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Abstract

The development of high-speed train lines has increased during the last twenty years, leading
to more demanding loads in railway infrastructures. For these reasons, a discrete element
model of granular material was carried out using 3D spherical particles with a rolling resis-
tance, in order to consider non-sphericity of ballast stones. Other discrete element model
representing granular materials as sphere aggregates (sphere clusters) has been also imple-
mented. Current work presents the methodology followed to develop the discrete element
model able to calculate railway ballast interaction. Interaction between discrete and finite
elements is another key point of the calculations that is addressed. This document displays
some results evaluating the influence of material parameters and geometric representation
in the simulation of railway ballast and presents some laboratory tests calculated with the
numerical application developed.



1 INTRODUCTION

The railway track system plays an important role in the transport network of any country,
and its maintenance is essential. Before the advent of high-speed train lines, most attention
has been given to the track superstructure consisting of rails, fasteners and sleepers, and less
attention has been given to the substructure consisting of ballast, subballast and subgrade.
However, the maintenance cost of the substructure is not negligible at all and should be taken
into account [56].

1.1 Motivation

Besides the importance of the study of ballast properties, in economic terms, it should be
pointed that a new variable appeared in the last two decades: the increase of trains speed.
This new way of transport, which has improved people mobility all around the world, is also
more demanding in terms of loads and vibrations [34].

One of the main problems that has appeared with the increase of train speed is, the so-called,
ballast flight. The traditional ballasted track is certainly a good solution, both technically and
economically. However, the high-speed air fluxes generated by the train, passing at certain
velocity, can cause movement of ballast particles. Those particles can hit the underbody of
the train, they can be crushed by the wheels against the rail (damaging both elements) or
they can be projected laterally outside the railroad. If those stones bounce off causing the
release of other particles they could generate a phenomenon called ballast clouds.

Figure 1.1: High-speed train travelling over a ballast railway track.

A possible solution to this problem is to reduce the thickness of the ballast bed, in order to
increase the space between train and ballast, that will lead to the decrease of the air speed
fluxes. This solution leaves the sleeper slightly uncovered, which can cause new problems like
excessive settlements and horizontal displacements in some sections.
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Everything above mentioned suggests that a deep study of this infrastructure must be
carried out, and here is where numerical methods become important.

Refined constitutive models, based on continuum assumptions, are generally used to investi-
gate many complex geomechanic problems. These models result in powerful tools to describe
the critical states for soils, although they do not represent the local discontinuous nature of
the material [16], [17]. However, discontinuities play a major role in the behaviour of granular
materials inducing special features such as anisotropy or local instabilities, which are difficult
to understand or model based on the principles of continuum mechanics.

The discrete element method (DEM) is an alternative approach, that considers the granular
nature of the material and provides a new insight in the constitutive model. In it, the
material is modelled particle by particle and interaction between those particles determine
material response [7]. DEM has proven to be a very useful tool to obtain complete qualitative
information on calculations of groups of particles [30].

Current work objective is to reproduce quantitatively the macro-mechanical behaviour of
railway ballast, based in DEM. To that end, some laboratory tests are reproduced using a
simple DEM formulation. From the point of view of micro-scale analysis, it is essential to
represent the exact geometry of the particle. On the other hand, if the interest lies in the
behaviour of the granular material as a whole, it is thought that the geometry of each particle
is not a determining factor. For that reason two different approaches, one using spheres to
represent particles and other using particles more similar to real ones (their definition will be
explained in advanced in section 3.2.2), will be studied. The use of spheres is a very efficient
approach in terms of computational cost, but it could be a very rough simplification.

The main material contact parameters, to be defined in the numerical model are: normal
contact stiffness, tangential contact stiffness, local friction, restitution coefficient and, if par-
ticles are modelled as spheres, rolling friction coefficient, which is a dimensionless parameter
that controls the limit of rolling (it is necessary due to the fact that the interest is in simulat-
ing a material with irregular shape). Normal and tangential contact stiffness can be derived
from material Young and Poisson coefficients.

The numerical discrete element model, for the simulation of ballast aggregates, has been
implemented in Kratos, a multidisciplinary framework for the development of finite and dis-
crete element programs (that is being developed by CIMNE1), within an application called
DEM-application, [15], [53], [54].

1Centre Internacional de Mètodes Numèrics en Enginyeria.
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1.2 Objectives and outline

This work is part of the research project Modelación numérica del conjunto carril-traviesa-
balasto mediante el Método de los Elementos Discretos (BALAMED)2 carried out in CIMNE.

The main objective of this thesis is the development of a Discrete Element Model to repro-
duce railway ballast behaviour. To achieve this objective, the scheme followed is:

• Chapter 2 introduces the literature review. The first part of the chapter is based in
railroad infrastructures, train load imposition and ballast properties. The aim is to have
as much information as possible to define the simulations in the most accurate manner.
Then, in the second part, the DEM is presented, including constitutive models, force
calculation, time integration, neighbour search and coupling with the Finite Element
Method (FEM).

• Chapter 3 shows code contributions developed in this work: rolling friction implementa-
tion, sphere clusters generation and improvements in the discrete-finite element contact
detection.

• Chapter 4 presents two laboratory tests used to calibrate and validate the method.
The first one was the evaluation of ballast lateral resistance against sleeper movement
and the second one a large-scale triaxial test. The definition of the geometry, mesh and
initial conditions of the simulations representing those laboratory tests is also displayed.

• Chapter 5 shows the results obtained with Kratos using the DEM-application and the
comparison with laboratory results. Those results comparison led to: material param-
eters calibration and validation of code improvements.

• Finally, chapter 6 and 7 present the conclusions and future work respectively.

2Project financed by Spanish Government with reference number: BIA2012-39172
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2 LITERATURE REVIEW

This chapter is divided in two sections. The first section presents a brief introduction of
railway structures and a review of its components, from the superstructure, consisting on
sleeper, rail and fasteners, to the infrastructure, focusing on ballast. Moreover, section 2.2
introduces the DEM as a general approach for the calculation of granular materials.

2.1 Introduction to railway structures

The railway structure can be split in two parts; the infrastructure, whose main objective
is the distribution of the train loads to the soil, and the superstructure, whose aim is the
transmission of the train loads to the infrastructure. The superstructure is directly in contact
with train wheels.

2.1.1 Railway infrastructure

Traditionally, the conventional railway infrastructure cross-section configuration consist in a
simple ballast layer over the platform. Besides distributing traffic loads, the ballast layer
contributes to rainwater evacuation, platform protection to moisture variance, longitudinal
and lateral stabilization and high loads damping [12].

However, due to the more demanding loads, for high-speed lines, there are several layers
of different materials over the platform. The difference between conventional and high-speed
train lines cross-section can be seen in Figure 2.1(a).

Conventional lines

Ballast 25 cm

Platform

Most frequent value

for conventional

railway structure

stiffness

Kbp = 35 kN/mm 

(a) Conventional railway structure.

High-speed lines

Ballast 35 cm

Subballast 25 cm

Gravel 20 cm

Sand 15 cm

Platform

Most frequent value

for high-speed

railway structure

stiffness

Kbp = from 70 to 110 kN/mm 

(b) High-speed train railway structure.

Figure 2.1: Convetional and high-speed railway substructure scheme. Typical values for the
vertical stiffness of the platform and subgrades (Kbp). Source: López Pita [36].
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Each layer characteristics are [36]:

• Ballast: the top layer of granular material, about 35 cm thick, which is directly in
contact with the sleepers. It mainly helps to bear and damp the train loads transmitted
from the railroad sleepers. It also facilitate water drainage.

• Subballast: layer composed by a mixture of ballast, gravel and sand located immediately
below ballast and over the platform. Its main functions are the prevention of platform
damage due to erosion, rainwater drain and load distribution.

• Platform: the basis for the railway infrastructure.

2.1.2 Railway superstructure

The other main part of the railroad is the superstructure which components are [36]:

• Rail: it is directly responsible of supporting the vehicles passing. Its weight is about
60 kg/m.

• Fasteners: there are different types. It is the element that fixes the rails to the sleepers.
There are four per sleeper, which corresponds to two per rail.

• Bearing plate: an elastic pad between the sleeper and the rail that provides greater
vertical elasticity to the whole structure.

Rail
Fasteners

Sleeper

Bearing

plate

Figure 2.2: Superstructure configuration.

Other components

In addition to the main components shown in Figure 2.2, there are two other significant
elements that form the superstructure of the track:

• Rubber sole: an elastic element located under the sleepers to modify track stiffness
and increase elasticity. It is normally used in viaducts where track elasticity should be
reduced in order to reduce its rapid damage.
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• Resilient pad: placed under the ballast in order to change track stiffness and elasticity.
It has a similar use as the rubber soles.

2.1.3 Railway geometrical quality

When a train travels over the track, it has six degrees of freedom, three corresponding to
displacement: longitudinal (travelling direction), vertical and lateral, and the other three
corresponding to rotations about those axes which are called: roll (about the longitudinal
axis), yaw (about the vertical axis) and pitch (about the lateral axis). Figure 2.3 shows a
diagram of those movements.

Longitudinal 

Vertical 

Lateral

Roll 

Yaw 

Pitch 

Figure 2.3: Train displacements and rotations designation. The vehicle travels in the longi-
tudinal direction.

These displacements and rotations produce a set of loads that have to be taken into account
for dimensioning the railway track. Vertical loads are the main criteria for designing the
components of the track, lateral loads determine the maximum speed of vehicles movement,
whereas longitudinal loads can cause horizontal buckling of the track.

Track quality can be quantified by the following parameters [20]:

• Vertical alignment: this parameter defines the variations in height of the rail upper
surface, relative to a reference plane.

• Cross level: this parameter sets the difference in height between the upper surface of
both rails on a section normal to the axis of the road.

• Track gauge: parameter determining the distance between the active faces of the heads
of the rails 14 mm below the rolling surface.

• Horizontal alignment: parameter which, for each rail, represents the distance, from
above, compared to the theoretical alignment.

• Track twist: represents the distance between a point of the track and the plane formed
by three points belonging to the same railway. It has an impact on possible derailments.
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Figure 2.4 shows schematically some of these defects.

Horizontal

alignment

Theorical rail

position

Vertical

alignment

Cross-level

Figure 2.4: Typical railway track alignment defects. Source: López Pita [36].

The quantification of these parameters allows to determine the railway track quality in
terms of safety and comfort. Therefore, during construction and conservation, each railway
manager requires maximum tolerances for each one of these five factors.

2.1.4 Railway stiffness

Railway stiffness refers to the vertical stiffness of the whole structure [56]. Burrow [11]
highlighted that the magnitude of the track stiffness is mainly influenced by the infrastructure,
composed by ballast, subballast and platform. Considering only these settlement layers, the
ballast is the most relevant material. Comparatively, the platform influences more, but its
stiffness is almost imposed.

