid simulations. In Computational
Fluid Dynamics (CFD) simulations, for instance, the consideration of elastic deformation
at boundaries is omitted. Similarly, in Structural simulations, a consistent pressure is ap-
plied at the interior and exterior boundaries. Modal analysis comes into play to ascertain
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vibration characteristics, primarily the mode shapes and natural frequencies of a mechan-
ical system or component. Natural frequency, or eigen frequency, denotes the frequency
at which a system naturally oscillates without any external driving force. On the other
hand, mode shapes, also referred to as eigenvectors, depict the inherent behavior of the
component at its natural frequency. Both these parameters hold significance in the struc-
tural design process, especially for scenarios involving dynamic loads. They serve as the
foundational elements for subsequent dynamic analyses like transient dynamic responses,
harmonic analyses, and spectrum analyses.

FSI analysis plays a pivotal role in refining structural designs for optimal performance
under fluid loads, ensuring both efficiency and reliability. Identifying FSI-related issues
at an early stage enables cost-effective design adjustments, reducing the necessity for
costly modifications during manufacturing or operation. Damping in FSI, representing
energy dissipation within vibration cycles, emerges as a key factor in resonance phenom-
ena, impacting harmonic vibration amplitudes and the count of noteworthy vibrations
in time-dependent scenarios. While damping’s role can be negligible in slightly damped
vibrations when identifying natural frequencies, its influence becomes pronounced around
these frequencies, especially in resonant conditions where excitation is balanced solely
through damping. Though damping in the structure is generally low, except when near-
ing resonance and vibrational cycle maintains a substantial level of independence [1].

Within the current corpus of literature, a variety of approaches have been formulated
to tackle the intricacies for coupling of fluid structure interaction (FSI). A prominent
approach involves fully coupled (monolithic) methods that integrates both structural and
flow calculation in one solver. Conventional Computational Fluid Dynamics solvers are
predominantly uses eulerian based approach. However, coupling of structural formula-
tion which mostly uses lagrangian based approach and it leads to stiffer computation for
the structural component compared to the fluid component. Consequently, employing
a unified scheme for extensive scenarios becomes computationally intensive. Partitioned
methods offer an alternative by tackling of both flow and structural formulation on two
different meshes utilizing distinct solvers. These methods necessitate the establishment
of a communication protocol at the interface between grids to appropriately transfer fluid
loads to structural mesh, and conversely, to map the deformation onto the fluid mesh.
Effective adjustment on the boundaries of the fluid mesh requires precise manipulation of
adjacent mesh nodes to prevent mesh entanglement or deformation. Notably, recent ad-
vances have demonstrated successful application of partitioned methods, such as coupling
thin-walled girder theory with potential flow theory [4, 1] and linking modal structure
solvers with RANS-VOF solvers [8], Boundary-Integral Equation Methods [8, 4], and
potential flow theories [4, 1]. A method to forecast fluid-structure interaction (FSI) by
employing a reduced-order structural model. This innovative approach stands out for its
effectiveness and simplicity in predicting FSI, proving its applicability even in complex
scenarios such as compressor stages. However, it’s recommended to carefully manage in-
tegration time step sizes to avert potential stability challenges that might arise due to
disparities with the frequency of the highest mode used for structural calculations [5].

In this paper, we focus on determining the elastic behavior of linear structures using
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modal coupling integrated into the Lagrangian Differencing Dynamics (LDD) method.

2 GOVERNING EQUATION

2.1 Mode superposition

The method of modal superposition is employed to analyze the dynamic behavior of
structures. This approach is particularly effective in minimizing computational efforts
when evaluating the dynamic response of linear structures [4]. The dynamic response can
be estimated through the superposition of a limited number of modal frequencies of the
structure. This technique proves especially advantageous when dealing with constrained
loading frequencies that are known. However, it is less applicable to the issues that
encompass exceedingly high frequencies.

The dynamic equation for a structure can be represented in matrix form as follows:

Mü + Cu̇ + Ku = f (t) (1)

In this equation, M denotes the mass-normalized matrix, C represents the damping
matrix, and K stands for the stiffness matrix. The column vector u corresponds to the
degree of freedom, while f(t) represents the applied forces over time. This matrix is
obtained through the discretization of the physical domain, resulting in an NxN matrix
if N signifies the degrees of freedom.

