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Abstract. The accurate modeling of moving boundaries and interfaces is a difficulty present
in many situations in computational mechanics. In this paper we use a new approach, X-Mesh,
to simulate with the finite element method the interaction between two immiscible fluids while
keeping an accurate description of the interface without mesh regeneration. The method is
validated with complex problems such as Rayleigh-Taylor instabilities, sloshing and dambreak.
The quality of the results and the efficiency of the method show the potential of this approach
to simulate such physical phenomena.

1 Introduction

Many physical problems present discontinuities that need to be well modeled in order to be
simulated correctly, one of them are the two-phase flows. The study of these flows covers a wide
variety of engineering and environmental flows, such as open channel flows, wave dynamic, flow
past a structure etc. The interaction between the two fluids is characterized by an interface,
on which the material properties such as viscosity or density are discontinuous. The accurate
representation of this interface is the main challenge for solving time-dependent two-phase flows.

Several computational methods have been developed to model this interface and can be sepa-
rated in two categories: the front tracking methods including the Arbitrary Lagrangian-Eulerian
(ALE) method [5] and the front capturing methods notably with the level set method (LS) [3]
and diffuse level set methods (DLS) [2][4]. Although they all have interesting advantages, the
existing methods still have some drawbacks: inability to take into account large movements of
the interface as well as topology changes (ALE), loss of simplicity and robustness of the clas-
sical finite element method (LS), over-diffusion of the interface (DLS), ... Very recently, a new
interface tracking method named X-Mesh has been developed and tested for the simulation of
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a phase-change with the Stefan model [1]. The idea is similar to the ALE method but instead
of positioning always the same nodes on the interface, the X-Mesh method deforms the mesh
while keeping the same connectivity, creating almost degenerated elements, to allow the relay
of the interface between the nodes.

This paper is structured as follows: we first present the governing equations for the two-phase
flows. Then we describe the numerical methods used to solve theses equations: the Navier-
Stokes solver, the advection of the level set, the algorithm used to deform the mesh and make
it correspond to the interface at any time step (X-Mesh) and the coupling between the different
solvers and X-Mesh. Finally the numerical results are presented, along with a discussion.

2 Governing Equations

We consider the laminar flow of two non-miscible incompressible and newtonian fluids in
two dimensions. The two fluid phases are denoted Ω1 and Ω2 as shown at Fig 1 and have
different density and kinematic viscosity : (ρ1, ν1) and (ρ2, ν2). The incompressible Navier-
Stokes equations solved simultaneously on the two subdomain are given by:

∂tu+ u · ∇u = −∇p+ ν∇2u+ f (1)

∇ · u = 0

where u is the velocity field (u, v)T , p is the kinematic pressure (i.e. pressure divided by density
ρ), f the forces at distance (gravity) and ν the kinematic viscosity.

Γ

Γ

Ω1

Ω2

Ω1

Figure 1: Two-fluid flow sketch

Since the two-fluids are non-miscible, we consider the interface Γ as impermeable such that
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no mass transfer is allowed between the two phases. This leads to the condition of a continuous
velocity at the interface:

[u] = 0

where the brackets refer to the jump at the interface.
Another condition is the conservation of the momentum in the direction perpendicular to the
interface. To satisfy this condition, the jump in normal stress is balanced by the surface tension:

[−pI + ν∇u] · n = σκn

with I the identity operator, σ the surface tension coefficient and κ the curvature of the inter-
face. In the examples treated in this paper, the effects of the surface tension can be neglected
and thus σ is set to 0.

The position of the interface is determined by the zero iso-contour of a level set function ϕ.
This function corresponds to a signed distance to the interface which is negative in one phase and
positive in the other. The time evolution of the interface is obtained by the level set equation:

∂tϕ+ u · ∇ϕ = 0 (2)

with u corresponding to the velocity of the fluids obtained in equations 1.

3 Numerical method

In this section we describe our numerical method for the resolution of two-phase flows. We
choose to work with the finite element method and more specifically with the continuous Galerkin
approach and stabilized P1 elements for solving both the level set equation 2 and the Navier-
Stokes equations 1. The algorithm to deform the mesh in order to follow the interface is then
explained in section 3.3. Finally, an iterative coupling between these steps is presented.

