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SUMMARY,

This report presents a method for the solution of two dimensional, potential flow around an
aerofoil based on a Finite Element Method for the solution of Laplace's equation. Solutions to
approximate the "real" flow are constructed from the observation that potential flow solutions are
linear and thus, many potential flows may be superimposed to yield the desired flow. Indeed, in
this way, one of the effects of viscosity, that of fixing the rear stagnation point to the trailing edge
for up to moderate angle of attack cases, is modelled by the imposition of a potential flow due to a
point vortex (located at the 1/4 chord point) sufficient to fix the rear stagnation point at the trailing
edge (Kutta condition).

It must be remembered however, that potential flow solutions are inviscid and as such do not
model correctly the flow separation point and further, the absence of viscosity falsely causes the
model to predict zero drag caused by the aerofoil. However, the predictions made for the lift
(derived from the calculated circulation to fix the Kutta condition via the Kutta-Joukowski theorem)

are shown to be good for low Mach number cases at moderate angles of attack.

Comparisons are drawn with traditional Panel methods and the presented technique is found
to be easier to implement in the cases considered, however, there is a comparative loss in accuracy

for pressure coefficient predictions.
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1. INTRODUCTION.

This report details the aims, methods and results of a 14 week project conducted at The
International Centre For Numerical Methods In Engineering (C.LM.N.E.), Barcelona, as part of
the final year, Master of Engineering (M.Eng) course of The Aeronautics Department of Imperial
College London.

The broad aims of the project were to develop a description of the flow around an aerofoil in
two dimensions, using the quasi-harmonic potential equation (Laplace) and further, to investigate

possible methods to improve the solutions obtained, in terms of speed, cost and efficiency.

The attractive quality of Laplace's equation is that it is linear and thus potential fields,
satisfying this equation, are superposable, allowing great flexibility in the construction of the
overall solution. However, Laplace's equation is inviscid and isentropic (irrotational) which
restricts its domain of physical relevance to low Mach number cases. Although the applicability of
the method is restricted, in these limited cases, potential solutions have been shown to give

excellent results, as compared with experiment.

The inviscid nature of the Laplace equation demands that any solution derived using this
equation will not, directly, describe the forces experienced by a body in a real flow. Instead,
various steady, irrotational (continuous) flow fields will need to be synthesised to describe the real
flow. In this report, the flow about an aerofoil is described, together with the manner in which the
viscosity, by causing the fluid to flow smoothly past the sharp trailing edge, is responsible for
generating a circulation which, in turn, is directly proportional to the lift. Once the condition of
smooth flow at the trailing edge is imposed (Kutta condition), the methods of inviscid flow
analysis enable calculation of the aerodynamic characteristics of the aerofoil. Indeed, once the flow
field is known, Bernoulli's equation can be used to calculate the pressure distribution on the
surface of the body; the forces and moments acting then follow from integration of the pressures

and moments over the surface.

In this report, the Finite Element Method is used to calculate the "non-lifting" potential field
around an aerofoil and then a circulation is imposed (at the quarter chord point) to yield the Kutta

condition at the trailing edge. An overview of the solution technique is as follows:
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The "non-lifting" potential and velocity fields are calculated by solving Laplace's equation by
the Finite Element Method. Dirichlet type (imposed value) boundary conditions are applied
at the edge of the domain to impose the oncoming flow conditions and Neumann, or natural,
boundary conditions, of no flow normal to the body surface, are applied at the aerofoil
surface (see later section on Boundary Conditions).

The Kutta condition is then imposed at the trailing edge by calculating the required circulation
to move the rear stagnation point to the trailing edge. The superposition of the flow fields, of
(1) and the circulation, violates the required boundary conditions, generating flow through
the surface of the aerofoil and yielding incorrect farfield flow conditions.

The desired boundary conditions are re-imposed by superposing an additional flow field
(given by the solution of the Laplace's equation using the Finite Element Method as before)
consisting of exactly the opposite normal velocities at the aerofoil surface, as yielded by the
circulation, together with the necessary farfield velocities to reobtain the original oncoming
flow.

However, at the end of step (3), the re-imposition of the required boundary conditions tends

to move the rear separation point away from the trailing edge, so the processes (2) and (3) are

repeated iteratively until convergence.

A modified version of an existing program for the solution of the quasi-harmonic equation

(POISS2D) was used as the basis of the potential solver, with auxiliary programs being written to

generate the appropriate boundary conditions and circulatory flow fields.

The completed programs were run on the Convex 120 "supercomputer” at CI.M.N.E., and

the generated data was then analysed graphically and by use of the FLAVIA graphical post-

processor package, run on a Silicon Graphics Workstation.
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2, THEORY,

In this section, it is sought to develop the theoretical basis for the solution techniques
employed during this project.

2.1, Velocity Potential,

It may be shown (see Reference 1.) that the angular velocity of a fluid element in three-

dimensional space is given by:
1 ow Ov ou Ow) . ov 3u) jl
— =22 — e —— ———1k 2.1.(1).
w“2[(ay az)‘+'(az az>3*‘<az By (1)

This expresses the angular velocity of a fluid element in terms of the velocity field, or more

precisely, in terms of the derivatives of the velocity field.
The angular velocity of a fluid element plays an important role in aerodynamics and it has

been proved useful to define a new quantity, vorticity, which is simply twice the angular velocity.

Therefore, define the vorticity as:

ow Ov Oou Ow ov Ou
R A T A O LA 2.1.(2).
¢ (ay az)‘+'(az az)J*'(az 3y> )
E=VxV

It is thus seen that, in a velocity field, the vorticity is equal to the curl of the velocity. This
defines that:

). If the vorticity is non-zero throughout the flow field, then the flow is termed rotational and

implies that the fluid elements have a finite angular velocity.

2).  If the vorticity is zero at every point in the flow then the flow is termed irrotational and
implies that the fluid elements have no angular velocity, rather, their motion through space is

pure translation.
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If the flow is two dimensional then:

ov Ou
=&LEk=1———1k 2.1.(3).
e=tk=(52-5) 3)
If the flow is irrotational then this demands that:
?ﬁ Ou _4
oz Oy 2.1.(4).

In irrotational flow, it has been shown that:
E=VxV=0 2.1.(8)

Consider, then, the following vector identity: if ¢ is a scalar function then:

V x (V) =0 2.1.(6).

This states that the curl of a scalar function is identically zero. Comparing the previous two

equations yields:
V=V¢ 2.1.(7).

Equation 2.1.(7). states that for an irrotational flow, there exists a scalar function, ¢, such

that the velocity is given by the gradient of ¢. ¢ is denoted as the velocity potential and is a
function of spatial coordinates. From the definition of the gradient in Cartesian coordinates,
equation 2.1.(6). shows that:
’ ‘ d¢. 0¢ 0¢
ul+v]+wk=-"T1+-"T37+ Tk 1.(8).
. 5e L By T B2 2.148)
The coefficients of like unit vectors must be the same on both sides of the previous equation.

Thus, in Cartesian coordinates:

_o¢ _9 0 2.1.(9).
- Oz - Oy 0z

u

The velocity potential is analogous to the stream function in the sense that the derivatives of
both yield the flow-field velocities and indeed, the stream function can also be shown to satisfy
Laplace's equation. It should be noted, however, that their respective definitions apply different

restrictions on their use:
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1). Flow-field velocities are obtained by differentiating the velocity potential in the same
direction as the velocities, whereas the stream function is differentiated normal to the velocity
direction.

2). The potential function is defined for irrotational flow only. In contrast, the stream function
may be defined in both rotational and irrotational flow.