The foundation of modal superposition is rooted in modal analysis, yielding essential
outputs such as eigen frequencies and their corresponding mode shapes. The eigen fre-
quencies are computed via the undamped dynamic equation, treated as an eigenvalue
problem:

(−ω2M + K)Φ = 0, Φ 6= 0 (2)

In this context, the symbol Φ refers to the modal matrix, which contains vector of
mode shape corresponding to every natural frequency of the structure with n DOF, Φ =
Φ1,Φ2, ...,Φn

The overall displacement of the structural system for a time step can be represented
as a combination of mode shapes:

u(t) =
n∑

i=1

Φy(t) (3)

where y(t) is the vector of modal coordinates (or generalized displacement). By ap-
plying the generalized displacement and the mass normalized modal vector Φ (equ (3))
into equ (1):

ΦTMΦÿ(t) + ΦTCΦẏ(t) + ΦTKΦy(t) = ΦTf(t) (4)

To decouple the equation of motion of a Multi-Degree-of-Freedom (MDOF) system into
n equations of motion for Single Degree of Freedom (SDOF) systems, it’s necessary to
diagonalize the damping term. This entails introducing a damping matrix, as proposed by
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Lord Rayleigh, that is assumed to exhibit proportionality to both the mass and stiffness
matrices.

C = βK + αM (5)

Final equation of motion will be:

ÿi(t) + 2ωiξiẏi(t) + ω2
i yi(t) = ΦT

i f(t) (6)

Here, ξi represents the damping ratio associated with mode i. It signifies the extent of
real damping present within a system in comparison to the critical damping.

The equation 6 is solved using the Complementary Function and Particular Integral
(CFPI) method [5].

2.2 Incompressible fluid flow

We employed an incompressible fluid flow solver known as LDD, which utilizes a gen-
eralized finite difference method with a meshless approach, employing a robust, implicit
formulation of the Navier-Stokes equations to simulate incompressible free-surface fluids.
This solver is utilized to address initial-boundary value problems, achieving second-order
accuracy in its solution. It has been successfully validated across various scenarios, includ-
ing lid-driven cavity, dam break, sloshing, water entry, and more [2, 3]. The continuity
and momentum equations are provided below :

Du

Dt
= −1

ρ
∇p+ ν∇2u + g, x ∈ Ω, (7)

∇.u = 0 x ∈ Ω ∪ Γw ∪ Γfs, (8)

u = U x ∈ Γw, (9)

u(t = 0) = u0 x ∈ Ω (10)

In this context, D
Dt

signifies the time rate of change of a property, u stands for the
velocity vector, ρ represents the fluid density, p denotes the dynamic pressure, υ symbolizes
the kinematic viscosity, g represents gravity, U corresponds to the wall velocity, and u0

denotes the initial velocity vector.
The pressure and velocity equations are solved in a decoupled manner. The pressure

poisson equation and the pressure gradient are presented as follows:
∇2p = −ρ∇ ·Du/Dt x ∈ Ω,

n · ∇p = ρn · [−Du
Dt

+ g + ν∇2u] x ∈ Γw

p = patm, x ∈ Γfs

(11)

Here, n stands for the normal vector, patm represents atmospheric pressure, and g is
considered constant, resulting in a divergence of g equal to zero.
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3 METHODOLOGY

In this paper, we express the modes using natural frequencies and mass-normalized
modal vectors, as detailed in Section 2.1. Equations (1) to (6) encompass the force vector,
bridging hydrodynamics, inertial loads, and the structural system. Modal equation (6) is
directly solved within the fluid flow solver using the CFPI method, yielding the generalized
displacement function, denoted as y(t). This accounts for all known mode shapes at each
time step. The global structural deformation is reconciled using equation (3), incorpo-
rating the calculated generalized displacement, thereby ensuring that updated structural
shapes influence the flow calculations [5]. Natural frequencies and corresponding modal
vectors are determined externally before commencing the CFD computations. Vibrating
mode shapes are represented through generalized displacements and mode shapes.

Exchange of forces and displacements is essential between the structure and fluid
meshes. During each time interval, it is crucial that the fluid mesh undergoes defor-
mation, utilizing the deformations calculated through the mode superposition method at
the interface. The workflow of the fluid-structure solver is depicted in the Figure 1. Below
steps are followed to establish two way coupling of fluid and structure interaction.

Figure 1: Workflow of FSI with LDD

1. Calculate the mass-normalized mode shapes and corresponding natural frequencies,
denoted as ω1, ω2, ..., ωn.
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2. Define the initial and boundary conditions for the simulation, encompassing the
initial displacement of the structural system.

3. Create Radial Basis Function (RBF) connections between fluid faces and structural
nodes, if structural mesh is not the same as fluid boundary mesh [7]

4. At every time interval ∆t:

(a) Compute the forces exerted on the structural mesh due to fluid pressure.

(b) Solve equation of motion equ (6) using modal vector

(c) Determine the updated deformation vector using equ (3) and apply the result-
ing deformation to the mesh.

(d) Solve the fluid equations for time t + ∆t, taking into account of structural
deformation.