3.1 Navier-Stokes solver

The considered flows are dominated by the advection and the continuous Galerkin need to be
stabilized, we do it here with an additional Streamline Upwind/Petrov-Galerkin (SUPG) term.
To limit the size of the system of equation that we need to solve, the unknowns are placed at
the nodes of our triangular mesh both for the pressure and the velocity field. This doesn’t sat-
isfy the Babuska-Brezzi condition and could lead to the apparition of spurious mode that need
to be stabilized. This problem is overcome thanks to the popular Pressure-Stabilizing/Petrov-
Galerkin (PSPG) method [6]. For the mesh to permanently match the interface, the nodes
are continuously moved in the computational space. This displacement is taken into account
in the resolution with a non-conservative Arbitrary Lagrangian-Eulerian (ALE) formulation
which consists in subtracting the mesh velocity umesh in the advective term. Time can be dis-
cretize with a constant time step ∆t and the mesh velocity is considered piecewise constant
umesh = (xn+1 − xn)

1
∆t . We denote the value of a variable at time t = n∆t with the subsript

· n. The computational domain is also evolving during time, the domain at time step n is thus
noted Ωn. For the temporal integration we use the implicit euler scheme and we obtain the
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semi-discrete weak formulation with the finite element method.
Consider Sh
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With SUPGn+1 the term for the SUPG stabilization and PSPGn+1 the term from the PSPG
stabilization.

The classical finite element spatial discretization yields a nonlinear system of equations for
uh
n+1 and phn+1; this system is solved using the Newton-Raphson method.

3.2 Advection of the level set

The position of the interface between the two fluids is considered as the iso-zero contour of
a level set function. The time evolution of the level set is obtain by equation 2. This equation
is stabilized with a SUPG term, the mesh displacement is managed with a conservative ALE
formulation and time integration is solved by a Crank-Nicholson scheme. This formulation make
appear an intermediate computation domain Ωn+ 1

2 that can be approximate as the mean of Ωn

and Ωn+1 since we consider piecewise constant mesh velocity. Let Sh
ϕ be the solution space of

ϕn+1 and wh
n+1 ∈ Vh

ϕ be the test function associated to ϕn+1. The weak semi-discrete formu-
lation, where the ALE formalism makes a second term appear in the advection, can then be
written as follows:
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n+1ŵn+1dΩ−

∫
Ωn

ϕh
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nŵn+ 1

2
dΩ+

∫
Ωn+1

2

ϕh
n∇ · (u− umesh) ŵn+ 1
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= 0

with ŵn = wn − τSUPG (u− umesh) · ∇wn the test function modified by the SUPG method in
the domain Ωn and ŵn+1 and ŵn+ 1

2
the modified test function in Ωn+1 and Ωn+ 1

2
respectively.
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The finite element method then allows us to spatially discretize the domain and we obtain a
linear equation system.

3.3 X-Mesh

The idea behind the X-Mesh method [1] is to deform a mesh of fixed topology with continuous
node movements to constantly match the interfaces of interest, even in the case of topological
changes of the fluids domains. To achieve this goal, the method allows elements to become
degenerate, meaning that a triangle can deform down to an edge or even a point. This enables
the mesh to deform continuously in time and ensure the relay of the front. The interface is
transferred from one node to another located at the same position allowing the interface to
propagate like a relay race.

Figure 2 illustrates the method used to move the nodes so that the mesh conforms to the
interface defined by the level set. In this simplified example, we consider a horizontal interface
and the evolution of the interface governed by the resolution of equation 2 provides us with a
new level set such that the interface has been rotated by -20°. Because the deformation of the
mesh is local and only affects the elements close to the interface, the first step is to determine
which nodes will potentially move. These are the nodes that were part of the front at the
previous time step as well as the nodes whose level set value has changed sign. These nodes are
called active nodes and are marked in yellow in figure 2 (b). In our example, the old nodes of
the front (marked in black in figure 2 (a)) on the horizontal line as well as two nodes that have
changed sign between the two level sets are noted as active nodes. In the second step, we list the
potential targets of each active node, i.e. the positions where the active nodes could be placed to
be on the interface. There is an infinity of possible positions for each node but we limit ourselves
to move the nodes only along their edges in order to avoid inverted elements. We also do not
consider edges that connect two active nodes. These targets are then the 0 value positions of
the interpolated level set on the edges connecting an active node to an inactive one. They are
represented in black and white on figure 2 (c). The third step consists simply in choosing as
new position of the active node its closest target and this way obtain the new mesh as shown
in figure 2 (d) which is conformal to the new interface. The active nodes that have been moved
form the new front and all the other nodes are relaxed towards their initial position ie. they are
progressively moved to return to their initial position over several time steps.