As Burrow developed [11], there is an optimal track stiffness (at least from the theoretical
point of view). When track stiffness is excessively low, too much rail deformation may occur,
while, if track stiffness is high, the railroad would be damaged rapidly. López Pita et al. [37]
proposed a range of optimal values for vertical stiffness. Their work was based on optimizing
maintenance costs and energy dissipation costs (due to excessive deformations), depending
on track stiffness. They used data from the high-speed lines Paris-Lyon and Madrid-Sevilla.
The study concluded that the track stiffness must be between 70 and 80 kN/mm.

The EUROBALT II European project also dealt with the deterioration of railway tracks.
Its main objective was to identify the parameters that should be controlled to reduce damage
in railway tracks. The findings of this study were that the most influencing parameters to
the track behaviour were: the stiffness, the displacement of the rails and the settlement of
the different layers.

2.1.5 Ballast and sleepers

In the next paragraphs, the main features and properties of ballast and sleepers are presented.
Firstly, railway ballast properties are described, as its study is the objective of this work.
Then, the main features of sleepers used in Spain are defined. Sleepers are significant because
they directly interact with ballast.
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Ballast specifications

Ballast, as structural element, is formed by a set of particles of different size and shape. The
ballast is, thus, a layer of granular material which is placed under the sleepers and therefore
develops an important role: resisting to vertical and horizontal loads, produced by the passing
train over the rail, and facing climate action.

European Standard EN 13450 specifies the technical characteristics of ballast, used as a
supporting layer, in railway tracks. The Standard defines quality controls to which ballast
should be subjected.

The Standard uses five properties of aggregates to define the specifications of ballast used
in railway tracks: granulometry, Los Angeles coefficient (CLA)3, micro-Deval coefficient
(MDS)4, flakiness index and particle length.

The size distribution of particles established by the European Standard EN 13450 is pre-
sented in Table 2.1.

Table 2.1: Ballast granulometry. Source: CENIT [12].

Sieve size (mm) cumulative % passing through each sieve

63 100

50 70-100

40 30-65

31,5 0-25

22,4 0-3

32-50 ≥ 50

Table 2.1 shows that particle size should be between about 20 and 60 mm. Moreover, the
aim is to avoid the presence of angular particles, because they can obstruct tamping operation
and they have tendency to slip. In order to resist tamping, a hard enough rock, difficult to
break, is needed. According to the Spanish Railway Standard of 2000, this requirement is
met if the original rock has a compression resistance of 1200 kg/cm2.

Tamping operation is necessary because when a vehicle is travelling trough the railway track
two different phenomenon appear simultaneously [3]:

• Vertical deflection: affects a rail length of 3 to 4 meters approximately. Its maximum
value in the point of application of the load ranges from 1.5 to 2 mm, considering a
load of 10 tons per wheel.

3Wear coefficient of Los Angeles (CLA). It measures wear resistance by attrition and impact of aggregates.
It is the ratio of the difference in weight of the initial sample and the material retained by the sieve 1.6 mm
UNE (once subjected to an abrasive and standardized process using iron balls), divided by the initial weight
of the sample.

4Deval coefficient: determined by the value obtained in the Deval test, consisting of introducing 44 stones
of 7 cm weighing 5 kg, in a cylinder that rotates around an inclined axis. The cylinder is rotated during 5
hours until 10000 turns. Then the set of dispersed materials are weighed getting "P" in grams. The Deval
coefficient is given by the ratio 400/P [55].
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• Lifting wave: the front part of the railway track lifts in the direction of movement, the
magnitude use to be about the 10% of vertical deflection.

Each train axle passage produces a sleeper stroke to ballast layer (on a freight train 150
strokes can be reached) which, together with the increasing weight of the sleepers (from 300
to 380 kg) may lead to a rapid deterioration of ballast stones. To minimize this deterioration,
a maximum value of the coefficient of Los Angeles is required. Particularly, this coefficient
should be less than 14%.

So, the main functions of the ballast against the vertical forces are:

• Help to provide stability and damping capacity to the railway track, which reduces the
dynamic loads exerted by trains passage.

• Distribute pressures in the platform to avoid reaching the bearing capacity of the
ground.

• Withstand particles abrasion that can be consequence of their successive contact with
rigid infrastructures such as, for example, concrete bridges.

Table 2.2 summarizes other features required to materials used as ballast. To meet all
those functions, the layer thickness should be between 25 and 35 cm [3]. The lower limit is
determined by the achievement of objectives, with less ballast the specifications could not be
met, while the upper value is set by the need to restrict the seats of the railway track and
the geometrical defects.

Abrasion requirements are achieved by requiring the ballast a value over 15 in the Deval
coefficient.

Particle shape also affects ballast behaviour, that is why flakiness index and particle length
are evaluated. The flakiness index test is performed to determine the number of slabs in the
granular material used in the construction of railway tracks. Stretched particles can break,
leading to modifications of the particle size and decreasing the expected load capacity. In this
context, slabs are the fraction of granular material whose minimum dimension (thickness) is
less than 3/5 of the average size of the considered fraction. The test consists of two sifting
operations, the first one to separate particles into groups, depending on their size, and the
second sift with a parallel bars sieve. The bars of the second sieve are separated 0.5 times
the size of the first sieve. The flakiness index is expressed as the weight percentage of ballast
passing through the bars sieve. According to the European regulations, this index must be
less than or equal to 35%.

The particle length index is defined as, the mass percentage of ballast particles greater
than or equal to 100 mm length, in a ballast sample weighting more than 40 kg. The test
is performed by measuring each of the particles with a calliper. According to European
legislation the particle length index must be lower than 4%.

The most common ballast maintenance operation is mechanical tamping. Its aim is to
correct track misalignments by compacting the ballast under the sleepers, providing a solid
foundation. If ballast is sufficiently strengthened, then, the stone would occupy the smallest
possible volume, increasing the drainage of the platform.
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Table 2.2: Ballast properties. Source: CENIT [12].

Actions Functions Property Property evaluation

Vertical

Elasticity and damping
Elastic modulus Load plate test

Ballast thickness Minimum thickness

Abrasion resistance Resistance to
abrasion Wet MicroDeval

Alleviate pressure on
the railway platform Ballast thickness Minimum thickness

Withstand rail shocks Impact resistance Los Angeles coeficient

Horizontal
Longitudinal resistance

Granulometry
Granulometric analisys

% fines
Particles maximum lengthTransversal resistance

Climate

Assist the drainage Granulometry Granulometric analisys
% fines

Ice resistance Frost resistance

Frost resistance
Particle density

Petrography analysis
Water absorption

Resistance to magnesium
sulphate

Sleepers

The elongated pieces made of various materials, located between the rails and the ballast
layer are called sleepers, whose main functions are [4]:

• Keep rail position. Sleepers support the two rails maintaining their separation and
inclination.

• Distribute vertical, lateral and longitudinal loads from the rails to the ballast.

• Contribute (along with fasteners) to maintain electrical isolation between the two rails,
on roads with electrical signals.

• Preserve the horizontal stability of the track, in both directions, lateral and longitudi-
nal, against stresses due to temperature variations or dynamic loads due to the trains
passage. Sleepers prevent buckling and ripping (lateral displacement) of rails.

• Preserve the stability of the track in the vertical plane, against static and dynamic
loads produced by trains.
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The most significant sleeper variables are [4]:

• Dimensions: as the supporting area available is a variable that should be taken into
account to reduce the stresses transmitted to the ballast layer.

• Weight: contributes to increase longitudinal and lateral stability of the track.

• Elasticity: along with the fasteners, sleepers provide elastic stability absorbing mechan-
ical forces and preventing deterioration, which minimizes maintenance costs.

Different types of sleepers can be classified according its material or based on their shape.
Sleepers, depending on the material, can be classified as wood, steel, cast iron, reinforced
concrete, pre-stressed concrete or synthetic sleepers.

According to their shape, sleepers can be monoblock, semi-sleepers or twin block. Figure
2.5 shows a diagram of each of the types.

(a) Monoblock. (b) Semi-sleeper. (c) Bi-block.

Figure 2.5: Different types of sleeper depending on the shape. Source: Álvarez and Luque
[4].

Although the list of sleeper types may seem large, in Spain, basically three types are used:

• Wood sleepers (Figure 2.6(a)).

• Two different concrete sleepers:

– Monoblock sleepers (Figure 2.6(b)).
– Twin block sleepers (Figure 2.6(c)).

(a) Wood sleepers. (b) Monoblock concrete sleepers. (c) Twin block concrete sleepers.

Figure 2.6: Different kind of sleepers, by material and shape.
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Wood sleepers, defined in the Standard NRV 3-1-0.0 [40], may be of different kind of trees
such as oak, beech or pine. These sleepers must comply the established regulations, which
came from 1966 [52].

In the first railway tracks, constructed in the nineteenth century, the only material used to
manufacture sleepers was wood, since their physical and mechanical properties, added to its
abundance, made this material the best choice. However, time passes and the possibility of
using concrete to build sleepers make wood sleepers almost disappear.

Nowadays wood sleepers are used very rarely and never in high-speed lines. Wood sleepers
can be used, for example, in tracks where the stiffness of the ballast platform and the structure
is very high, like in metal bridges.

Prestressed concrete displaced wood as a material for sleepers manufacturing. These are
the most important benefits and drawbacks of concrete sleepers over wood sleepers [3]:

• Advantages of using concrete sleeper instead of wood sleepers:

– Concrete sleepers have a longer life, about two or three times more than wood
sleepers.

– Their physical conditions are preserved all over the railway track.
– Better track resistance against displacement in its horizontal plane.
– Their greater weight provides higher lateral and longitudinal resistance against

different forces.
– Their design can be easily changed to improve track properties.
– Concrete sleepers cost less than treated wood sleepers.

• Disadvantages of using concrete sleeper instead of wood sleepers:

– To electrically isolate the two rails, the use of special insulation is needed.
– Its weight, from 180 to 350 kg, compared to the weight of wood sleepers, 80 kg,

make them an element difficult to handle. They are also more brittle.
– They present a structural weakness at their centre (in case of monoblock sleepers)

because their uniform support on ballast produce stresses on their upper face,
being able to originate cracks in concrete.

The Standards N.R.V. 3-1-2.1 [41] and N.R.V. 3-1-3.1 [42] describe, respectively, the main
features of monoblock and twin block sleepers. In Spain, monoblock sleepers are widely used
because of their resistance (monoblock sleepers can be prestressed) and their bigger bearing
surface, that allows a better distribution of loads. The advantages of twin block sleepers are
that they are lighter and their behaviour to lateral movement is good (in France they are
still used frequently). Twin block sleepers main problems are [24]:

• Its high cost due to steel used in its central zone.