The modal coupling solver is constructed by solving the equation of motion dynami-
cally with external loads, leveraging the mode superposition technique aided by pertinent
mode shapes and natural frequencies determined in the pre-calculation stage (step 1).
This modal coupling is integrated into the Lagrangian Differencing Dynamics (LDD)
method, which adopts finite differences within a Lagrangian framework, offering a robust
and implicit formulation of the Navier-Stokes equations to simulate incompressible free-
surface fluid dynamics. The displacement resulting from fluid forces (step 4a) is calculated
within the modal coupling algorithm through direct numerical integration (step 4b). This
deformation is then applied in the fluid flow solver to account for geometric changes (step
4c), consequently generating new flow pressure and velocity fields (step 4d).

4 NUMERICAL VALIDATION

4.1 Static cantilever gate

In this section, an experiment originally conducted by Antoci et al. [6] is replicated.
The experiment resembles the classic dam-breaking scenario; however, the gate in this
instance isn’t rigid or movable, but rather elastic and deformable. This rubber gate is
affixed along its upper edge to a rigid wall and undergoes deformation when exposed to
fluid forces acting behind it.

The experimental setup features a fluid column within a tank with dimensions: length
(A) = 100mm and height (H) = 140mm. The rubber gate, supported by a rigid ob-
struction, extends downward to touch the floor. The gate’s height is L = 79mm. For
modeling, an elastic isotropic material with a density of ρgate = 1100kg/m and Young’s
modulus E = 12MPa is employed. It’s noteworthy that due to inherent uncertainty in
estimating the Young’s modulus for rubber, future endeavors will incorporate accurate
rubber hyper-elastic properties. The simulation considers only the first mode shape and
its associated natural frequency. Validation is undertaken with the tank filled with wa-
ter, density ρ = 1000kg/m3 and dynamic viscosity µ = 10−3Pa.s. The depicted elastic
deformation of the cantilever due to fluid loading is illustrated in Figure 2.
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Figure 2: Cantilever– Pressure contour at different time step

This specific case is not optimal for the ultimate aim of mode superposition, and the
solution for this instance is static. Thus, the first bending mode suffices for relevance.
An assessment is performed to verify whether the attained deflection aligns with the
anticipated order of magnitude, thereby assessing the accuracy of the dynamic solver’s
equation.

4.2 Dam break with cantilever beam

After successfully validating the dynamic equations through the analysis of a static
cantilever gate in Section 4.1, we proceed to extend our exploration by conducting a
dynamic simulation of a cantilever beam. The geometric dimensions remain consistent
with the static case, maintaining a thickness of 5 mm, while the fluid properties remain
unchanged. The simulation involves a domain measuring 0.5 x 0.2 m, where an initial
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Table 1: Modes and natural frequencies

Mode 1 2 3 4 5
Natural Frequency(Hz) 15.09 93.433 257.66 374.8 495.57

Figure 3: Mode shape of the beam along the length, Left: X-Displacement and Right: Y-Displacement

fluid column of dimensions 0.1 x 0.14 m is positioned at the left end of the domain. A
beam is centrally placed within this domain, with its fixed end touching the bottom. The
simulation replicates a scenario akin to a dam break, spanning a total time of 10 seconds
with intervals of 1× 10−3 seconds.

In this simulation, we utilize the first five natural frequencies (as detailed in Table
1) alongside their corresponding mode shapes (illustrated in Figure 3). The subsequent
dynamic behavior of the cantilever beam is vividly portrayed in Figure 5, further sub-
stantiating the accuracy and effectiveness of our approach.

Furthermore, we examine the displacement in both x and y directions over time for
both the tip and mid-section of the beam, as showcased in Figure 4. This comprehensive
analysis offers valuable insights into the dynamic response characteristics of the structure
within a fluid-structure interaction context. Notably, Figure 6 unveils minor oscillations
overlaying more pronounced oscillations. This observation underscores the successful

Figure 4: Dynamic response over a time at the mid and tip section, Left: X-Displacement and Right:
Y-Displacement
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Figure 5: Dynamic response of cantilever beam at different time step

Figure 6: Displacement at the mid and tip section till 1 sec, Left: X-Displacement and Right: Y-
Displacement

operation of the mode superposition technique, adeptly capturing the interplay of various
modes in the system’s response.

5 CONCLUSION

The Modal Coupling solver has been seamlessly integrated into the Lagrangian Dif-
ferencing Dynamics (LDD) solver, effectively enabling two-way fluid-structure interaction
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coupling. The Modal Coupling solver’s success is attributed to its foundation in the mode
superposition method. The validation of the bidirectional fluid-structure coupling is effec-
tively demonstrated through the simulation of a dam-break scenario involving an elastic
gate.

The implementation process of the coupling scheme substantiates the tool’s capability
to facilitate the effortless coupling of diverse solvers, all without necessitating changes
to solver algorithms or input files. Looking ahead, the research trajectory involves more
intricate simulations encompassing three-dimensional structures, and these will be rigor-
ously validated against experimental data. Furthermore, the incorporation of the energy
equation into the framework is planned. This expansion aims to explore the influence of
energy on fluid-structure interaction, thereby broadening the scope and insights of the
analysis.
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