3.4 Coupling

Algorithm 1 describes a simple iterative coupling between the fluid solver and the interface
repositioning for one time step. For each iteration, the Navier-Stokes equations are solved via a
Newton-Raphson solver and we obtain un. This velocity will then be used in the resolution of
the level set advection equation. For each intermediate solution ϕi, the mesh is moved to take
into account the displacement of the interface. This displacement of the nodes induces a mesh
velocity which must be taken into account in the resolution of the Navier-Stokes equations and
the level set advection. It is then necessary to iterate until convergence for the position of the
interface and thus for the mesh velocity or until it reaches the maximal number of iteration.
When simulating a time step from n to n+1, we thus have two meshes Ωn and Ωn+1 which are
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(a) Old level set values (b) New level set values (c) Potential targets (d) New mesh

Figure 2: Mesh deformation algorithm for X-Mesh [1]

consistent with the interface at both times n and n+ 1.

Algorithm 1 Coupling for a time step
un+1 = un

ϕn+1 = ϕn

xn+1 = xn

i = 0
while |∆x| < tol and i < iter do
umesh = (xn+1 − xn)

1
∆t

un+1 = Navier-Stokes
(
un, ϕn+1,u

mesh
)

∆ϕ = LevelSet
(
un+1,u

mesh, ϕn

)
− ϕn+1

∆x = X-Mesh (xn+1, ϕn+1,∆ϕ)− xn+1

ϕn+1 = ϕn+1 +∆ϕ
xn+1 = xn+1 +∆x
i = i+ 1

end while

4 Results

In this section, we present the different results obtained with our approach. The first test
case consists of low amplitude sinusoidal sloshing. This problem could be easily realized with
a classical ALE method and does not use the advantage of X-Mesh to allow large deformations
and topology changes but it has the advantage of having an analytical solution. It is therefore a
good first problem to validate our implementation. The test cases of the dam break and Rayleigh
Taylor instability will further validate the approach used and the interest of the method in the
case of two-phase flow but also highlight some weak points that need to be addressed.

4.1 Sloshing

In order to validate our implementation, we started with a simple sinusoidal sloshing problem.
It consists of the observation of the free oscillation of a liquid and especially the frequency of
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the wave. The sloshing of fluids is a really practical problem for many engineering applications.
We consider periodic boundary conditions on the sides and no slip conditions for the bottom
and the top. An analytical solution exists for the linearized equation and is exact at the limit
when the wave amplitude and the viscosity tend to zero. The effect of the top and bottom sides
of the tank are negligible if we consider the deep water approximation. To compare correctly
different initial conditions with the analytical solution, we consider the following conditions:

H

gT 2
= 1 · 10−1 (Deep water)

h

gT 2
= 5 · 10−4 (Small perturbation)

where λ is the wavelength, ν is the viscosity, H is the depth, h is the perturbation height and
T is the theoretical period of oscillation.
Table 1 presents the experimental and theoretical wave speeds. The density and viscosity ratio
considered are ρ1

ρ2
= ν1

ν2
= 10. As the viscosity decreases the simulations are more and more close

to the linear solution, which corresponds well to the hypothesis of negligible viscosity. The error
become quickly negligible for low viscosity fluids. The perturbation of this problem are so small

Table 1: Wave speed c for different values of wave number k and viscosity.

k ν · 10−3 c cth error

2π 3.13 1.094 1.13 3.19%
6π 0.602 0.641 0.653 1.84%
2π 0.602 1.118 1.13 1.06%
2π 0.0602 1.13 1.13 0.022%

that the relay of the front between the element almost doesn’t appear and it could easily be
solved with classical ALE. This test allow us to validate our implementation of the Navier-Stokes
solver, the resolution of the level set equation and the mesh deformation with X-Mesh.

To validate our approach we tested it with two more complex however classical benchmark
problems for two-phase flows: a dambreak and Rayleigh-Taylor instabilities.