3). The velocity potential applies to three dimensional flow, whereas the stream function may

only be defined for two dimensional flows.

When a flow is irrotational, allowing a velocity potential to be defined, there is a tremendous
simplification. Instead of dealing with the velocity components as unknowns, hence requiring
three equations to describe them, the velocity potential can be defined as a single unknown, thereby
requiring only one equation to describe the flow-field. Once the potential field is known, the
velocity field can be deduced from equation 2.1.(9). For this reason, the potential function was

chosen as the operating variable for the considered application.
2.2. Laplace's Equation,

For the definition of Laplace's equation it is necessary to apply one further restriction, that of
incompressibility.

Consider the physical definition of incompressible flow, namely p = constant. Since p is the

mass per unit volume and p is constant, then a fluid element of fixed mass moving through an
incompressible flow field must also have a fixed constant volume. Now, the divergence of the
velocity is physically the time rate of change of the volume of a moving fluid element per unit
volume. However, as previously stated, the volume of a fluid element is constant in

incompressible flow. Thus, for an incompressible flow:

V.V =0 2.2.01)



Page: 6

The fact that the divergence of the velocity is zero for an incompressible flow can also be
shown directly from the continuity equation, that is:

dp

hod oV =

8t+Vp 0

0+pV-V=0 2.2.(2).
V-V=0

Which is the same result as before.

Now, the velocity potential is defined by equation 2.1.(7)., substituting into equation
2.2.(1). gives for a flow which is both irrotational and incompressible that:

Vig=0 2.2.(3).

This equation is known as Laplace's equation which has wide ranging significance in many
fields of physics and, as such, is one of the most famous and extensively studied equations in
mathematical physics.

From the previous discussions, the following obvious, yet important, conclusions may be
drawn:

1). Any irrotational, incompressible flow has a velocity potential that satisfies Laplace's
equation.

2). Conversely, any solution of Laplace's equation represents the velocity potential for an
incompressible, irrotational flow.

It is also noted that Laplace's equation is a second order linear partial differential equation.
The fact that it is linear is of particular importance, since the sum of any particular solutions of a
linear differential equation, is also a solution of the equation. Thus, since irrotational,
incompressible flow is governed by Laplace's equation and Laplace's equation is seen to be linear,
then a complicated flow pattern for an irrotational, incompressible flow can be synthesised by
adding together a number of constituent (elementary) flows which themselves are both irrotational

and incompressible. This is the underlying strategy for the solution of potential flow problems.
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The fact that an infinite variety of irrotational, incompressible flow fields may be described
by Laplace's equation, indicates the importance of the boundary conditions that, ultimately,
distinguish one flow from the next. The required boundary conditions will be discussed generally
in the following section and will be treated more fully later in this report.

Consider the external aecrodynamic flow over a stationary body, such as the aerofoil sketched

below:

Fig. 2.2.i. (Aerofoil with boundary conditions)

In the above diagram, the flow is bounded by, firstly the freestream flow which 1s,
theoretically, at an infinite distance away from the body and secondly, the surface of the body
itself. Thus there are two sets of boundary conditions to apply.

Far away from the body (tending to infinity) in all directions, the flow approaches the
uniform freestream conditions. Thus, the outer boundary conditions are that the velocities are the
same as the velocities of the freestream at infinity. It must be remembered that this boundary
condition is only true at an infinite distance from the body, however, in practice, this means "a

long way" (nominally 10 chord lengths) away from the body.

If the surface of the body is solid, then it is impossible for the flow to penetrate the surface.
Instead, if the flow is viscous, the effect of friction between the fluid and the boundary is to create
zero velocity at the boundary (the "no slip" condition). Such viscid flows are outside the scope of
this report. In contrast, for inviscid flows, the velocity at the surface can be finite, but, since the
flow cannot penetrate the surface, the velocity vector must be a tangent to the surface ("wall
tangency" condition). If the flow is tangential to the surface, then the component of the velocity
normal to the surface, must be zero. Let n be a unit vector normal to the surface, then the body

boundary condition is:
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V-n=(V¢)-n=0

% —0

2.2.(4).

With the imposition of the above boundary conditions, the specifics of the required flow may
be chosen.

2.3, Vortex Flow,

Consider a flow in which all the streamlines are concentric circles about a given point.
Moreover, let the velocity along any given circular streamline be constant and let the velocity vary
from one streamline to the next inversely with distance from the common centre. Such a flow is

called vortex flow as is shown graphically below:

Fig 2.3.1. Vortex flow.

In such a flow, there is no velocity component in the radial direction and the velocity in the
tangential direction will be given as a constant divided by the radius. It may be easily
demonstrated, that vortex flow is a physically possible incompressible flow ie. the divergence of
the velocity is zero everywhere. Also vortex flow is irrotational ie. the curl of the velocity is zero

at every point except the origin (where there is a singularity).

Thus, from the definition of vortex flow:

y, = comst _ ¢ 2.3.(1).

™ T
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To evaluate the constant C, take the circulation around a given circular streamline of radius r.

‘7 I‘
1-‘
C — _T

Therefore, for vortex flow, this demonstrates that the circulation taken about all streamlines
is the same value, namely I = 2rC. By convention, I' is called the strength of the vortex flow and

the above equations give the velocity field for a vortex flow of strength I'. The velocity

components in the Cartesian directions may also easily be defined:
r Y r z
e | — 2 Sty SR 2.3.08)-
“ 2w <z2+y2) T o (:c2+y2) 3)

As earlier stated, the vortex flow is irrotational everywhere except at the origin. At the
origin, the vorticity tends to infinity. Therefore, the origin is a singular point in the flow field.
Hence, the singularity itself may be interpreted as a point vortex which includes about it the circular

vortex flow.

The velocity potential for vortex flow may be obtained as follows:

0¢
_— = =0
or ’
19 _, 1T 2.3.(4).
;—(‘_?—G—Ve— 2mr 3
T
§=—5-F

2.4, The Kutta-Joukowski Theorem,

It may be shown that any lifting body has associated with it a circulatory field (see reference
2.). For example, consider the incompressible flow over the aerofoil depicted below. Let curve A
be any curve that encloses the aerofoil. Let B be any curve that does not enclose the aerofoil. If
the aerofoil is producing lift, then the velocity field around the aerofoil will be such that the line
integral of velocity around A will be finite, whereas the integral around B will be zero. This
demands that the circulation around A will also be finite.
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— . ds 2.4.(1).
r_jJAVd (1)

In turn, the lift per unit span, L', on the aerofoil will be given by the Kutta-J oukowski
theorem, which states that:

L' = —pooVeol' 2.4.(2).

This result emphasises the importance of the concept of circulation. The Kutta-Joukowski
theorem thus states that the lift per unit span on a two dimensional body is directly proportional to
the circulation around the body. The general derivation of equation 2.4.(2) has been omitted from

this report, but a full treatment may be found in reference 2.

From the above, it can be seen that lifting flow over an aerofoil, such as the one depicted
above, may be described by the superposition of elementary flows and further, that such a flow
may be deemed irrotational at all points in the flow, except at the origin.