• They are not the best sleeper in maintaining rail track width, mainly due to its low
vertical and horizontal stiffness.

• Their central strut may be corroded easily.

• Their behaviour against derailment is poor.
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Regarding materials used, technical specifications require a high quality cement with high
strength and uniform size aggregates and siliceous. The compressive strength of the concrete
must be greater than 550 kg/cm2, and the tensile strength of the steel should be above 150
kg/mm2.

There are many types of concrete sleepers depending on their dimensions. For monoblock
sleepers, which will be the object of study in this work as they are the most used in Spain,
technical specification ET 03.360.571.8 [2] establishes the parameters defined in Table 2.3.
Those parameters will depend on the type chosen. Figure 2.7 shows some of those parameters.

New sleeper designs should be fully defined in a draft drawing, signed by the applicant,
including basic dimensions that the department responsible for the railway infrastructure
administration determines. In all cases sleeper length is 2.60 m and the base width in the
outer part is equal to 30 cm, excluding very few exceptions.

Table 2.3: Sleeper geometry.

Dimension Description

L Concrete element total length

bi, bs Concrete element lower and upper part thickness

hp Height in each position along the entire concrete element

L1 Distance from the outer reference point to the fasteners

L2
Distance between the outer reference point and the end of the

concrete element

I Tilting of the rail support plane

F Flatness of each supporting area to two points far away 150 mm

T Relative torsion between the supporting planes of both rails
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Figure 2.7: Sleeper geometry parameters. Source: Admetlla [3].

Ballast-sleeper friction

Ballast-sleeper friction is one of the most important parameters for the evaluation of railway
track load resistance. However, it is a feature very difficult to obtain. Zand and Moraal [62]
compared the variation of the lateral force (force needed to move the sleeper laterally) with
the variation of vertical load (weight on the sleeper), obtaining a friction coefficient value
of 0.7247 (graph of Figure 2.8). They also compared their results with other studies that
obtained values between 0.665 and 0.872. This range of values would be the starting point
for the calibration of the subsequent simulations.

Figure 2.8: Maximum ballast resistance when a lateral displacement is imposed to the sleeper
depending on the vertical load. Source: Zand and Moraal [62].
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2.2 Discrete Element Method

Since Cundall [14], in 1979, presented the first ideas of the DEM, this numerical technique has
increased its popularity being known, nowadays, as a powerful and efficient tool to reproduce
the behaviour of granular material.

For the analysis of granular materials with DEM, each grain is represented as a rigid particle.
In the first DEM approaches, those particles used to be spheres in 3D and circles in 2D, but
now, numerous advances had been developed to represent different geometries. Regardless
the geometry of the particles, they interact among themselves in the normal and tangential
directions, assuming material deformation concentrated at the contact points.

Material properties are defined by appropriate contact laws that can be seen as the formu-
lation of the material model at the microscopic level.

In the following paragraphs, basic formulation of the DEM will be presented. Special
features regrading the development of the DEM for the calculation of ballast material will be
treated in chapter 3.

2.2.1 Equations of motion

Basic equations

Standard rigid body dynamics equations define translational and rotational motion of parti-
cles. For the i-th particle, movement is calculated as

miüi = Fi , (2.1)

Iiω̇i = Ti , (2.2)

where ui is the particle centroid displacement in a fixed coordinate system X, ωi the angular
velocity, mi the particle mass, Ii the moment of inertia second order tensor, Fi the resultant
force, and Ti the resultant moment about the central axes.

Fi and Ti are computed as the sum of: (i) all forces and moments applied to the i-th particle
due to external loads, Fext

i and Text
i , respectively, (ii) contact interactions with neighbouring

spheres Fij , j = 1, · · · , nci , where nci is the number of elements being in contact with the
i-th discrete element, (iii) forces and moments resulting from external damping, Fdamp

i and
Tdamp
i , respectively, which can be written as

Fi = Fext
i +

nc
i∑

j=1
Fij + Fdamp

i (2.3)

Ti = Text
i +

nc
i∑

j=1
rijc Fij + Tdamp

i (2.4)

where rcij is the vector connecting the centre of mass of the i − th particle with the contact
point c with the j-th particle. Figure 2.9 shows contact forces between spheric particles [48].
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(a) Contact between various particles. (b) Force between two particles.

Figure 2.9: Force Fij at the contact interface between particles i and j. Source: Oñate and
Rojek [48]

Integration of equations of motion

Equations (2.1) and (2.2) are integrated in time using a simple forward Euler scheme. The
translational motion at the n-th time step is calculated as follows:

üni = Fn
i

mi
, (2.5)

u̇ni = u̇n−1
i + üni ∆t (2.6)

un+1
i = uni + u̇ni ∆t (2.7)

The integration scheme for the rotational motion is:

ω̇ni = Tn
i

Ii
, (2.8)

ωni = ωn−1
i + ω̇ni ∆t (2.9)

∆θi = ωni ∆t (2.10)

Explicit integration in time yields high computational efficiency and enables the solution of
large models. The disadvantage of the explicit integration scheme is its conditional numerical
stability, imposing the limitation on the time step ∆t [64]. The critical time step is determined
by the highest natural frequency of the system.
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2.2.2 Frictional contact conditions

Contact search algorithm

The search for new particle contacts is the most time-consuming operation in the DEM
calculation. The simplest approach to identify interaction pairs, by checking every sphere
against every other sphere would be very inefficient, as the computational time is proportional
to n2, where n is the number of elements. For that reason, some search algorithms based on
quad-tree and oct-tree structures have been developed. Those formulations allow reduction
of the necessary time to become proportional to (n·lnn), which allows to solve large frictional
contact systems [31].

Decomposition of the contact force

Once contact between a pair of elements has been detected, the forces occurring at the contact
point are calculated. The contact between the two interacting spheres can be represented by
the contact forces Fij and Fji (Figure 2.9), which satisfy the following relation:

Fij = −Fji (2.11)
Fij is decompsed into the normal and tangential components, Fij

n and Fij
s , respectively (Fig-

ure 2.10)
Fij = Fij

n + Fij
t = Fnnij + Fij

t (2.12)

where nij is the unit vector normal to the particle surface at the contact point between
particles i and j. This implies that it lies along the line connecting the centres of the two
particles. Its direction is outwards from particle i.

(a) Contact between two particles. (b) Contact force decomposition.

Figure 2.10: Decomposition of the contact force into normal and tangential components.
Source: Oñate and Rojek [48].

The tangential force Fij
t , along the tangential direction uijt (Figure 2.10), can be written as

Fij
t = Ft1u̇t1 + Ft2u̇t2 (2.13)

where Ft1 and Ft2 are the tangential force components along the tangential direction u̇t1 and
u̇t2 , respectively.
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The tangential force modulus Ft is obtained by

F ijt = |Fij
t | = (F 2

t1 + F 2
t2)1/2 (2.14)

The contact forces Fn, Ft1 and Ft2 are obtained using a constitutive model formulated for
the contact between two rigid particles. Typical DEM local constitutive models are described
in the following section.

2.2.3 DEM constitutive models

Standard constitutive models in the DEM are characterized by the parameters shown in
Figure 2.11.

Figure 2.11: DEM standard contact interface. Source: Oñate et al. [49].

Those parameters are:

• Normal and tangential stiffness parameters kn and kt.

• Normal and tangential local damping coefficients dn and dt at the contact interface.

• Coulomb friction coefficient µ.

Normal contact force

In the basic DEM, the normal contact force Fn is decomposed into the elastic part Fne and
the damping contact force Fnd:

Fn = Fne + Fnd (2.15)

In general, the normal elastic interaction force can be described as follows:

F cne = knδ
α (2.16)

where Fcne is the normal elastic force in the contact point (c), kn the normal stiffness param-
eter, δ the indentation (penetration between both particles that is shown in Figure 2.12) and
α is a parameter that depends on the constitutive model.
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Figure 2.12: Indentation between two particles in contact.

The most common constitutive models, for the calculation of granular material normal
contact force with DEM are: linear and Hertz models.

Considering contact between spheres with Young modulus equal to Ei and Ej , Poisson ratio
equal to νi and νj and radius equal to ri and rj respectively, the normal force parameters for
the linear constitutive model are:

kn = 2πE1E2(rirj)2

(E1 + E2)(ri + rj)3 , α = 1 (2.17)

The Hertz contact model is an approach that takes into account the curvature of the con-
tacting surfaces. When one body touches another one, the contact point is deformed, but
that contact area is very small compared with the dimensions of the contacting bodies. The
shape of the contact area, its increase and the stress distribution along that region is acquired
from the geometry of the contacting bodies and the load applied [28].

It should be noted that, the Hertz contact model can only be applied in static cases or when
the impact velocity is small. The impact velocity limit depends on the density and Young
modulus of the material, Johnson [28] set a criterion to know which is the maximum impact
velocity for applying the Hertz contact model.

In case of two spheres with radius ri and rj the contact area is a circle of radius a, as shown
in Figure 2.13.
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Figure 2.13: Hertz contact model scheme.

From those relations, the normal force stiffness parameters kn for the Hertz constitutive
model can be derived:

kn = 4
3

EiEj
Ej(1− ν2

i ) + Ei(1− ν2
j )

√
rirj
ri + rj

, α = 1.5 (2.18)

Damping contact force is calculated in the same way for linear and Hertz contact constitutive
models:

F cnd = dn ·∆vrn (2.19)

where vrn is the normal relative velocity of the centres of the two particles in contact:

vrn = (u̇j − u̇i) · nij (2.20)

and dn depends on the restitutions coefficient cr, that represents the percentage of energy
the system returns after a collision.

dn = −(ln cri + ln crj)

√√√√ mimj

mi+mj
kn

( ln cri+ln crj

2 )2 + π2
(2.21)

Tangential frictional contact

Tangential force Ft appears by friction opposing the relative motion at the contact point.
The relative tangential velocity at the contact point vrt is calculated from the following
relationship:

vrt = vr − (vr∆n)n (2.22)
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with

vr = (u̇j + ωj × rcj)− (u̇i + ωi × rci) (2.23)

where u̇i, u̇j and ωi, ωj are, respectively, the translational and rotational velocities of the
particles, and rci and rcj are the vectors connecting particle centres with contact points.

The relationship between the friction force ||Ft|| and the relative tangential displacement
urt, for the classical Coulomb model (for a constant normal force Fn) is shown in Figure
2.14(a). This relationship would produce non physical oscillations of the friction force in the
numerical solution, due to possible changes of the direction of sliding velocity. To prevent
this, the Coulomb friction model must be regularized. The regularization can be seen in
Figure 2.14(b)

(a) Classical Coulomb law. (b) Regularized Coulomb law.

Figure 2.14: Friction force vs. relative tangential displacement graph for classical and regu-
larized Coulomb law. Source: Santasusana [54].