4.2 Dambreak

In this problem a column of dense fluid of size 0.4m by 0.4m is placed in a container of size
1.4m by 1.4m filled with a lighter fluid. The column collapses brutally and can be compared to
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a sudden failure of a dam. The properties of the considered fluids are

ρ1 = 1000

[
kg

m3

]
ρ2 = 1

[
kg

m3

]
ν1 = ν2 = 1 · 10−3

[
m2

s

]
Figure 3 shows the results at different time steps where t is expressed in seconds. As we can
see at t = 1.15 we have a change in the phase topology which is naturally taken into account
by the level set. The mesh deformation is shown in Figure 4, the nodes are positioned so that
the mesh matches the interface at any time. As we can see in the close view of Figure 4 (b),
some elements are almost degenerated. To avoid the bad conditioning of the matrix, there is a
minimum limit for the value of the determinant. In practice, this value is rarely reached by the
deformed elements. The X-Mesh algorithm presented in section 3.3 has the advantage of being
based on the mesh topology. This allows us to have a finer initial mesh in the zone of interest
like the one presented in Figure 4 (a).

(a) t = 0.0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.05 (f) t = 1.15

Figure 3: Simulation of a viscous dambreak
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(a) Resolution mesh of the dambreak (b) Close view of the mesh deformation

Figure 4: Computational mesh for a dambreak simulation

4.3 Rayleigh-Taylor instability

Rayleigh-Taylor instability consist in placing a heavier fluid above a lighter one. This position
is an unstable equilibrium and is sensible to any perturbation. A disturbance is initialized in
the interface position at t = 0 and it’s initial position is given by:

y = 2.0 + 0.05 cos 2πx

The initial velocity field is zero, pressure field is hydrostatic and all the boundary conditions are
free slip. The phenomenon is driven by the Atwood number At = (ρ1 − ρ2)/(ρ1 + ρ2) and the
Reynolds number that correspond in this context to Re =

√
WgW/ν with W the width of the

channel. Figure 5 shows the results for At = 0.5 and Re = 256 at different adimensional time
steps tadim = t

√
g/W . The preservation of the symmetry of the interface and its smoothness

is surprisingly good. These results are similar to the simulation obtained by He et al. [8]. We
observe on Figure 5 (i) a mass loss due the bad capturing of the interface in the zone of strong
curvature. When the curvature is so strong that a triangle has it’s three nodes positioned on
the interface, the phase of this element is ambiguous: two different interfaces are possible. The
criteria for determining the phases of such triangle still need to be improved. In order to limit
the impact of these ambiguous elements on the simulation one could also refine the mesh.
An analytical solution for the linearized equations exist and is valid for the linear phase of the
instability development [9]:

h = h0e
α̂t

with h the perturbation size, h0 the perturbation at t = 0 and α̂ the growth rate. For the
parameter of the simulation the analytical grow rate is α̂a = 9.3 and the observed one is α̂o = 9.2.

5 Conclusion

A mesh conforming approach for the numerical simulation of 2D two-phase flows has been
presented. This approach relies on a classical implicit stabilized finite element solver for the
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Navier-Stokes equations, a stabilized finite element approximation for the resolution of the level
set equation and a local mesh adaptation method, X-Mesh, that accurately tracks the interface.
The main advantage is the simple representation of the sharp interface between the two fluids
without the need of remeshing and thus no mesh topology change. This representation allows
the capturing of the discontinuities in the derivatives of our variables which can not be done
in classical eulerian level set methods. In contrast with the classical ALE method, by tracking
the front with the nodes successively in the way of a relay race, the X-Mesh method allows to
track interface with movement of large amplitude and phase topology change. Thanks to the
local aspect of the bad-shaped elements, the quality of the solution is preserved. By limiting
the minimum value of the determinant of the almost degenerated elements we avoid the bad
conditioning of the finite element matrix.

The preliminary results presented here are in good agreement with the analytical solutions
and the literature. This is encouraging for the use of the X-Mesh method in such challenging
computational mechanics problem. For future applications we will focus on the implementation
of the surface tension. Having the nodes of the mesh positioned exactly on the interface should
be an advantage for the application of this force.

REFERENCES
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(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5 (e) t = 2.0

(f) t = 2.5 (g) t = 3.0 (h) t = 3.5 (i) t = 4.0 (j) t = 4.5

Figure 5: Rayleigh-Taylor instability for At = 0.5 and Re = 256 at different adimensional times
tadim = t

√
g/W
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