The approach that has been discussed above, forms the basis for the circulation theory of lift
that has been utilised in this project. It should be remembered, however, that this is only an
alternative way of thinking about the generation of lift on an aerodynamic body. It should be kept
in mind that the physical sources of the acrodynamic force on a body are the pressures and the
shear stress distributions exerted on the surface of the body. Thus the Kutta-Joukowski theorem is
just an alternate way of expressing the consequences of the surface pressure distribution; itis a
mathematical expression that is consistent with the tools that have been devised to analyse inviscid,
incompressible flow. Itis, however, generally much easier to calculate the circulation about a

body than to calculate the detailed surface pressure distribution, therein lies the power of this
theory.
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2.5. The Kutt ndition

The theory that has been discussed in the previous sections is still incomplete. For a given
aerofoil, in a given flow, at a given angle of attack, there are an infinite number of possible values
of circulation which give mathematically possible results. However, a given aerofoil, in a given
flow, at a given angle of attack, yields only one value of lift. Thus, it is seen that nature "knows"
how to choose one particular value of circulation in one particular set of conditions and in analysis,
an extra condition is required to precisely define the circulation. This condition is the Kutta

condition.

As previously stated, the Kutta-Joukowski theorem states that the force experienced by a
body in a uniform stream is equal to the product of the fluid density, stream velocity and
circulation, and acts in a direction perpendicular to the free stream. It has also been shown that one
and only one irrotational flow can be found that satisfies the boundary conditions at infinity and the

body, provided that the circulation is specified.

The irrotational inviscid theory thus far developed, indicates that the geometry of the body
and the freestream velocity do not uniquely define the circulation and in order to find the forces
acting on the body, it has been shown that, it is necessary to know the exact value of the
circulation.

The above discussion applies to an inviscid flow, but in a viscous fluid (however small the
viscosity), the circulation is fixed by the imposition of an empirical observation. Experiments
show that when a body with a sharp trailing edge is set in motion, the action of the fluid viscosity
causes the flow over the upper and lower surfaces to merge smoothly at the trailing edge. This
circumstance, which fixes the magnitude of the circulation around the body is known as the Kutta

condition which can be stated as follows:

"A body with a sharp trailing edge in motion through a fluid creates about
itself a circulation of sufficient strength to hold the rear stagnation point at the
trailing edge." (reference 3.)

The flow around an aerofoil at an angle of attack in an inviscid flow develops no circulation
and the rear stagnation point occurs on the upper surface of the aerofoil; the streamlines of such a

flow is shown schematically below:
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Fig.(1). Inviscid flow around an aerofoil.

In viscous flow, the aerofoil creates around itself a circulation which fixes the rear stagnation

point at the trailing edge. The smooth merging of the upper and lower flows at the trailing edge is

shown schematically below:

=0

Fig.(2). Viscous flow around an aerofoil.

With the above discussion, the theoretical basis for the analysis undertaken has been

developed.
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2.6. The Finite Element Method,

As stated in the introduction, the Finite Element Method was used to solve Laplace's
equation and derive the uniquely specified potential flow (from the geometry and boundary
conditions). Pursuant to this, presented here is a brief overview of the well known theory behind
the Finite Element Method, with a particular bias toward the treated problem. A more rigorous
treatment of the Finite Element Method may be found in reference 4.

Laplace's equation is a specific form of the quasi-harmonic equation in two-dimensions. For

generality, first consider the full equation:

o (. 84\ 0 (., 94 B
g (reg) 35 (13,) + 0= 260

In which ¢ is the unknown function (in this case the velocity potential) and Kx, Ky and Q are
material parameters which may be functions of xand y. A number of different field problems may
be described using this general equation, but for the application currently being considered the
following is noted:

Kx—‘:Ky—_—l
Q=0

This yields Laplace's equation.

For this equation, there are two main types of boundary condition which are of interest.

With reference to 2.6.(1)., it may be required that:

a). The value of the unknown to be specified at nodal points on the boundary, ie.:

d="dp 2.6.(2).

This is termed, mathematically, as the Dirichlet boundary condition and is the boundary
condition that is prescribed, in this application, at the farfield boundary (see Methodology and

Implementation section.).

2233TTC
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b). That a boundary "loading" exists of the form:

0¢ a¢

Oz
In which q, o and ¢a are constants and Lx and Ly are the direction cosines between the
outward normal, n, and the x and y axes respectively. This is termed the Cauchy boundary -

condition. In the case of flow about an aerofoil boundary conditions of both types (a) and (b) exist
in the problem and the problem is termed "mixed".

The physical significance of the second boundary condition is not easily seen and thus, its'
significance will be illustrated with regard to the present problem with Kx =Ky =1. In this case
the boundary condition (b) reduces to:

gt a(s—ga) =0 2.6.(4).a.

n

Where d¢/dn is the velocity normal to the surface at the point of consideration. By taking

appropriate values of q and o, well established physical boundary conditions can be derived:

(1): ¢ = o =0, then:

9 _ 2.6.(4).b.
on
This implies that the velocity normal to the boundary is zero. In other words, this implies

that the surface is solid. This condition is termed the Neumann or natural boundary condition.

(ii): o = 0, then:

9 _

_ 2.6.(4).c.
- q (4)-c

This is the flux boundary condition, which states that a specified amount of fluid, g, flows

into the body per unit area of surface.

The previous two boundary conditions are applied in the execution of the finite element
technique for the considered problem. For completeness, however, a third, unused, physical

boundary condition will be given.
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(iii): g = 0. then:

oy (¢ — ¢a) 2.6.(4).d.

o

This states that the flow of fluid from any point of the surface is directly proportional to the

difference in velocity potential between the point in question and the prescribed potential, ¢a. This

is termed the convection boundary condition.
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2 Th lerkin Meth

In order to reduce this continuum problem to a finite set of unknowns, some discretisation
procedure must be undertaken. To do this the Galerkin weighted residual process will be
employed to set up the necessary "stiffness" equations. Define the errors associated with solving

2.6.(1). and 2.6.(3). by eA and es respectively, so that:

0 0 0 0
eA:-a—z(Kza—i) +a—y'(Ky-é§> +Q

0 0
65 = K;c-a%Lz + Ky'a_j'

2.6.(5).
Ly+q+a(¢—¢a)

Since boundary condition type (a) of 2.6.(2). is directly satisfied by the prescription of ¢,
there is no error associated with this term. In the weighted residual approach, it is sought to
minimise, in some global manner, the residuals eA and es weighted by some suitable weighting

functions wA and ws. In particular, it is required that:

/eAwAdA+/ eswgdS =0 2.6.(6).
A SB

Where SB denotes the part of the boundary on which boundary condition type (b) applies.
Substituting from 2.6.(5). into 2.6.(6). gives:

[ (6:80) 3 (58) + 0]

2.6.(7).
+ sy [Km%ng+Kyg%Ly+q+a(¢—¢a)] wedS =0 i

Now, Green's theorem relates the integrals of quantities over a region A and over its'

boundary S, as follows:

aC 8D %D | oD

In which C and D are arbitrary scalar functions and a similar expression holds for the y

variable. Applying 2.6.(8). to the second order derivatives in 2.6.(7). results in:

a 9
Js [Koa32Ta + Ky32Ly) wads

—Ja [KI%A%+K11%‘§%— QwA] dA 2.6.(9).

+ fSB [Kzg%l’x + Kyg%Ly +q+ a(¢p — ¢a)] wgdS =0
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At this stage, it is chosen that ws=-wA (= w, say) so that 2.6.(9). becomes, on use of
2.6.(3).:

fsA [Kx%gllx + Kyg%Ly] w dS — fSB[q + a(¢ — ¢a)|w dS

2.6.(10).
— I [Kz%%%g + K, qet - wQ] dA =0

Where SA is the part of the boundary on which boundary condition type (a) applies.