This is equivalent to formulating the frictional contact as a problem analogous to that
of elastoplasticity, which can be seen clearly from the friction force-tangential displacement
relationship in Figure 2.14(b).

To perform this calculation an standard radial return algorithm is used, as follows:

Ftrial
t = Fold

t − ktvrt∆t, (2.24)

and then the slip condition is checked:

φtrial = ||Ftrial
t || − µ|Fn|. (2.25)

If φtrial ≤ 0 there is not slip in the contact and the friction force is equal to the trial value:

Fnew
t = Ftrial

t , (2.26)
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otherwise (slipping contact), force is calculated as follows:

Fnew
t = µ|Fn|

Ftrial
t

||Ftrial
t ||

, (2.27)

Tangential damping can be also applied:

F ctd = dt ·∆vrt (2.28)

In that case, the tangential damping coefficient is:

dt = dn

√
kt
kn

(2.29)

2.2.4 Discrete-Finite elements interaction

In section 2.2.2 contact search algorithm has been mentioned. Now, not only discrete element
search has to be performed, but also finite element search. The basic idea is summarized in
the following paragraphs.

Global search algorithm

In a generic way, there are two types of elements: searcher elements (particles) and target
elements (particles or finite elements). Hereafter searcher elements will be called S.E. and
target elements T.E.

Figure 2.15: Two types of search needed. Element i is the S.E. and elements j and k are the
T.E.

The steps needed to perform contact search are:

a) Build bounding box of S.E. (Figure 2.16(a)).

b) Build bins cells based on size and position of S.E. (Figure 2.16(b)).

c) Collocate S.E. in bins and construct hash table with relates coordinates with cells which
point to the contacting S.E. (Figure 2.16(c)).

d) Build bounding box of T.E. (Figure 2.16(d)).
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e) Loop over T.E., detect the intersecting cells to each T.E., check the intersection with the
possible found cells and add the entire S.E. contained in the cells intersected by each T.E.
(Figure 2.16(e)).

f) Solve the contact with local resolution (Figure 2.16(f)).

(a) Bounding box of S.E. (b) Bins over S.E. (c) Hash table

(d) Bounding box of T.E. (e) Intersection cells. (f) Local resolution.

Figure 2.16: Sketch showing the search algorithm. Source: Santasusana [54].

Local search resolution

Once the possible neighbours are detected, the local resolution check takes place. For the case
of two spherical particles, the check is easy; only the sum of the radius has to be compared
against the distance between centres. Other geometries may demand a much complicated
check.

The followed strategy is to mesh all the geometries with a discretization of triangles. In
3D, surface meshes are used for contact detection. Now, the contact detection should be
performed between particles and triangles; if no contact is found, particle contact against
lines is searched for; and if contact is still not found, contact against points is performed.
Figure 2.17 shows how the local search is performed. Particle i searches contact against
element j, then against lines k, l and m and finally against points n, o and p.

This algorithm has some drawbacks and it does not work properly in all situations. The
solution adopted to those problems in this work will be presented in section 3.2.3.
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Figure 2.17: Particle-Face contact detection.

Changes in the Finite Element Method

After contact detection, force applied from particles to finite elements is calculated and
transferred to the nodes via a weighting algorithm. To adequately couple both methods,
a finite element explicit solution strategy is the best choice, as a explicit strategy is being
used for discrete element calculation. For the finite elements solution, Rayleigh damping is
commonly used [54].
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3 NUMERICAL MODEL

This chapter presents the code implementations developed in this work. Those implementa-
tions were performed due to the limitations of the previous code for the simulation of ballast
material laboratory tests.

3.1 Kratos and DEM-application

The code has been implemented inside Kratos, an Open-Source framework for the implemen-
tation of numerical methods for the solution of engineering problems. All above commented
in section 2.2 has already been implemented in the so called DEM-application. In this chap-
ter, contributions to the code from this work will be presented. The whole program is called
DEMpack.

Figure 3.1: Computer programs used and improved.
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3.2 Contributions to the code

The computational cost of contact calculation between irregular particles with DEM is high
and limits the simulation capability. For that reason, ballast characterization has initially
been carried out using spherical discrete elements. The local constitutive law of classical
DEM has been modified by introducing an additional particle parameter called rolling friction
coefficient [31].

When a big amount of granular material is involved in the calculation, the geometric sim-
plification due to the use of spheres has been considered acceptable. In case of a micro-scale
analysis or calculations with a small amount of grains, this kind of simplifications would
not be appropriate. For that reason, it is also possible to perform calculations using sphere
clusters, a bunch of superposed spheres that represent the particle geometry. Sphere clusters
build up and calculation will be explained in section 3.2.2.

3.2.1 Rolling friction

Rolling friction approach consist in imposing a virtual moment opposite to particle rotation
and dependent on its size. Figure 3.2 shows schematically how does rolling friction in two
dimensions work.

Figure 3.2: Two dimension simplified scheme of rolling friction.

Fn represents the normal force, Ft the tangential force, ω the angular velocity, r is the
radius and η the rolling friction coefficient.

The rolling friction coefficient is a material parameter that depends on the shape of the
particles. A granular material composed of sharp stones will have a larger rolling friction
coefficient than a material composed of spherical and soft stones.

The implementation of the rolling friction has been developed as follows:

1. The initial maximum resisting moment (Mini
max) is the moment, opposite to the sphere

rotation, needed to stop the sphere rotation in one time step. This has to be calculated
to prevent the rolling friction change the direction of the particle spin.
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Equations 3.1 and 3.2 show the calculation of Mini
max where: ω is the current initial

angular velocity of the sphere, ω̇stop is the angular acceleration needed to completely
stop the sphere rotation in one computational time step (∆t) and I is the particle
moment of inertia.

ω̇stop = −ω ·∆t (3.1)

Mini
max = ω̇stop · I (3.2)

2. Forces and moments due to contact are calculated. After force computation, moment
will be equal to tangential force multiplied by particle radius. Now, the maximum
resisting moment is calculated (Mmax) being the initial maximum resisting moment
(Mini

max), already computed, minus the contact moment.

Mmax = Mini
max − Ft · r (3.3)

3. The computation of the maximum theoretical moment (Mtheor) is carried out from the
normal force and the rolling friction coefficient.

Mtheor = η · r · Fn (3.4)

4. The maximum resisting moment (Mmax) and the maximum theoretical moment (Mtheor)
are compared, so the resisting moment (Mr) can be computed. Equations 3.5 and 3.6
show the procedure.

if ‖Mtheor‖ ≥ ‖Mmax‖ → Mr = Mmax (3.5)

if ‖Mtheor‖ < ‖Mmax‖ → Mr = Mtheor (3.6)

5. If there are more contacts with other particles the procedure will be the same for each
one.

The sketch in Figure 3.2 and the rolling friction procedure description were presented as a
two-dimensional approach, due to the fact that, in two dimensions only exist one rotational
direction, that will ease the explanation because the absolute value of the variables and scalar
products can be used. In three dimensions the calculation is very similar, the only extra
condition that should be taken into account is that the rolling friction moment direction is
always against particle rotation.
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3.2.2 Sphere clusters

Although, at its simplest, particles within a DEM model may be represented by spheres, the
use of non-spherical elements is recognised as essential to give a better approximation to the
irregular shape of real particles. Implementations using 3D polyhedra [45], [46], [33], [32] or
continuous superquadric functions [50], [13] among others [18] have been reported. While
these techniques allow a good representation of real objects, complex algorithms are required
to detect and resolve contacts between particles [29]. This leads to deterioration in simulation
speed as particle complexity increases.

An alternative approach is to implement techniques that consider particles as clusters of
spheres, thereby allowing the use of algorithms that are straightforward extensions of the
efficient methods used for spheres [47]. This approach has been used to simulate rigid clusters
of spheres in tetrahedral and cubic arrangements [60], axisymmetric particles and tablet-
shaped particles [57].

The use of sphere clusters for representing ballast stones [34], [39] or other kind of particles
[21] has also been addressed. These approaches incorporate spheres overlap, which allows the
algorithm to generate realistic particles using relatively modest numbers of spheres, which is
an advantage in terms of computational cost.

In this work a similar overlapping approach is used. The Sphere-Tree Construction Toolkit
(STCT) employed (http://isg.cs.tcd.ie/spheretree/) has implemented a number of
algorithms for the construction of sphere-trees [9], [8], [10].

The steps to generate sphere clusters, adapted to a given geometry, using the STCT to be
employed in Kratos DEM-application are:

1. The starting point should always be the geometry of the particle. In this work GiD5,
is being used. Particle geometry can be generated by the user or obtained by scanning
real particles.

2. A triangular surface mesh should be generated from the outer surface of the particle
(Figure 3.3).

Figure 3.3: Triangular surface mesh of a user defined particle.

3. The triangular surface mesh has to be exported as OBJ format, which is the input for-
mat of the STCT. OBJ file format is a simple data format that represents 3D geometry

5GiD is a universal, adaptive and user-friendly pre and postprocessor for numerical simulations in science
and engineering. It has been designed to cover all the common needs in the numerical simulations field from
pre to post-processing: geometrical modeling, effective definition of analysis data, meshing, data transfer to
analysis software, as well as the visualization of numerical results. GiD is developed in CIMNE
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including only the position of each vertex, the position of each vertex UV6 and the
normal vector to each polygon that composes the outer surface of the volume.

4. After opening the OBJ file with STCT (Figure 3.4) the sphere mesh can be generated.
In this work the optimised reduced Hubbard method has been used [9], [25].

Figure 3.4: OBJ format mesh visualized with STCT.

5. The sphere cluster model is saved in SPH format, characteristic format of the STCT:

• The number of clusters included in the file and the number of spheres of the biggest
cluster is displayed in the first line. In the example shown in Figure 3.5 the same
particle is represented as a cluster of 5 (Figure 3.5(a)) and 34 (Figure 3.5(b))
spheres respectively.

(a) 5 spheres cluster. (b) 34 spheres cluster.

Figure 3.5: Same particle cluster generated with 5 and 34 spheres.

• The second line of the SPH file presents the central coordinates and the radius of
a cluster composed only of one sphere.
• The following lines contain the coordinates of the centres of the spheres and their
radius for clusters with more than one sphere.

6. At this point clusters are already generated. Now the next step is to calculate the
geometric features to create the Kratos element correctly. To do this:

• All the spheres should be drawn in a CAD program, in this case GiD, and col-
lapsed in order to obtain one single volume. This volume has to be meshed with

6Vertex used in UV mapping, which is the 3D modeling process of making a 2D image representation of a
3D model’s surface
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tetrahedra. The finer the mesh is, the best the properties of the cluster should be
defined.

Figure 3.6: Tetrahedra mesh of a spheres cluster.

