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Outline of the talk

• Proper Orthogonal Decomposition POD

• Local POD

• Our proposals:
• Clustering + “custom” Overlapping

• Takeaway: take into account training history in the selection of overlap

• HROM with multiple bases (keep the elements sets – change the weights)
• Takeaway: “adaptive” basis + cheaper hyperredution

• Examples run in Kratos Multiphysics

• Conclusions



A MUCH SMALLER SYSTEM!

Full Order Model (FOM)

Reduced Order Model (ROM) 
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A MUCH SMALLER SYSTEM!

Full Order Model (FOM)

Reduced Order Model (ROM) 

 

 

 

 

Proper Orthogonal Decomposition

 

 

 

 

 

 

PROBLEM: STILL EXPENSIVE TO 
MOUNT THE SYSTEM



Hyper-reduction
The goal is to find a subset of elements and corresponding weights by solving an optimization problem 

NP-HARD. Solving via greedy procedure

(Hernández, 2020): doi.org/10.1016/j.cma.2020.113192
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Assembly comparison FOM vs HROM: 

  

FOM Simulation HROM Simulation

Hyper-reduction



 

HROM Simulation

Hyper-reduction



POD weaknesses and strengths

• Straightforward procedure for training and inference

• Not ideal for certain problems(convection dominated, highly 
nonlinear)
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Full Order Model (FOM)

Reduced Order Model (ROM) 

 

 

 

 

 

 

 

 

Local POD

 
 

  



How to choose the local basis?
 K-means

 

 

 

Given: 

Solve via alternating minimization:

 

Find centroids:   and  assignments:  

Animation from Wikipedia



Local POD. Building multiple bases

S  …
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Local POD. Building multiple bases
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SVD

  …



Local POD. Original Idea

(Farhat, 2012): doi.org/10.2514/6.2012-2686
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Local POD. Original Idea

(Farhat, 2012): doi.org/10.2514/6.2012-2686

Training data is often collected 
in “training paths” (each 
indicated with a different color)



Local POD. Original Idea

(Farhat, 2012): doi.org/10.2514/6.2012-2686

BUT the origin of the data is
Forgotten at the moment 
of mounting
The clusters



Local POD. Original Idea
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Local POD. Original Idea

(Farhat, 2012): doi.org/10.2514/6.2012-2686

In the original idea “vicinity” 
Is based only on the concept 
Of distance



Local POD. Our overlapping proposal

(Farhat, 2012): doi.org/10.2514/6.2012-2686
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Local POD. Our overlapping proposal

(Farhat, 2012): doi.org/10.2514/6.2012-2686

Our overlapping proposal

 (Roweis,2000):doi.org/10.1126/science.290.5500.2323

Step1: we search for neighbours (In a 
LLE sense) within the training 
trajectories 



Local POD. Our overlapping proposal

(Farhat, 2012): doi.org/10.2514/6.2012-2686

Our overlapping proposal

 (Roweis,2000):doi.org/10.1126/science.290.5500.2323

Step2: we search for neighbours 
outside of the training trajectories 
(neighbours in a LLE sense)



Local POD. Our overlapping proposal

(Farhat, 2012): doi.org/10.2514/6.2012-2686

Our overlapping proposal
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Local POD. Our overlapping proposal

(Farhat, 2012): doi.org/10.2514/6.2012-2686 Our overlapping proposal



Local POD. Example 1

(Farhat, 2012): doi.org/10.2514/6.2012-2686 Our overlapping proposal



Local POD. Overlapping proposal

 
 

 



Local POD. Classical Hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

 



Local POD. Classical Hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

 



Local POD. Classical Hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

 

Classical approach: unique set of 
weights



 

Local POD. Classical Hyper-reduction
Reduced Order Model (ROM) 
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(Grimberg, 2020): doi.org/10.1002/nme.6603

 

Classical approach: unique set of 
weights

 



Local POD. Classical Hyper-reduction

Number of clusters Number of elements



Local POD. Improved hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

 

Expectation:

Number of clusters Number of elements

Our approach: hyperreduced basis remains the 
same, but weights change!



Local POD. Improved hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

Expectation:

Number of clusters Number of elements

 

Our approach: hyperreduced basis remains the 
same, but weights change!



Local POD. Improved hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

Expectation:

Number of clusters Number of elements

In reality:

Number of clusters Number of elements

 

Our approach: hyperreduced basis remains the 
same, but weights change!



Local POD. Improved hyper-reduction
Reduced Order Model (ROM) 

 
 

  

 

 

 

 

Find a single set of elements and as many 
sets of weights as bases

 

 

Our approach: hyperreduced basis remains the 
same, but weights change!



Local POD. Parallelisation of ECM
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parameters

 

 



Local POD. Parallelisation of ECM
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Local POD. Parallelisation of ECM
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Local POD. Example 2
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Local POD. Example 2

 

 

32 trajectories
50 snapshots per trajectory
1600 snapshots 
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Local POD. Example 2

 

 Test trajectories 

 

 

32 trajectories
50 snapshots per trajectory
1600 snapshots 



Local POD. Example 2
FOM HROM



Local POD. Example 2

 

 

10X  less elements required 

compared with a single basis

5X  less modes required 

compared with a single basis



Local POD. Example 3



Local POD. Example 3

POD Local POD

Basis size 260 modes 10 basis ~30 modes

HROM elements 400 240(~150 per basis)

Simulation time 1234 seg 90 seg

L2 error 1e-3% 1e-3%

13X  faster than POD



Local POD. Strengths and weaknesses

• Reasonable overhead in training and negligible in inference

• Smaller bases and elements sets, therefore faster ROMs

• Still Easy to overfit to training trajectories …but at least a warning can 
be issued when too many neighbours are found in the clustering 
algorithm



General conclusions
• The Local POD was presented

• Taking into account the training paths in the choice of overlapping is 
important

• More clusters => smaller basis & smaller integration overhead

• Future work: 
• application of method to multiple escenarios
• Non-Galerkin hyperreduction

 
 

   

 



THANK YOU

Link to Kratos github site
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