It is noted that at each point on the boundary either boundary condition type (a) or boundary
condition type (b) must be specified. Note that if no conditions are specified on a portion of the

boundary, then condition type (b) with q = o = 0 is automatically implied.

2.6.b, Finite Element Discretisation,

If finite element discretisation is now adopted, then the unknown function ¢, may be

approximated as:

$=> Ni; 2.6.(11).
=1

In which n is the total number of nodes, Nj are the global shape functions and ¢i are the

nodal values of ¢. In the Galerkin process, the number of weighting functions must equal the total
number of nodal unknown values. The weighting functions corresponding to node i, wj, can then

be conveniently chosen so that wi = Nj.

Substituting for f from 2.6.(11). into 2.6.(10). and setting wi = Nj gives:
" <L 1< dN; ON;
Xi— [sp Nila—adata } Njgj| dS—[4| 3 | Kege" 35
=l 7=1 2.6.(12).
TRy ay | 95—V =
with:
n ON; ON;
= S| Ke—2LLo + Ky—2LLy| dSé; 2.6.(13).
i sANlJ‘Zzl[z@m Ty y] i 1)
Where A is the area of the domain of interest and SA and SB are the parts of the boundary on

which boundary conditions type (a) and (b) are respectively imposed. There are i = 1,n equations
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of this form. Rearranging gives:

{fa [ 5+ 1 G 57 At o f, Wibiyas

= fA QN;dA — fSB(q — a¢a)NidS + X;

Which can be expressed in matrix form as:

n
J:

1 2.6.(14).

Ko = f 2.6.(15).

In which, the global "stiffness" and "force" vector are:

ON; ON; ON; /
= + K dA + N;N;dS 2.6.(16).
& /A [Km dz Oz Y oy sy 1o

and
f~ — N;dA — — a@q NidS—{—Xi 6.(17).

The explicit form of Xi need not be written in 2.6.(17). since this term is never input as an

applied load. From 2.6.(13). it is recalled that Xj represents a loading on the part SA of the

boundary. However, according to 2.6.(2). the value of the variable, ¢, is prescribed everywhere
along the boundary region SA. Hence, the term X represents the "force" reaction at each nodal

point associated with the prescribed "displacement" values along boundary SA.

In order to discretise the domain, a mesh was generated of general three noded triangular
elements (see section on mesh generation). In the following, a brief overview is given of the
method of calculating the "stiffness" and "load" terms. First the theory of right triangular elements
will be discussed (as defined in natural coordinates) and secondly, how these local right triangular

elements may be transformed to triangular elements of general shape, in global coordinates.
Consider an isoparametric formulation for a n node triangle or quadrilateral element. The
geometry of such an element may be expressed using the nodal coordinates xi(¢) and yi(¢) and the

shape functions defined in natural coordinates, Ni(€)(§1). Thus at any point within the element the

x and y coordinates may be obtained from the expressions:
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2(6,m) = Y N{9a{d
1=1

. 2.6.(18).
y(&,m) = > Ny
=1

The Cartesian derivative of any function, f, is defined over the element using the expression:

n

fem =S N5 2.6.(19).

1=1

Where fi(©) is the value of f at node i and may be obtained by using the chain rule of
integration:

of _9f 98, 9f on

9z Of Bz | On Oz

2.6.(20).
o5 o7 9 08 o
dy 9¢ 9y On Oy
Where df/d§ and df/dn are evaluated as:
of En: (9Ni(e) f(e)
5~ e
. 2.6.(21).
n (e)
of _ N7 (@
o ; oy i

The terms d&/dx, dn/dx, d&/dy and dn/dy can be obtained using the following procedure.
First we evaluate the matrix:

9z 9y
.M:Bi%} 26.22).
gy 9y

Which is termed the Jacobian matrix. The inverse of the Jacobian is then evaluated using:

7] 9
AQ] e oy o 2.6.(23).
detJ(€) —g—f] %g
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Note that an elemental area of the element is given by:
de dy = detI()dedn 2.6.(24).

For the three node isoparametric element, the element is C(0) continuous and has the

following shape functions and derivatives:

(¢) (e)
TS LA
(¢) (¢)
e ON ON .
(e) (e)
. ON. ON.

Note that now it is possible to represent any triangular shape which has straight sides, as the

following diagram shows:

A" 3 7

3
y
2 1 g
X
2(, 1 — g
Local definition Global definition
For clarity, adopt the following notation:
b=l 1=l o)
by =i — {9 oy =2l® 0P 2.6.(26).
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Then the Jacobian can be written as:

300 = [_6(3:2 ;’2’3] 2.6.(27).

The inverse of the Jacobian is then:

8 |
" . _;{bz bs] 2.6.(28
e [ay g‘;‘] c3by —cob3 [c2 €3] .6.(28).
Since:
caby — ezby =241 2.6.(29).

Where A(©) is the area of the triangle, then the Cartesian shape function derivatives can be
obtained from 2.6.(20). and 2.6.(21)., giving:

aNie) o b1 8N§e) . 1
9z 94le) 0y  24le)

aN{ b, BNée): e 2.6.(30).
oz 24() Jy 2A(€)

8N:§e) b3 8N§e) o C3

Oz 924(e) 0y 24(e)

The "stiffness” and "load" matrices of 2.6.(16). and 2.6.(17)., respectively, may now be

evaluated (see reference 3.) to construct the desired system 2.6.(15).
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3. MESH GENERATION,

In order to apply the Finite Element Method to the solution of Laplace's equation, it was
necessary to discretise the physical domain. This required the generation of a mesh which would
split the domain down to acceptably sized elements to approximate the physical reality by the Finite
Element Method.

There are a wide variety of different techniques available to generate meshes around an
aerofoil shape and presented here is a brief overview of the options considered for the method of
mesh generation (a more complete overview of meshing and optimisation techniques may be found

in reference 5.).

a). Structured Meshes From Partial Differential Equations.

The majority of physical problems may be described in terms of partial differential equations.
It has been proved advantageous to generate meshes that have an intimate connection with the
properties of the equations that are wished to be solved. These problems fall naturally into 3 main
categories; equilibrium problems, such as Laplace's equation which is known as a boundary value
problem (the governing equations are elliptic); eigenvalue problems and propagation problems
(with hyperbolic or parabolic governing equations).

It may seem inappropriate to suggest that a system of partial differential equations should be
solved to form the mesh before solving the real system and indeed, for the present application, this
is an inappropriate meshing method. However, the approach has been proved viable and has been
used successfully for a range of applications.

b). Conformal and Orthogonal Mapping.

The methods of conformal mapping are well known in fluid dynamics and it has been seen
that these techniques can offer a means of mesh generation. A geometrically complicated domain
can be mapped into a simple domain within which a mesh is generated. Inverting the mesh into the

physical domain then results in an orthogonal computational mesh in the physical domain.

The drawback of such an approach is that conformal mapping algorithms impose the
distribution of mesh points along boundaries and it is not possible to fix point distributions in the
interior of the domain. Hence, it is not applicable for apriori mesh point clustering to known
features of either the flow or the geometry. However, as a methodology for generating meshes for

the solution of potential flow, the orthogonality presents some desirable features.
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c). Algebraic Mesh Generating Techniques.

Algebraic mesh generation techniques provide a direct functional description of the
transformation between the computational and physical domains. Conformal mapping is an
algebraic mesh generation technique, however, a class of mesh generation techniques has grown

up to relax the disadvantages of the conformal mapping technique.
d). Unstructured Meshes - The Advancing Front method.