• The generated tetrahedra mesh is used to calculate the inertia tensor, the centre
of mass and the volume of the cluster. Those properties are obtained by means
of one of the utilities within the Kratos Solid Mechanics-application (available in
"rigid body utilities").

7. Cluster elements in the DEM-application should be defined by the position of the
spheres and their radius, provided that the centre of mass is located at the origin
of coordinates. Moreover, the inertia tensor of the particle should be diagonalized. If
those conditions are not already met (general case if the clusters are generated using the
STCT), appropriate transformations (translations and rotations) must be performed.

In this work, four different sphere clusters representing ballast stones were created. As it
was impossible to find data of real ballast geometries, the stones were user-defined according
to the regulations defined in section 2.1.5. A sphere cluster calculation will be described in
section 4.2.
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3.2.3 DE-FE contact improvements

This section summarizes the code improvements developed in the DEM-application related
to DE-FE contact detection. In the first part those improvements will be described, while
in the second part the validation of the method for rigid finite elements calculation will
be presented. For elastic finite elements there are some limitations that are already being
studied. Anyhow, the method can be successfully applied for contact between discrete and
elastic finite elements in quasi-static calculations (for example, the triaxial test presented in
section 4.2).

Improved detection of contact between discrete and finite elements

The following figures show two-dimensional schematic graphics of some of the problematic
cases when dealing with discrete-finite element detection. The code implementation has been
made for three dimensions, but it is equivalent in two dimensions and the procedure can be
more clearly seen.

When the finite element mesh used is smaller than the contact area (small finite elements
and soft discrete material), something similar to Figure 3.7 could happen.

1 2 3

A B C D

Figure 3.7: Contact between a discrete element and a finite element mesh with a mesh size
smaller than the indentation.

As explained in section 2.2.4 neighbour search is always done from the point of view of
the sphere. In other words, it is the spherical discrete element which seeks the elements in
contact to it. To do this, the distances from the centre of the sphere in Figure 3.7 to items
1, 2 and 3 are measured. If a normal vector to the surface of these elements passes through
the centre of the sphere (element 2), contact between the sphere and the plane element exists
and it is saved. If there is not any normal vector to the surface of any other element that
passes through the centre of the sphere, contact search continues, looking for contact with
adjacent axes or points forming those elements (in this case, elements 1 and 3).

Contact point between an sphere and an axis is the nearest point to the centre of the sphere
that belongs to the axis (contact only exists if the distance between both is smaller than the
sphere radius). The normal contact force vector direction is the same as the direction of the
line that joins the centre of the spheric particle and the contact point belonging to the line.

Contact between a point and a sphere is easy to determine, because it only exists if the
distance between the point and the centre of the sphere is less than the sphere radius. The
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normal contact force vector direction is the direction of a line joining the centre of the sphere
and the point.

Once all surfaces, axes and points contacts are found, the force that each one exerts to
the discrete element should be calculated. However, in the case of Figure 3.7, an important
change has to be made first. The force applied by the surface to the sphere must have the
direction of the normal vector to the plane, that is, the force applied by axes B and C, should
not be taken into account, since the elements 1, 2 and 3 are coplanar. To do this, before
calculating the force, all contact vectors are projected over each other to eliminate those that
should not be taken into account.

Figure 3.8 graphically shows how to make this contact projection. Analytically, the projec-
tion is performed by the dot product of two contact vectors (vectors that join each contact
point with the centre of the sphere). Once calculated the dot product of contact vectors,
the length of contact vectors and projections is compared, discarding all those cases in which
the projection is greater than or equal any other contact vector. For example, in the case of
Figure 3.8 no contacts with axes B and C are taken into account, since their projections over
the contact vector with surface 2 has the same module as the contact vector itself.

1 2 3

A B C D

Figure 3.8: Length comparison of contact vectors and their respective projections.

The following chart summarizes the contact check algorithm when the discrete element is
in contact with n finite elements. Contact vectors are called vi and vj and projection vectors
pri,j .

Loop over contact vectors (for i=1,...,n)

Loop over contact vectors (for j=1,...,n)

Perform contact check comparing only with other contact vectors (if i 6= j)

Perform dot product of contact vectors: pri,j = vi · vj

Discard invalid contacts: if pri,j ≥ vj ⇒ no contact (loop break)

If there is not any contact that fulfils pri,j ≥ vj , vi should be saved as a valid contact
vector

The advantage of this method lies in its generality. The tests carried out show that the
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force vector always has the appropriate direction. A simple example can be seen in Figure
3.9. In this case, the sphere is in contact with surface 1 and axis C, and both contacts must
be taken into account. As shown in Figure 3.9 the projection of each contact vector over the
other is smaller than the vectors themselves, so that none of them is discarded.

1

2

3

A B

C

D

Figure 3.9: Example of more than one valid contact.
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Contact detection method validation

Some benchmarks have been carried out for testing the method, obtaining satisfactory results.
These simulations are very extreme and do not represent reality; they merely serve to validate
the code.

• Contact between sphere and plane: This is the simplest case. The performed cal-
culation is a sphere, whose stiffness is very low, contacting with a surface meshed of
triangles. In Figure 3.10 the sphere can be seen before contacting the surface.

Sphere velocity

in Y direction

Figure 3.10: Instant before the sphere contacts the surface.

Force X

0.0 N

(a) Force in X direction.

Force Y

-10700 N

(b) Force in Y direction.

Force Z

0.0 N

(c) Force in Z direction.

Figure 3.11: Force exerted by the sphere on the plane at the moment of maximum indentation.

Figure 3.11 shows the force applied by the sphere on the plane. The force is applied
in the Y axis direction, normal to the plane, so it can be concluded that the method
works correctly in this case.
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• Contact between sphere and axis: This test is similar to the previous one, but
now the sphere contacts the axis of two wedge-shaped planes. The simulation in a
pre-contact instant is shown in Figure 3.12.

Sphere velocity

in Y direction

Figure 3.12: Instant before the sphere contacts the axis.

Force X

0.0 N

(a) Force in X direction.

Force Y

-9355.1 N

(b) Force in Y direction.

Force Z

0.0 N

(c) Force in Z direction.

Figure 3.13: Force exerted by the sphere on the axis at the moment of maximum indentation.

As in the previous test, the results are correct. Force is only applied in Y axis direction.
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• Contact between sphere and point: In this example, a kind "pyramid" has been
used to check if the method works correctly for sphere-point contact. The sphere falls
upon the top of the "pyramid" as it can be seen in Figure 3.14. In this case the direction
of the force must also be applied on the Y axis, as in the previous examples. Figure
3.15 shows that the calculation is accurate.

Sphere velocity

in Y direction

Figure 3.14: Instant before the sphere contacts the corner point.

Force X

0.0 N

(a) Force in X direction.

Force Y

-9355.1 N

(b) Force in Y direction.

Force Z

0.0 N

(c) Force in Z direction.

Figure 3.15: Force exerted by the sphere on the corner point at the moment of maximum
indentation.

It is found that, for all the previous three examples, the force is applied only in the Y axis
direction. Therefore, it can be concluded that the method works properly for all three types
of possible contact: with surface (plane), with line (axis) and point (corner).

After verifying that the contact detection method works properly for single contacts, some
other tests have been developed to validate it under different geometric arrangements.
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• Multiple contact: The simulation presented below is used to check if the contact
between a sphere and more than one element is calculated properly. To do this, three
spheres fall upon a plane with three different shape holes, as shown in Figure 3.16.

Spheres velocity

in Y direction

Figure 3.16: Instant before contact.

In Figure 3.17 the position of the spheres at the end of the simulation can be seen
when they are at rest. Spheres velocity after 2.5 seconds of simulation is close to 0, as
expected.

Figure 3.17: Motionless spheres after 2.5 seconds of simulation.
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• Continuity of contact: Continuity of force magnitude when a discrete element goes
from being in contact with the surface of a triangular element to be in contact with
one of its axes or points is essential. In his doctoral thesis Wellmann [61] proposes a
method to correct force direction and ensure its continuity, based on the area of the
intersection of the sphere with the surface.
The method presented in this work should not need any adjustment to ensure force
magnitude continuity and force direction correctness. To check this, a ball without
rotation and without friction is moved over a step (as shown in Figure 3.18), setting
the path of its centre, so that the indentation is always the same (either in contact with
the surface or with the axis).

Figure 3.18: Simulation scheme.

If continuity is met, force module must always be the same. When the contact is with
the surface, the direction of the force is equal to the normal of the plane and when the
contact is with the axis the direction of the force is to the same direction as the vector
that joins the axis and the centre of the sphere.

Figure 3.19: Force applied by the sphere to the surface and the axis at different instants of
the simulation.
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It is found that the results are as expected: no discontinuities arise when the contact
changes from being with a surface or with an axis. The variation in the contact force
module is less than 0.006%, thus negligible.
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4 APPLICATIONS

4.1 Lateral resistance

4.1.1 Laboratory test

In 1997, Zand and Moraal [62] conducted a series of full-scale three-dimensional ballast resis-
tance tests using a rail track panel. Those tests were performed in the Roads and Railways
Research Laboratory of the Delft University of Technology (TU Delft).

The tests, whose layout is presented in Figure 4.1, consist of a track panel with five sleepers
inside a ballast bed. Lateral load is introduced by means of two diagonal rods connecting
the hydraulic actuator (150 kN) to the track section. Two connecting beams are welded
between the rails to reinforce the track panel enabling a more uniform load introduction.
The controlled variable is the velocity of the track panel inside the ballast bed, measuring
the opposing force.

v = 1 cm/min

A A

Figure 4.1: Laboratory test layout.

The laboratory tests were performed for different vertical loads applied on the track by dead
weight existing of concrete slabs (with dimensions 2 m x 1.5 m x 0.01 m), weighing 9.95 kN
each. In this work, the test with unloaded sleepers has been chosen for the simulations.
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4.1.2 DEM simulation

The purpose of current work is to reproduce the laboratory test presented above. To that end,
some calibration and validation simulations have been carried out, in order to understand
properly the phenomenon.

The geometry for the simulations is the same as in the laboratory test, but for only one
sleeper, instead of five. The geometry of the simulation is described in Figure 4.2. Lateral
resistance test simulations have been developed using spherical discrete elements with rolling
friction, the initial sphere mesh is shown in Figure 4.3.

Figure 4.2: Test geometry for calculating ballast lateral resistance force against sleeper move-
ment (distances in meters).

Figure 4.3: Initial sphere mesh used in the simulation for calculating ballast lateral resistance
force against sleeper movement.

As a starting point, some reference data has been defined from literature. Table 4.1 sum-
marizes the initial condition parameters.

• Ballast density: is one of the easiest parameters to defined. Ballast density used to be
about 2700 (kg/m3) [38], [44].

• Young modulus: according to Farmer [19], the Young modulus of most rock materials
ranges from 2 to 9 GPa. The main problem of using such a high Young modulus value
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is that, due to the explicit time integration scheme, the time step needed is too small.
Therefore, the highest possible value that needed a reasonable time step was chosen
for the first approaches, 1.2·108 Pa. As contacts are simulated as springs, the use of
smaller rigidity will result in a larger indentation, but the macroscopic results will not
be affected, provided that the indentation is moderate [53].

• Poisson ratio: Farmer [19] found that the Poisson ratio of most rocks was close to 0.2.
According to Melis [44] ballast Poisson ratio is about 0.18.

• Mean diameter: in section 2.1.5 the mean diameter of railway ballast was defined (0.05
m).

• Friction coefficient between ballast stones: although this parameter depends on time
and load cycles suffered by ballast stones, Melis [44] studied that the friction angle
should always be between 30◦and 40◦(friction coefficient between 0.577 and 0.839).

• Friction coefficient between stones and sleeper: in section 2.1.5 an approximate value
of this property was presented. It should be about 0.7.

• Restitution coefficient: Abellán [1] studied the restitution coefficient of such materials
concluding that it is about 0.4.

• Rolling friction coefficient: no estimations of rolling resistance was found, as it is not
a material property. Some previous calibration calculations for other materials has led
to conclude that, for a sharp granular material like ballast, an appropriate value can
be about 0.3 [27].

Table 4.1: Ballast properties for lateral resistance simulations (reference data).

Ballast density (kg/m3) 2700

Young modulus (Pa) 1.2·108

Poisson ratio 0.18

Mean diameter (m) 0.05

Friction coefficient between ballast stones 0.6

Friction coefficient between stones and sleeper 0.7

Restitution coefficient 0.4

Rolling friction coefficient 0.3

Regarding the definition of boundary conditions, friction between ballast and outer walls is
considered null, as the domain is assumed to continue with mirrored particles.
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4.2 Triaxial test

Large-scale triaxial tests, performed in the laboratory under controlled monotonic and re-
peated loading conditions, are commonly considered the best means to measure macroscopic
mechanical properties of ballast materials [51]. The tests are carried out at a constant con-
fining pressure, which simulates the mean pressure due to geostationary stresses in a railway
structure [58], [5], [6].

Previous research on numerical modelling of ballast large-scale triaxial tests have focused
on conducting simulations of aggregate particle assemblies using the DEM, trying to address
the particulate nature of ballast material. These studies used spheres, cluster or polyhedral
particles to model ballast stones [26], [43]. However, confining pressure has been applied
through rigid elements or by numerical approximations, not representing the outer membrane,
used in laboratory tests, with elastic membrane finite elements.

This section presents the development of a ballast discrete elements simulation approach,
coupled with finite elements, for modelling ballast shear strength behaviour from large-scale
triaxial compression tests.

4.2.1 Laboratory test

The reference triaxial test was performed in a large-scale triaxial compression test device
developed at the University of Illinois for testing specifically ballast size aggregate materials
(see Figure 4.4).

Figure 4.4: Large-scale triaxial compression test device developed at the University of Illinois.
Source: Qian et al.[51]

The test sample dimensions are 30.5 cm in diameter and 61.0 cm in height. The acrylic test
chamber is made of high strength glass fibre with dimensions of 61.0 cm in diameter and 122.0
cm in height. An internal load cell (Honeywell Model 3174) with a capacity of 89 kN is placed
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on top of the specimen top platen. Three vertical Linear variable differential transformers
(LVDTs) are placed around the cylindrical test sample at 120-degrees angle between each
other to measure the vertical deformations of the specimen from the three different side
locations. Another LVDT can be also mounted on a circumferential chain wrapped around
the specimen at the mid-height to measure the radial deformation of the test sample [51].

In the laboratory, different monotonic loading triaxial compression tests were conducted at
three different confining pressures, at 68.9 kPa, 137.8 kPa, and 206.7 kPa in displacement
control mode. The ballast strength tests were conducted at two different loading rates;
slow conventional and rapid traffic induced. The shearing rate for the slow conventional
strength test was adopted as 1% strain per minute, corresponding to 0.1016 mm/s, which is a
common triaxial test shearing rate in the standard soil mechanics or geotechnical engineering
practice. However, based on [22], rapid shear tests were performed moving up the ram to
a maximum displacement of 38 mm/s, to evaluate strength properties of granular materials
under transportation vehicle loading at rather rapid monotonic loading rates.

In this study, due to the computational demand of such a numerical model (sphere clusters
for DEM calculation coupled with finite elements), only one laboratory test will be reproduced
with confining pressure equal to 68.9 kPa and shear velocity equal to 38 mm/s.

An aluminium split mould was used to prepare the ballast test samples. Three layers of a
latex membrane, with a total thickness of 2.3 mm, were fixed inside the split mould and held
in place by applying vacuum to prepare each specimen in layers. A thin layer of geotextile
was placed on top of the base plate to prevent clogging of the vacuum pump. Ballast material
was poured into the mould and compacted with an electric jack hammer. After compaction
the test sample was checked for the total height and the levelling of the top plate. Figure 4.5
shows the aluminium split mould on the left and the compacted ballast sample on the right
ready for triaxial testing.

(a) Aluminium split mould. (b) Ballast test sample.

Figure 4.5: Large-scale triaxial test preparation. Source: Qian et al. [51].
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4.2.2 DEM simulation

Section 3.2.2 defines the methodology followed to generate sphere clusters. Figure 4.6 shows
the four different geometries chosen to represent ballast particles and the sphere cluster
generated form each geometry.

(a) Ballast cluster 1.

(b) Ballast cluster 2.

(c) Ballast cluster 3.

(d) Ballast cluster 4.

Figure 4.6: Initial geometry of the ballast particles chosen (left) and sphere cluster represen-
tation of those geometries (right). Red lines in the right image represent the initial width of
the sample.
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The clusters mesh was generated introducing the particles via, the so-called, inlets. Those
inlets are predefined nodes, from which clusters are generated and introduced into the model,
one by one with a determined velocity. The following steps summarize the model generation.

• Draw a rigid cylinder with the dimensions of the triaxial test utility. This would corre-
spond to the aluminium split mould.

• Define the inlet nodes from which the particles will be introduced. The data needed is
the position of the inlet, cluster geometric characteristics (cluster 1, 2, 3 or 4 and its
orientation) and material properties.

• Start the simulation to introduce the particles via those inlets (Figure 4.7).

Figure 4.7: Particles inlet.

• Wait until all particles are introduced in the cylinder and rest. In this case particle
introduction lasts 5 second, then the simulation takes other 5 seconds until the velocity
of all particles is 0.

• Erase particles lying outside the cylinder domain. It is better to introduce more material
than the necessary, in order to be sure that the cylinder is fulfilled.

In section 3.2.3, it has been proven that, with the method used for contact detection between
discrete and finite elements, contact is totally smooth for rigid finite elements, but not for
elastic finite elements. Figure 4.8 shows an scenario where the non-smooth contact detection
introduces a calculation error. In Figure 4.8(a) the discrete element is in contact with an
edge at time t, the indentation is δ and the contact force is Ft. At time t + ∆t (Figure
4.8(b)), the discrete element is in contact with two surfaces, because now the normal to those
two surfaces is not the same. Since the time-step size, in explicit time integration algorithm,
is usually very small, it is reasonable to suppose that the penetration vectors between the
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discrete element and surface 1 (δ1) and surface 2 (δ2) at time t + ∆t are similar to δ. Then
the resultant contact is approximately: Ft+∆t = 2 · Ft. Obviously, it can be concluded that
the contact force is not smooth.

For quasi-static simulations with small time steps, the error introduced can be neglected [63].
Anyway, a new algorithm for the calculation of the contact force, based on the penetrated
volume, is being developed. The computational cost of this new algorithm will be higher,
that is why it should be evaluated when it will be worth using it.

(a) Time t. (b) Time t + ∆t.

Figure 4.8: Non-smoothness of the contact force with elastic elements. Source: Zang et al.
[63].

Initial particle properties will be the same as for lateral resistance test, but in this case
rolling friction should not be taken into account due to the fact that an approximation of
the geometry is already considered. Now there are new properties that should be taken into
account, which are membrane properties:

• Young modulus: According to Gere and Timoshenko [23], rubber Young modulus is
between 0.7 and 4 ·106 Pa. For this simulation, the value chosen is 1.5·106 Pa.

• Poisson ratio: The same authors established that rubber material Poisson ratio is be-
tween 0.45 and 0.5. The simulation has been carried out for a value of 0.45.

• Thickness: The membrane thickness of the laboratory test is 2.3 mm (section 4.2.1).

• Friction coefficient between stones and membrane: Qian et al. [51] considered friction
between stones and membrane equal to 0. This assumption is based on the membrane
deformation that meets perfectly ballast stones shape and the quasi-static nature of the
experiment.

• Friction coefficient between stones and actuators: Liu [35] studied the repose angle of
granular materials lying over surfaces of different materials. The friction angle between
stones (similar to ballast) and a smooth material, like the actuators, is about 15◦(which
corresponds to a friction coefficient of 0.268).

Table 4.2 summarizes all the material properties of the simulations.
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Table 4.2: Ballast and membrane properties for the large-scale triaxial test simulation (ref-
erence data).

Ballast

Ballast density (kg/m3) 2700

Young modulus (Pa) 1.2·108

Poisson ratio 0.18

Mean diameter (m) 0.05

Friction coefficient between stones and membrane 0.0

Friction coefficient between stones and actuators 0.268

Restitution coefficient 0.4

Membrane

Young modulus (Pa) 1.5·106

Poisson ratio 1.2·108

Thicness (m) 0.0023

When dealing with the large-scale triaxial test, a new problem has been found, derived
from the different rigidity of the membrane and the ballast stones. Discrete element particles
(ballast stones) stiffness is much higher than the stiffness of the membrane. This would lead
to high contact forces in contacts with relatively low indentation, that could cause excessive
deformations in the elastic membrane. One simple solution is the decrease of the time step,
to stabilize the numerical model. If the necessary time step is too low, making the simulation
time unapproachable, an alternative algorithm should be used. In this case, the solution
chosen was a penalty algorithm [63].

Considering contact between discrete and finite elements and linear constitutive model,
normal stiffness is calculated as:

kDEMn = EDEMπri
2 , (4.1)

where EDEM is the Young modulus of the discrete elements, and ri is the radius of the discrete
element particle.