The advancing front technique is one of the most generally applicable mesh generation
techniques. It is based on the idea of the simultaneous mesh point generation and connectivity.
Given a set of points which defines a geometrical boundary or boundaries and a measure of the
local spacing required within the domain, the method extends or advances the boundary
connectivity into the field. Mesh points are generated and connected to other local points and in
this way the mesh is advanced away from the boundaries. The mesh point density is controlled by
the user specified parameters which in the basic form, for a uniform mesh, can be a single value
which represents the desired spacing throughout . The nature of the method makes it ideally
applicable to the most complicated of shapes and requires the minimum amount of data from the
user. For these reasons the advancing front technique was chosen as the method of mesh
generation for this project. The two-dimensional unstructured mesh generator (2dumg), written by
Dr. Gabriel Bugeda of C.I.LM.N.E., was used to generate, first the profile (using B-splines) and
then the mesh for N.A.C.A. profile data, supplied by Dr. Fernando Quintana also of C..LM.N.E.

e). Other Methods.

Many approaches have been developed which seek to take advantage of the properties of
both structured and unstructured grid generation techniques. Generally it is desired to create an
appropriate local mesh topology. One such approach is the "Multiblock" approach and the reader

is pointed towards reference 5. for a more complete treatment of the alternative methods.
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4, METHODOLOGY AND IMPLEMENTATION,

With regard to the available facilities, it was decided that the most propitious solution method

would be as follows:

a). A program would be written that would solve Laplace's equation in two dimensions, with
the ability to handle mixed boundary conditions to generate a potential field.

b). The geometry of the aerofoil and the surrounding domain would then be discretised by use of

the 2dumg mesh generation program.

c). When the potential field solver had been run for a given set of boundary conditions. The
resulting "non-lifting" potential field would be analysed to establish the required circulation
(applied at the theoretical centre of lift, the 1/4 chord point) to yield the rear stagnation point
at the trailing edge (the Kutta condition).

d). The velocity field generated by this circulation would then be calculated and added to that of
the "non-lifting" potential solver. The resulting field would then be analysed for violations

of the desired boundary conditions.

e). The "non-lifting" potential solver would then be re-run with the required boundary

conditions to correct the violations caused by the circulation.

f).  The subsequent output data would be analysed for any violation of the Kutta condition
caused by step (€). The circulation would then be adjusted to re-establish the Kutta condition
at the trailing edge and steps (c), (d), (e) and (f) would be repeated until the circulation had

converged to within an "acceptable" tolerance.

Once the solution technique had been decided upon, it was first necessary to develop a
program which would calculate the potential field created about an aerofoil, with mixed boundary

conditions, created by prescribed angle of attack and freestream conditions.

Already in existence at C.I.LM.N.E. was a two dimensional solver for Poisson's equation
(POISS2D) based on quadrilateral elements, which would run with Dirichlet or Neumann
boundary conditions. This program was first converted to run with 3 node triangular C(0)

elements (as described in section 2.6.) and then tested against a published case in reference 4.
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Once satisfactory results were obtained, the program was further converted to yield the
generated elemental and nodal velocities. The elemental velocities can be generated directly from
the nodal values of the potential function by use of equations 2.6.(20)., these velocities are
however, discontinuous and as such, some approximation had to be made to calculate the nodal
values. The simple solution of approximating the nodal velocity to the average of the velocities in
all elements to which the node contributes, was chosen. It must be remembered, however, that the
nodal values of the velocity are further approximations of an already approximate elemental value

and this has proved to be a source of error (see Discussion).

It then became necessary to generate an appropriate mesh around a nominal aerofoil. The
N.A.C.A. 0012 aerofoil was chosen, since it has been a popular experimental aerofoil section and,
as such, there is a large amount of experimental data available, covering a large range of Reynold's
and Mach numbers. Data for the profile section, generated by Dr. Fernando Quintana, was used as
input (together with a suitable background mesh) for the 2 dimensional unstructured mesh
generation program of Dr. Gabriel Bugeda (2dumg).

The resulting mesh data generated by 2dumg was then converted to an acceptable format for
input to the Laplace's equation solver. To do this, a program was written to firstly; reformulate the
mesh data to acceptable input for the potential solver and secondly; to calculate the required farfield
boundary conditions to impose the correct flow. It is noted at this stage, that no boundary
conditions needed to be applied at the aerofoil surface, because, in the absence of a prescribed
boundary condition, the Neumann or natural boundary condition of no velocity normal to the
aerofoil is applied by default (see section 2.6.). In order to apply the farfield boundary conditions,
the following was noted: For any uni-directional freestream with parallel streamlines, the potential

function, ¢, may be defined, analytically, as follows:

¢ = Vxx + Vyy + 0o

where: Vx is the freestream velocity in the x direction.
Vy is the freestream velocity in the y direction.

x and y are the Cartesian coordinates of any point in the flow field.

do is some "zero" value of the potential function (chosen as 0 in this case).

Thus, once the desired freestream velocity and angle of attack are input to the program, the
values of Vx and Vy can be evaluated and thus, the values of f at the outer boundary nodes can then

be calculated (their Cartesian positions being known from 2dumg). This allows Dirichlet type
boundary conditions to be given as input to the potential solver.
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When the potential solver was functioning (after suitable re-dimensioning of the arrays etc.),
it was desired to get a graphical representation of the results that had been obtained. To do this, the
graphical post-processor package of C.I.LM.N.E., FLAVIA, was used. A simple subroutine was
appended to the potential solver, which created the required output files of the required format for
FLAVIA. Once this was done, FLAVIA proved a great aid to the debugging and development of
the working programs.

The FLAVIA output clearly showed the position of the rear stagnation point to be on the
upper surface of the aerofoil, for flow with the aerofoil at a positive angle of attack (see Results
section). It was then necessary to impose the correct circulation at the 1/4 chord point to give the
Kutta condition, but how to calculate this circulation? Various methods were tried, with varying
degrees of success and some of them will be sketched out in the following sections.

The simplest way of imposing the Kutta condition is to impose the circulation that will cause
the normal (to the local chord) velocity to be zero at the trailing edge. In order to calculate this
normal velocity, the calculated nodal velocities at the trailing edge could be used (and indeed were
tried) but, as emphasised earlier, these values are false values, especially at the trailing edge, where
the changes in elemental values of the velocity are greatest (in directional terms). Thus a circulation
calculated on the nodal values of velocity at the trailing edge would yield a falsely high value of
required circulation. This method was tried and rejected (it yielded a value of circulation 3 times
too great, and the solution did not converge).

A second approach would be to consider the two elements that have two nodes on the
aerofoil surface, one of which being the trailing edge node ie. the first and last elements around the
aerofoil (starting from the trailing edge). The ultimate effect of the circulation is to cause the
velocities in these elements to be of equal values, tangential to the aerofoil surface and both in the
direction of the trailing edge. The circulation may be calculated based on correcting these tangential
velocities, but this also yields a falsely high value of the circulation, as the effect of re-imposing the
aerofoil boundary conditions is difficult to estimate and this has an effect on the tangential

velocities.

The third approach and indeed, the one which proved successful, was to calculate the normal

velocity between the tangential velocity components at the trailing edge, as shown below:
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Vie Z
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Fig 4.1. Calculation of the vertical velocity component at the trailing edge.

Once the vertical velocity component at the trailing edge is known, the required circulation to

give an equal and opposite velocity at the same point is given by the following expression:

_.I z
v=1 (3)

I'=v27 (:EL’—JFLZ)

z

This proved the most efficient method of calculating the desired circulation and indeed, was

found to converge rapidly to the desired solution (see Results section).

The velocity field due to the calculated circulation was assessed at each node and in every

element (note: the velocities are, here, continuous) by use of equations 2.3.(3).

It is noted that it is difficult to assess the potential field, caused by the circulation, in terms
that allow it to be directly added with the initial potential field. This is because, the potential field
due to the circulation is a function which spirals up, continually increasing with the angle of sweep
around the azimuth, this function is:

r
i = 4.(2).
2
Thus it is seen, that in a continuous mesh, it is impossible to define the potential field

continuously around the azimuth, as there must always be a "jump" in potential value between the

value of ¢ at © = 0° and © = 360°. However, the velocity fields that result from a circulation may

be calculated continuously for an uncut mesh and due to this, the velocity fields were chosen as the
fields to be added.
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Associated with the field due to circulation, is the undesired effect of the violation of the
required boundary conditions, as the summation of the field yields undesired velocities normal to
the aerofoil surface and undesired velocity components at the farfield boundary. These undesired
boundary conditions had to be removed to return to the desired boundary conditions of no flow
through the aerofoil surface and flow at the outer boundary equal to the freestream flow at infinity.

To create the required corrective field, the original "non-lifting" potential solver was used,
however, now there are additional complications with the boundary conditions. At the aerofoil
surface, it was required to apply "loads" which exactly counteract the normal components of the
velocity that was generated by the circulation. This required some changes to the potential solver
program. The theory for this will be given in the following:

For the required boundary conditions:

Qd_)_ﬁ—— .(3).a.
5.~ =0 4.(3)
a9 _

3y —5=0 4.(3).b.

Multiply 4.(3).a. by the normal in the x direction, nx, and 4.(3).b. by the normal in the y

direction, ny. Then equating gives:

0¢ a¢ _ _
5;"3 + (9_yny —ang —vny =0 4.(4).

Then a Galerkin error formulation may be written as before (see Theory section):

9%¢ 9% ¢ ¢
/Qw l:@—*—(—??:\ 6Q+ﬁwl‘ \:%nz‘*‘@ny_ﬂnz’—ﬁny:l or' =0 4'(5)'

Taking the first integral by parts, gives:

_ [ (%0  Gude a  0¢
/(2<8$81+Fy@>+£w[—8:nx+%—ny} BF—F?g‘w[‘[ ]c’)I‘:O 4.(6).

Now wr is arbitrary, therefore set wr = -w and then eliminating gives:

Ow ¢  Ow 0P _ _
/Q (3—:0(9_:0 + %Fy) o = jéw [unz 4+ vny] or 4.(7).
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Now, it is noted that in general:
Ux.nx + Uy.ny =Un 4.(8).

Where, Un is the normal velocity and again it is seen that on a boundary where Un =0, no

boundary condition needs to be specified.

For the above equations the same approximations are made as described in 2.6. which
ultimately yields the desired:

Ka =f

It is thus seen that a normal velocity is an additional term in the "load" vector and may be

evaluated by conducting a line integral over the side of the element that touches the boundary:

fig 4.2. Boundary Edge Element.

ing, + ony,
fo=-< ung;, + vny 4(9)
2 0

In this manner the, the relevant parts of the "load" vector can be prescribed. It is noted,

however, that this prescription relies upon the approximated nodal values of the velocity, which is

a source of error.

A routine was then written which calculates the required normals and element lengths and
this routine was appended to the program which calculates the circulation, this program then writes
a file of boundary conditions for the "non-lifting" potential solver. The potential solver itself was
also converted to load the "force" vector with the new input "loads".
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With these programs, the iteration process described at the beginning of the chapter was set

up and a flowchart for this process may be found in Appendix 1.

In detail, the process is shown below:

1). The first "non-lifting" velocity potential field (u°) is obtained by solving Laplace's equation
in the domain with the desired boundary conditions ie. no flow through the aerofoil surface and
farfield boundary velocities equal to the freestream velocity at infinity). Graphically this is shown

below:

2). The generated velocity field is analysed at the trailing edge to calculate the required circulation

to yield the Kutta condition as described previously. The velocity field due to the circulation is

then calculated (uor) yielding the following flow pattern:
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3). The summation of the two previous velocity fields gives a flow field which satisfies the
Kutta condition but violates the desired boundary conditions, both at the farfield boundary and at

the aerofoil surface. Specifically, the circulation generates a velocity component normal to the
aerofoil surface (u0rn) and undesired components at the farfield boundary (uors). To correct for
these undesired components, Laplace's equation is again solved with velocities of -uorn applied at
the aerofoil surface and -uors applied at the farfield boundary. The resulting velocity field is called

UOBC.

4). The first trial solution ul is then obtained from:

ul = u0 + uor + uoBC

The first trial solution field then becomes the subject field for the analysis and steps 2 to 4 are

repeated until convergence is achieved.
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The resulting velocity field will then be the desired field, that is:
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5., RESULTS,

Presented in this section are the various results obtained in testing the previously outlined
programs. Due to the nature of the program output, the majority of the results will be
demonstrated using "hardcopy" from the FLAVIA post processor program. The results have been
collected together and appear as appendices 1 to 4, inclusive. In this section, supplementary

description will be given to augment the presented results together with an analytical technique
which was used to verify the results obtained.

Appendix 2 gives output from FLAVIA for the test case of a N.A.C.A. 0012 under the
following conditions:

U = 10.0, the freestream velocity.

o = 10.0°, the aerofoil angle of attack.

The following is a description of the plates that are given in appendix 2.
Plate 1: Shows the full mesh used for the calculation procedure.
Plate 2: Shows the detail of the mesh around the aerofoil.

Plate 3: Shows the complete potential field calculated by the "non-lifting" potential solver.

Plate 4: Shows the stream lines around the aerofoil according to the output from the "non-
lifting" potential solver. The rear stagnation point can be clearly seen on the upper
surface.

Plate 5: Shows the stream lines around the aerofoil after 9 iterations of the process. This is

after the solution was seen to converge and is the final solution. The changes in the
front and rear stagnation points (from plate 1) can clearly be seen and indeed, the rear
stagnation point is at the trailing edge.

Plate 6: Shows the graph of Cp around the aerofoil (plotted against x direction) together with a

representation of the velocity vectors around the aerofoil.

Appendix 3. gives results from a similar test conducted for the same N.A.C.A. 0012 but
with the following conditions:
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oo = 10.0

o =45°

This is an extreme case and it must be remembered that in real viscous flow, the flow would
have separated at an angle of attack considerably lower than this. It is presented here, however, to
show clearly the stages towards the converged solution.

Plate 1: Shows the streamlines in the "non-lifting" potential field. The rear stagnation point is

seen to occur well up the upper surface of the aerofoil.

Plate 2: Shows the streamlines of the applied corrective circulation field.

Plate 3: Shows the streamline pattern after 1 iteration. The solution is seen to have over
compensated and has applied too much circulation and the rear stagnation point is seen

to occur on the lower surface.

Plate 4: Shows the streamline pattern after 4 iterations. The solver is seen to have compensated
for the original overshoot but has overshot the correction but to a much lower degree

than in Plate 2. The rear stagnation point is seen on the upper surface.

Plate 5: Shows the streamlines for the converged solution. The flow is seen to smoothly leave

the trailing edge.

Appendix 4 gives tabular and graphical information on the convergence of the solutions for
the two test cases mentioned above. The tabular data shows the calculated values of the normal
velocity at the trailing edge, the calculated value of circulation required to correct it and the running

total of the circulation for each iteration step.