Applying the penalty algorithm, normal stiffness is calculated as:

kFEMn = γ
EFEMπri

2 (4.2)

where γ is the penalty parameter, that should be calibrated in order to have an appropriate
time step but not too much indentation. EFEM is the Young modulus of the finite elements.
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In the previous first simulations of the large-scale triaxial test γ was fixed to 10.
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5 RESULTS AND DISCUSSION

5.1 Lateral resistance

This section is divided in three subsections. The aim of subsections 5.1.1 and 5.1.2 is to cali-
brate the model and try to understand better the governing mechanisms of the phenomenon.
Subsection 5.1.3 presents the results obtained to date.

5.1.1 Material properties and input parameters influence

Firstly, the influence of some material properties and input parameters has been assessed, in
order to evaluate suitable changes or simplifications. Table 5.1 summarizes the data used.
Bold numbers represent the reference values, defined in Table 4.1.

Table 5.1: Data summary.

Material properties

Friction coefficient between ballast stones 0.6/0.7/0.8/0.9

Friction coefficient between ballast and sleeper 0.6/0.7/0.8/0.9

Rolling friction coefficient 0.1/0.3

Restitution coefficient 0.2/0.4

Input parameters

Sleeper velocity (m/s) 0.05/0.5

Particle stabilization time (s) 0.01/0.1

Sleeper load (N) 0/2000

The aim of this simulations is to understand the phenomenon, evaluating how does each
parameter influences the system response, so, sleeper velocity used is very high compared to
the laboratory test velocity, due to the fact that the objective of this simulations campaign
is not reproducing exactly laboratory tests. The main reason to increase the velocity of the
sleeper is the calculation time.
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• Variation of the friction coefficient between ballast stones:
The first parameter evaluated is the friction coefficient between ballast stones. The
graph in Figure 5.1 shows the influence of the friction coefficient in the ballast lateral
resistance. With larger friction coefficients, the lateral resistance increases. The same
behaviour can also be observed in Figure 5.2.

Figure 5.1: Obtained results varying friction coefficient between ballast stones.

(a) Friction coefficient = 0.5.

(b) Friction coefficient = 0.9.

Figure 5.2: Difference between two simulations when the sleeper has been moved 5 cm. It
can be seen that lateral resistance increases with friction coefficient.
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• Variation of the friction coefficient between ballast and sleeper:
The influence of the friction coefficient between ballast and sleeper was also studied.
Figure 5.3 shows that the influence of the friction coefficient between ballast and sleeper
is important only at the beginning, when the sleeper has been moved a few millimetres.
Then, the lateral force is dominated by the resistance of ballast shoulder, and not by
friction between sleeper bottom part and ballast stones. Ballast force against sleeper
movement, when the sleeper has been moved 3 mm, can be observed in Figure 5.4.

Figure 5.3: Obtained results varying friction coefficient between ballast and sleeper.

(a) Friction coefficient between ballast and sleeper = 0.5.

(b) Friction coefficient between ballast and sleeper = 0.9.

Figure 5.4: Difference between two simulations when the sleeper has been moved 3 cm. A
higher coefficient of friction between ballast and sleeper increases the lateral force of the
ballast at the bottom of the sleeper.
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• Variation of the rolling friction coefficient:
As rolling friction is not a material property, it is difficult to assign an appropriate value
to it. What can be clearly seen in the graph of Figure 5.5 is that the lower the rolling
friction coefficient is, the easier particles can rotate. In other words, lateral ballast
resistance decreases with the decrease of rolling friction coefficient, as stones do not
bear enough load without rotating.

Figure 5.5: Obtained results varying rolling friction coefficient.

Figure 5.6 shows particles orientation when the sleeper has been moved 5 cm. It can
be observed that for a value of rolling friction equal to 0.1 particles have rotated more
than for a value of rolling friction equal to 0.3.

(a) Rolling friction coefficient = 0.1. (b) Rolling friction coefficient = 0.3.

Figure 5.6: Particle rotation when the sleeper has been moved 5 cm for rolling friction
coefficient values equal to 0.1 and 0.3.
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• Restitution coefficient variation:
The restitution coefficient of two colliding objects represents the ratio of speeds after
and before an impact. Pairs of objects with restitution coefficient equal to 1 collide
elastically, while if the restitution coefficient is smaller than 1 the collision is inelastic,
in other words, energy is dissipated during the collision. Taking into account that this
simulation is quasi-static, it can be assumed that the restitution coefficient should not
affect the results because relative velocity between particles is low.
Figure 5.7 shows that previous assumption is met and the variation of the restitution
coefficient is not affecting the results significantly.

Figure 5.7: Results obtained by varying the restitution coefficient.

The above tests have not already proven the correctness of the method for the calculation
of ballast response, but it is demonstrated that it is a very interesting tool to evaluate the
influence of different parameters, something very difficult to determine with laboratory tests.
It also presents other advantages, for example, the possibility of displaying the force applied
by each stone against sleeper movement, almost impossible to know with a simple on-site
test.
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• Variation of the sleeper velocity:
The influence of the sleeper velocity in the lateral ballast resistance has also been tested.
Figure 5.8 clearly shows that the change in sleeper velocity over the ballast bed affects
the system response. When the sleeper is moved faster, particles do not have time to
relocate, so force increases or decreases depending on the stones arrangement. When the
velocity is lower, the system can be relocated, allowing lateral resistance stabilization
once it has reached the maximum.

Figure 5.8: Obtained results varying the sleeper velocity.

(a) Sleeper velocity = 0.05 m/s.

(b) Sleeper velocity = 0.5 m/s.

Figure 5.9: Difference between two simulations, when the sleeper displacement is 1.75 cm.
The lateral force increase, when sleeper velocity is greater, can be observed.
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• Particle stabilization time influence:
Stabilization time is the time before the sleeper starts moving. This parameter is
important because when the simulation starts, particles were arranged depending on
the sphere-mesher. During the first time steps, stones and sleeper move until they reach
their rest position. Graph in Figure 5.10 shows the influence of this parameter.

Figure 5.10: Results obtained by varying the stabilization time.

As in the case in which the speed of the sleeper is changed, the initial stabilization time
greatly affects the results. It can be concluded that the arrangement of ballast stones
is an important factor that influences the final results. When the stabilization time is
higher, the lateral resistance of the track is more stable.

(a) Stabilization time = 0.01 s.

(b) Stabilization time = 0.1 s.

Figure 5.11: Difference between two simulations, when the sleeper displacement is 0.5 mm.
Increasing the stabilization time implies a more stable arrangement of particles, leading to an
increase of the friction of the bottom of the sleeper because the contact surface also increases.

56



• Sleeper load influence:
The load on the sleeper in the reference test is null, which means that the only vertical
load applied is the self-weight. In this case, European concrete sleepers and rails have
been considered, weighting 3720 N. The graph in Figure 5.12 shows how the load over
the sleeper affects the system response. When the sleeper is loaded (in this case 20000
N) the lateral resistance of the track depends largely on the friction of the bottom of
the sleeper with ballast stones, while when it is unloaded the prevailing phenomenon is
ballast shoulder resistance.

Figure 5.12: Results obtained by varying the vertical load imposed on the sleeper.

(a) Unloaded sleeper.

(b) Loaded sleeper.

Figure 5.13: Difference between two simulations when the sleeper has been moved 0.5 mm.
Vertical load increase implies more friction between ballast stones and the bottom part of
the sleeper.
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5.1.2 Laboratory test

The above mentioned simulations evaluate most of the parameters involved in the calculation
and improve the understanding of the phenomenon. After that, the laboratory test has been
reproduced. The simulation material properties and input parameters are presented in Table
5.2.

Table 5.2: Material properties and input parameters for laboratory lateral resistance simula-
tion.

Ballast properties

Ballast density (kg/m3) 2700

Young modulus (Pa) 1.2·108

Poisson ratio 0.18

Mean diameter (m) 0.05

Friction coefficient between ballast stones 0.6

Friction coefficient between stones and sleeper 0.7

Restitution coefficient 0.4

Rolling friction coefficient 0.3

Input parameters

Sleeper velocity (m/s) 0.01

Stabilization time (s) 1.0

Although sleeper velocity is not the same as in the laboratory test (due to available time
issues), the chosen value is considered to be low enough to provide stable results.

Graph of Figure 5.14 compares laboratory results with those obtained in the simulation.
It can be seen that the numerical model calculates correctly the maximum lateral resistance
(about 9500 N), but the slope of the curve (stiffness) at the beginning is much lower in the
simulation than in the laboratory test.
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Figure 5.14: Comparison of the lateral force applied by ballast stones against sleeper move-
ment between laboratory test and numerical model simulation.

The maximum lateral resistance is calculated correctly, but there are still differences in the
obtained curve. Therefore, some slightly modifications will be developed.

The material properties and the input parameters of the following simulations will be those
presented in Table 5.2. In those simulations some geometry changes will be developed in
order to compare the system response and look for the source of error.
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• Ballast box vibration:
In this case, the sleeper starts moving after the box has been vibrated (Figure 5.15).
The objective of this vibration is the rearrangement of ballast stones into a more stable
position, aiming to increase the lateral resistance stiffness. This operation is similar to
tamping operation, carried out in all railway ballast tracks. In the simulation without
vibration, the stabilization time is 1 second, while in the simulation after vibration, the
box vibrates 0.5 seconds and then the stabilization time are other 0.5 seconds.

Figure 5.15: Box vibration.

Figure 5.16 shows the comparison between the simulation without vibration (graph in
Figure 5.14) and the simulation after box vibration.

Figure 5.16: Comparison of results obtained in vibrating and no vibrating simulations.

From the results, it can be concluded that ballast stones vibration for better rearrange-
ment does not improve system response in the expected way.
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• Calculation in a bigger domain:
To check if the boundary conditions imposed are a source of error, the ballast domain
has been increased. Figure 5.17 shows the difference between the standard domain and
the new bigger domain.

(a) Standard geometry. (b) Bigger domain.

Figure 5.17: Difference in lateral force between both ballast domains.

The results comparison is shown in Figure 5.18.

Figure 5.18: Comparison of results obtained with ballast domain width 0.6 m and 0.9 m.

From the results, it can be concluded that the boundary conditions imposed are not a
source of the error. Lateral force at the beginning is almost the same in both cases.
When the sleeper has moved more than 2 cm some differences start to appear, something
expected, as there is more material in the ballast shoulder when the domain is bigger.
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• Calculation of the contribution of each part to the total lateral resistance:
To better understand the contribution of each resistant element (sleeper bottom friction,
sleeper lateral friction and ballast shoulder) to global lateral resistance, independent
simulations, to evaluate the contribution of each section, have been developed.
Figure 5.19 shows the geometries used to evaluate the contribution of each of part to
the whole lateral resistance.

(a) Sleeper bottom part friction. (b) Sleeper side walls friction. (c) Resistance of ballast shoulder.

Figure 5.19: Geometries used to determine the contribution of each of the resistant parts to
the whole lateral resistance.