Also in appendix 4, the convergence data is shown graphically. The difference between
successive values of the normal velocity at the trailing edge (vte) is plotted against the number of
iteration cycles for both test cases. Presented also, are graphs of the variation of the total value of

circulation versus number of iteration steps for both test cases.
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In order to validate the calculated results, it was desired to make a simple analytical estimate
of the circulation. To do this Lifting-line (or Thin Aerofoil) theory was used. The fundamental
equation of Thin Aerofoil theory is:

1 [ey(§)dE dz

This is simply a statement that the camber line is a streamline of the flow. For the case of a
symmetrical aerofoil, there is no camber and thus the camber line is coincident with the chord line.
This reduces 5.(1). to:

5 ] o 5.(2).

In essence, Thin Aerofoil theory treats a symmetrical aerofoil as a flat plate and thus this
model does not account for the aerofoil thickness distribution. Equation 5.(2). 1s an exact

expression for the inviscid, incompressible flow over a flat plate at an angle of attack.

In order to integrate 5.(2)., transform & into 0 by the following transformation:

£= %(1 — cos 0) 5.(3).
Since x is a fixed point, it corresponds to a particular value of 0, namely 6o, so that:
(o4
& = 5(1 — cos by) 5.(4).
and:
c .
df = 5% 6d0 5.(5).

Now, substituting 5.(3). and 5.(5). into 5.(2). an expression for the vorticity can be obtained

(noting the change in the limits of integration):

(1 + cos 6)

5.(6).
sin @ ©)

7(0) = 2aVeo
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Now apply the Kutta condition such that the vorticity at the trailing edge is 0. Then applying
L'Hopital's rule on 5.(6). gives:
—sin T

() = 20V ={ 5.(7).

Cos T

The circulation is now the integral of the vorticity:

F:./o 7(§)d§ 5.(8).

Giving, for a symmetrical aerofoil:

I'=noc. Ve 5.09).

Appendix 4. also gives these theoretical values of circulation for the tested aerofoils.
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Examination of the results given in appendix 4. shows that the method is relatively quick to

converge to the final value of circulation (in ~7 cycles for the extreme case). This behaviour has

been seen to occur throughout a full range of incidences (0° < o < 45°), so the solution is seen to

be reasonably stable.

It can be seen from analysis of the results presented in appendix 4., however, that there is a
tendency to "overshoot" the desired result and then it is seen to oscillate around the final solution

with diminishing amplitude for successive iterations until convergence.

Inspection of the FLAVIA graphical output shows the expected streamline patterns and the
sequence of appendix 3. clearly shows the "overshoot" and subsequent oscillations in trailing edge

position as the solution converges.

Also presented in appendices 2. and 3. are graphs of pressure coefficient (plotted around the
aerofoil) together with the velocity vectors, for the two primary test cases. The general form of the
Cp curves is good and indeed, the values correspond quite well with the published data in
reference 1. However, closer examination of the results shows certain aberrations in the velocity

vectors (and consequently in the Cp values) around the surface of the aerofoil.

As stated earlier in this report, the calculated nodal velocities are further approximations of
the already approximate elemental values. Thus, although the normal velocities, calculated on the
aerofoil surface due to the circulation (theoretically the only component) are exact, the imposition
of the negative of these velocities as applied "loads" in the potential solver does not exactly yield
the desired normal nodal velocity in the opposite direction to remove these "loads". Thus, on each
iteration, a slight error is incurred, and as the iteration process is continued these errors are

summed and may well accumulate into appreciable error by the end of the iteration process.

This error can be diminished by using many small elements near the aerofoil surface, but this
would have obvious penalties in terms of computation time and thus expense. Alternatively, the
iteration process itself may be adjusted to try to minimise the error. Instead of continually
summing the successive velocity fields, save the initial "non-lifting" velocity field, then run (say)
two cycles of the iteration process and note the culminated circulation. Then calculate the velocity
field due to this circulation and add it to the original "non-lifting" field, then re-start the iteration
process for another two cycles and again note the circulation and keep repeating the process always
summing the most current circulation field with the original "non-lifting" field. In this way itis

hoped that the culmination of error may be minimised.
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Comparison of the numerical results with those predicted by the Lifting-line theory shows
that for the extreme case of o = 45°, the agreement is excellent (~0.04% error). However, for the

moderate case of & = 10°, the agreement is less good, with the numerical solution overestimating
the circulation by approximately 9%. It must be remembered that the Lifting-line theory takes no
account of the thickness of the aerofoil and at the lower angle of attack the effect of thickness
would be greater. However, the Lifting-line theory is known to give very good results for slender
aerofoils (the N.A.C.A. 0012 aerofoil is considered to be the "fattest" slender aerofoil) and thus
this cannot be the sole reason for the discrepancy. The other main possible source of error occurs
in the numerical solution itself as, around the trailing edge there is a high gradient in velocities (the
sharper the trailing edge, the greater the gradient) and this will tend to push the limitations of the
Finite Element approximation, possibly leading to erroneous values in the calculated elemental
velocities around the trailing edge. This is not, however, a consistent reason since, for the higher
angle of attack case (where the velocity gradients at the trailing edge are greater) better results are
obtained. In the absence of a satisfactory explanation of this effect, it has to remain a topic for
further investigation.

It must be noted that the potential theory described here gives the erroneous prediction of
zero drag. In real flow, viscous effects cause skin friction and separation which inevitably produce
finite drag. The inviscid flow described here simply does not model the proper physics for drag
calculations. On the other hand, it is seen that the prediction of lift is quite realistic.

Inevitably, for any numerical solution technique which attempts to solve general potential
flow problems, comparisons must be drawn with the classic panel methods. Traditional panel
methods approximate a body to a series of straight "panels” each carrying a given source or sink
strength per unit length.

The values of these sources are calculated with regard to the freestream conditions, so that
the desired body shape becomes a streamline of the flow. In this way, the "non-lifting" potential
field due to the body can be calculated. From the source panel values, the velocities tangential to
each panel may be calculated and hence the pressure coefficient may be obtained directly from a

modified form of Bernoulli's equation, namely:

Cp=1-— (%)2 6.(1).

The above source panel method, only gives non-lifting solutions (sources and sinks have no
circulation); as has been seen, it is usually desired to calculate the lifting solution. To do this, the

above method may be augmented by using the Vortex Panel method in which the body shape is
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modelled by series of constant strength vortex panels distributed over the surface of the aerofoil.

The idea of the Vortex Panel method is similar to the idea of the Lifting-line theory in which
the vortex sheet is spread along the camber line (rather than over the complete surface). The
equations which are used to solve the Vortex Panel method are similar in many respects to those
which are used to solve the Source Panel methods. At the trailing edge, however, the similarity
ends as for the Vortex Panel method the Kutta condition must be applied. This can be done in a
number of ways, for example, the vortex strength in the upper and lower trailing edge panels can
be set to an equal and opposite value thus, the value of vorticity will be zero at the trailing edge

where the two panels meet (which is another way of expressing the Kutta condition).

The Vortex Panel method does offer some advantages over the method formulated in this
report. For example, in the Vortex Panel method it is not necessary to approximate the position of
a point vortex, responsible for all circulation, to the 1/4 chord point, this is particularly important
for non-wing applications such as automobile or submarine aerodynamics. Also, the tangential
velocities panel velocities calculated by this method have been shown to be very accurate which in
turn leads to a very accurate pressure coefficient distribution where as in the Finite Element
method, the tangential velocities that are calculated on the aerofoil surface are greater

approximations and thus less accurate.