The obtained results are displayed in the graph of Figure 5.20. From those results it
can be concluded that the lack of stiffness is due to the resistance of the ballast shoulder
(the slope of the curve is very small), since the force applied to the side walls and the
bottom of the sleeper increases very fast at the beginning and then remains constant.
The shoulder resistance is increasing during the first 5 cm of movement of the sleeper.
It should also be noted that, the sum of the lateral resistance force of each section
is close to the lateral resistance force obtained in the global geometry simulation (see
Figure 5.14, about 9500 N).

Figure 5.20: Lateral resistance provided by the bottom of the sleeper, the side walls of the
sleeper and the ballast shoulder.
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5.1.3 Current results

Stiffness and mesh influence

From section 5.1.2, it can be concluded that the main problem of the simulation is the
shoulder rigidity. For that reason, the next developed simulation was performed changing
ballast stiffness, although it leads to a lower time step, in other words, a higher calculation
time.

Other possible change would be the particles distribution. Tran [59] proposed an appro-
priate technique in order to generate discrete elements samples for granular material sim-
ulations. Till this point, the meshes used were generated by the meshers available in GiD
(www.gidhome.com/support/manuals). Those meshers provide good particles distributions
for cohesive material, but for discrete materials the packing factor is low.

The packing method finally chosen is, the so-called, gravitational packing technique, and it
was developed as follows:

• A geometry, bigger than the geometry occupied by the granular material should be
drawn. In this case, ballast layer was increased 17.5 cm, as shown in Figure 5.21.

Original geometry

New mesher geometry

Figure 5.21: Original ballast geometry compared to the ballast geometry used to perform the
new spheres mesh.

• A sphere particle mesh is generated in the new geometry, using the radius expansion
method, available in GiD.

• Ballast material properties should be assigned to the particles, but with a very impor-
tant change, their friction coefficient should be 0. The reason to use that unrealistic
value for the friction coefficient is that it would allow the particles to be placed in the
most packaged manner. After meshing operation, before the real simulation starts,
ballast particle friction would be reassigned to 0.6.

• During the meshing simulation some surfaces were used as a cover (see Figures 5.22 and
5.23) to obtain the intended geometry. As friction coefficient between particles is 0, the
repose angle would be also 0, that means that the lateral ballast slopes will disappear,
and that is why the cover is needed. In this point, it is important to remark that the
force over the top part of the cover should be 0, otherwise, some particles should be
deleted to avoid compression which would distort results.

• The particles need some time to reach the rest position, once this position is reached
the mesh is obtained.

63

www.gidhome.com/support/manuals


(a) View XY plane.

Temporary Sleeper

z

(b) View XZ plane.

Figure 5.22: Initial geometry for the elaboration of the sphere mesh.

(a) View XY plane.

z

(b) View XZ plane.

Figure 5.23: Final position of the spheres without friction.

The data used in the new simulation, with the particles distribution obtained via the gravi-
tational packing technique, is summarized in Table 5.3. It can be seen that, as it was already
commented, the material stiffness has been increased compared to previous simulations. The
material Young modulus chosen is 5.1·109 Pa, inside the range established by Farmer [19] for
rock materials (between 2 to 9 GPa, see section 4.1.2). In this case, sleeper velocity is the
same as in the laboratory test.
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Table 5.3: Ballast properties and input parameters for the calculation of ballast lateral resis-
tance.

Ballast properties

Ballast density (kg/m3) 2700

Young modulus (Pa) 5.1·109

Poisson ratio 0.18

Mean diameter (m) 0.05

Friction coefficient between ballast stones 0.6

Friction coefficient between stones and sleeper 0.7

Restitution coefficient 0.4

Rolling friction coefficient 0.3

Input parameters

Sleeper velocity (m/s) 0.0001667

Stabilization time (s) 1.0

Results obtained with the new mesh

Graph in Figure 5.24 shows the results obtained with the DEM-application compared to
laboratory data.

Figure 5.24: Comparison between results obtained with the DEM-application and laboratory
tests.
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It can be seen that, in this case, the initial resistance stiffness is correctly captured by
the numerical model. The maximum lateral resistance is overestimated in the numerical
model. Future work will be in the way of decreasing the time step and trying with the Hertz
constitutive model. Notwithstanding the remaining errors, it can be said that the DEM-
application is an appropriate tool to calculate ballast response against sleeper movement.

Figure 5.25 shows the lateral force applied by each particle against sleeper displacement
when the sleeper has been moved 2 mm.

Figure 5.25: Ballast particles lateral force against sleeper displacement when the sleeper has
been moved 2 mm.

Figure 5.26 shows the ballast particles lateral displacement when the sleeper has been moved
5 cm.

Figure 5.26: Ballast particles lateral displacement when the sleeper has been moved 5 cm.
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5.2 Triaxial test

Although, for the first simulations the data chosen was the specified in section 4.2.2, the
conclusions drawn after the lateral resistance calculations, about meshing and ballast stiffness,
led to some changes.

Table 5.4 shows the material properties after the changes derived from the lateral resistance
tests. It should be noted that, as the ballast stiffness has been changed, the penalty factor
(γ), for contact between discrete and finite elements, has also been changed from 10 to 100.

Table 5.4: Triaxial test simulation reference data.

Ballast

Ballast density (kg/m3) 2700

Young modulus (Pa) 5.1·109

Poisson ratio 0.18

Mean diameter (m) 0.05

Friction coefficient between stones and membrane 0.0

Friction coefficient between stones and actuators 0.268

Restitution coefficient 0.4

Membrane

Young modulus (Pa) 1.5·106

Poisson ratio 1.2·108

Thickness (m) 0.0023

Penalty factor (γ) 100

Graph in Figure 5.27 shows the results obtained. It can be seen that the curve is very inclined
for the first instants, reaching a value of deviatoric stress that doubles the laboratory value.
When the axial strain is 3% the stress decrease and for axial strain between 3% and 5% the
deviatoric stress is similar for the numerical model and the laboratory test.
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Figure 5.27: Triaxial test results.

From the graph, it can be concluded that parameters are not already well calibrated. In
the initial part of the curve, when axial strain is low, ballast resistance is much higher in
the simulation than in the laboratory tests. When axial strain increases (more than 3%) the
difference between laboratory and numerical results decreases.

Figure 5.28 shows the membrane and ballast sample deformation before axial strain starts
and after a 5% axial strain. It can be appreciated that the radial expansion of the sample is
localized mainly in the top part, while the expected behaviour is radial expansion all along
the sample.

(a) Axial Strain = 0%. (b) Axial Strain = 5%.

Figure 5.28: Triaxial test before axial strain starts (left) and after 5% axial strain (right).
Red lines in the right image represent the initial width of the sample.

Although there are some similarities between numerical and laboratory results, there are
also big differences between both models. One assumption that can be a source of error is the
ballast friction coefficient. When representing ballast particles with clusters, the surfaces are
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not totally smooth, due to the overlapped spheres. This can affect the simulations, so that,
a new simulation with ballast friction coefficient equal to 0.4 (instead of 0.6) is developed.

Graph of Figure 5.29 presents the results obtained with ballast friction coefficient equal to
0.4. Results improvement can be clearly seen compared with the above simulation (ballast
friction coefficient 0.6).

Figure 5.29: Triaxial test results with ballast friction coefficient equal to 0.4. Simulation
graph finishes before 5% axial strain because the calculation is still running.

Figure 5.30 confirms results improvement, as, in this case, radial expansion occurs all along
the ballast sample, not only in the top part.

(a) Axial Strain = 0%. (b) Axial Strain = 5%.

Figure 5.30: Triaxial test before axial strain starts (left) and after 5% axial strain (right) for
the test with ballast friction coefficient 0.4.
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6 CONCLUSIONS

In this work, a brief introduction of railway infrastructures has been presented, mentioning
its main characteristics, standards that should meet in Spain and new challenges appeared
in the last years due to the development of high-speed trains.

Ballast aggregates is the main material used in railroad infrastructures, and DEM has
been found as one of the most promising numerical methods for the calculation of granular
materials. For this reason, an application (DEM-application) for numerical calculations using
the DEM, has also been introduced.

There are some features, not already developed in the initial numerical code, that were
introduced as a consequence of this research, like: rolling friction, sphere clusters generation
and discrete finite element contact.

Finally two laboratory tests were simulated with the DEM-application. Although there are
still a lot of improvements to perform, the obtained results are satisfactory and a motivation
to keep working.

From all the above it can be concluded that:

• The DEM has been found as an appropriate method for the calculation of ballast
aggregates. Compared with constitutive models based in continuum assumptions, DEM
has the advantage of the easiness to reproduce discontinuities, anisotropy and local
instabilities.

• Rolling friction, within spheric particles, seems to be useful for calculations with a great
amount of material, due to the fact that particle geometry would be an approximation
and also the computational cost will be smaller.

• Stiffness was not considered fundamental for the DEM calculations, as the calcula-
tion force would the same, but increasing contacts indentation. However, it has been
demonstrated that for this kind of quasi-static tests it is a key property.

• Particle packing is an important variable that should be taken into account, because it
greatly affects the results.

• Spheric clusters are a good approach to represent real geometries with low computa-
tional cost, but there is a drawback, the irregularities of each outer surface changes the
friction coefficient. More validation work should be developed.

Finally, it should be mentioned that, although there is already too much work to do, the
developed DEM-application is a promising tool for the calculation of ballast behaviour.
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7 FUTURE WORK

The obtained results prove that the DEM is a powerful tool for the calculation of railway
ballast. However, a lot of improvements could be implemented in the code, and there are
also validation work to do.

Improvements to develop within the DEM-application:

• Create more clusters from scanned geometries.

• Find a better way to generate sphere clusters meshes, to allow more anisotropy and
save time.

• Create a new GiD problemtype7, specific for ballast calculations, called DEM-Ballast.
It could be useful if it has available wizards to generate, easily, common laboratory
tests (like large-scale triaxial tests).

• Develop the Central Differences algorithm (in addition to Forward Euler) for the nu-
merical integration, as it is developed in the Solid Mechanics application.

• Implement particle rotation via quaternions8, it would be more accurate than doing it
in the XYZ coordinates system.

There are also some validation work to carry out:

• Evaluate the influence of clusters surface irregularities in the friction coefficient.

• Develop triaxial tests to evaluate ballast behaviour under dynamic loads.

• Simulate other laboratory tests, in addition to triaxial and lateral resistance tests. There
exist other well documented laboratory tests to be simulated with the DEM-application.
Two examples are, the ballast box test and the oedometric test [39].

• Use the Hertz constitutive model to reproduce laboratory tests, not only linear model.

7Problemtypes are user interface tools that can be created to facilitate the generation, using GiD, of Kratos
models.

8Quaternions are a four-dimensions vectors that provide a convenient mathematical notation for represent-
ing orientations and rotations of objects in three dimensions
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