However, the Vortex Panel method described in this section is termed a "first-order" method
as it assumes a constant value of vorticity over a given panel. Although the method may appear to
be straightforward, a review of the available literature shows that it can prove frustrating in the
numerical implementation. For example, the results for a given body are sensitive to the number of
panels used, their various sizes and the way they are distributed over the body surface (ie. it is
usually advantageous to place a large number of small panels near the leading and trailing edges of
an aerofoil and a smaller number of larger panels in the middle). There is also a need to ignore one
control point (point in the middle of a panel) in order to have a determined system in # equations of
nunknowns and this introduces further arbitrariness into the numerical solution as different
choices of removed control points can yield differences in the solution. Moreover, the resulting
numerical vorticity distribution is not always smooth, but rather they have oscillations from one
panel to the next as a result of numerical inaccuracies. The problems mentioned above are
generally overcome in different ways by different groups who have developed relatively

sophisticated panel programs for practical use.

Such accuracy problems have encouraged the development of higher order panel methods.
These higher order methods are now in industrial use and provide excellent low Mach, low angle

of attack predictions. However, the associated complexities involved with the higher order
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methods are of a similar "scale" as the increase in complexities required to improve the Finite
Element solution and thus, even though the Finite Element method does not predict the pressure
distribution to the same degree of accuracy as panel methods, the implementation of such a
procedure is much simpler and often it is only an accurate prediction of lift which is required and as
has been seen, this can be obtained directly from an accurate prediction of the circulation via the
Kutta-Joukowski theorem. Moreover, the Vortex Panel method is a very specific solution for
potential flow whereas the general Finite Element techniques developed here can be easily
expanded to more complex descriptive equations such as the Full Potential, Euler or time averaged
Navier-Stokes equations.

It may be concluded then, that the approach described in this report represents a relatively
easy to implement procedure that offers good lift results but only moderate pressure distribution
results. Moreover, the general approach lends itself easily to the solution of more complex

physical equations.

In order to take advantage of the possible benefits of this solution scheme it is desired that the
solution should be as quick to resolve as possible, to this end, the chosen equation solver had to be
re-evaluated.

Already existent in the original two dimensional quasi-harmonic equation program was a
“frontal" solver routine which was used throughout the development of the codes. Frontal solvers
offer the advantage that they do not require large amounts of on board memory, however, frontal
solvers are slow as they require large amounts of information exchange with the disc. On the
Convex "supercomputer”, these limitations of on board memory do not apply and thus, an

alternative, faster, solution scheme may be sought.

The chosen alternative was to use the Conjugate Gradient Algorithm, which is a solution
scheme which aims to minimise the residual (or error) derived in a given system of equations. The
algorithm for the method is given below:

For a system:

Ax=b

Where A is a matrix and x and b are vectors. Then define a residual, r, such that:

k=b- A.xk

Where k is the step number and x is some starting value of the vector x. Then select a search
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direction, p, such that:

pk= rk fork=1

K + o.pk-1 fork > 1

Where ak is a coefficient given by:

T
7,K ApK—l

ag = — T
pK—l ApK—l

Then a coefficient that assesses the amount that the solution moves in the calculated search
direction is calculated:

T
pK gt

Ag = ———
pK ApK

Then a new value of x may be calculated:

Xk+1 = xk + kak
The residual is then re-calculated for k = k+1 and the cycle is continued until convergence.

Itis noted that the first cycle of the process is the same as for the Gradient of Steepest
Descent method.

The Conjugate Gradient method is one of the fastest to converge. Indeed, in a recent test
conducted by Messes A. Hanganu and I. Colominas (both of C.ILM.N.E.), in the solution of
169x169 system of equations, the Conjugate Gradient Algorithm was found to be 10 times faster
than the Gradient of Steepest Descent method and 5 times faster than the Gauss-Seidel method.
Thus, it is seen that considerable benefits may be seen with the use of the Conjugate Gradient

Algorithm to solve the equation system created by the Finite Element Method for this problem.

Further improvements to the solution process may be obtained by applying adaptive meshing
techniques with the "non-lifting" potential solver. These techniques are based around the definition
of some residual or error term. In this case it would be possible to calculate an error between the
discontinuous elemental velocity field and a "smoothed" velocity field (smoothed, for example, by
the elemental shape functions). The mesh could then be optimised to minimise this error to some

global value (see reference 5.).
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There are two drawbacks of this technique, firstly, a general constraint is that the governing
equations have to be elliptic (Laplace or Euler, for example) and secondly, the calculation of the
error term requires the integration of a product of velocities which requires the use of (at least) six
noded triangular elements requiring reprograming to calculate the residual. A further drawback is
that, for the circulation field, it is not possible to calculate an error term, since the field is an
analytical field and thus, continuous. Hence, the optimisation can only be applied to the initial
“non-lifting" solution and this will consequently limit the benefits obtained. Undoubtedly,

however, this technique would improve the efficiency of the overall methodology.



Page: 43

7. CONCLUSIONS,

The solution technique, described in this report, delivers acceptable predictions of the
circulation (and thus lift) around a two dimensional aerofoil in inviscid irrotational flow. Indeed,
these results offer acceptable description of the lift experienced by an aerofoil in low speed,

moderate angle of attack flow.

The model also gave the prediction of zero drag which is known to be erroneous. This
occurs because the model contains no viscosity and it is viscosity, through the action of skin

friction and forcing separation, which is ultimately responsible for creating drag.

The generated results were validated against both experimental data and theoretical
predictions from the Lifting-line theory.

Further, the applied technique was found to be a simpler to implement alternative to the
established Vortex Panel methods. However, there is an associated cost in overall accuracy,

particularly in the predictions of the pressure distribution around the aerofoil.

The general Finite Element Method presented here has the advantage that it offers much

wider applicability to the solution of equations which offer broader validity in the physical domain.
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Appendix 1,
Flowchart Of Process.
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Appendix 2,
FLAVIA Results For Test Case With

o=10°
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Appendix 3.
FLAVIA Results For Test Case With

o =45°
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o=10°

Step Circulation Velocity at vten-vteo Circulation
Trailing Edge Total

1. -8.045033 1.693659 1.693659 -8.04503
2 -0.045166 0.095086 1.598600 -8.49670
3. 2.324405 -0.489339 0.584425 -6.17229
4. 4.512229 -0.107836 0.381504 -5.66007
5 -0.522321 0.109960 0.217296 -6.18239
6. -0.167020 0.035162 0.074798 -6.34941
T 0.164452 -0.034621 0.069783 -6.18495
8. 0.110841 -0.023335 0.011286 -6.07411
9. 0.014399 -0.003031 0.020304 -6.05971

10. 0.020284 -0.004270 0.001239 -6.03943

Theoretical value from lifting-line theory, I" =-5.527




o = 45°

Step Circulation Velocity at vten-vteo Circulation
Trailing Edge Total
1. -32.80016 6.905169 6.905169 -32.80016
2, - 1.69336 0.356490 6.548679 -34.49352
3. 9.61061 -2.023249 2.379739 -24.88291
4. 2.10102 -0.442448 1.580802 -22.78125
5. - 2.18368 0.459802 0.914639 -24.96162
6. - 0.74310 0.156440 0.302577 -25.70472
7 0.59641 -0.125558 0.281998 -25.10831
8. 0.35513 -0.074763 0.050795 -24.75318
g, - 0.06019 0.012680 0.087444 -24.81337
10. - 0.05458 0.014895 0.022156 -24.86795

Theoretical value from lifting-line theory, I" = -24.87




Appendix 4,
Convergence Data For Both
Test Cases.
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