14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)
Virtual Congress: 11-15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

TOPOLOGY OPTIMIZATION OF ELASTO-PLASTIC STRUCTURES
IN CONTACT

ANDRZEJ M. MYSLINSKI 1

! Systems Research Institute
ul. Newelska 6, 01-447 Warsaw, Poland
myslinsk@ibspan.waw.pl

Key words: Structural optimization, Elasto-plastic contact problétegularization, Level set method

Abstract. This paper is concerned with the analysis as well as the rioahesolution of the struc-
tural optimization problem for bilateral frictional comtgproblem where the static elasto-plastic material
model with linear kinematic hardening rather than elastdanal model is assumed. The displacement
and stress of the bodies in elasto-plastic contact with angikiction are governed by the system of the
coupled variational inequalities. In these problems uguary high stress appear along the surfaces
in contact. It leads to wear or fatigue of the contactingace$. Therefore the aim of the topological
optimization is to find such distribution of the materialifi the body in contact to minimize the con-
tact stress. Using von Mises yield function as well as theleegzation and penalization techniques the
original system of variational inequalities is transformneto the system of coupled nonlinear equations.
The derivative of the cost functional with respect to thetyndation of the domain occupied by the
body in contact is calculated using the material derivatiathod. Finite element method is used as the
discretization method. In the numerical computations gized Newton method is used to solve this
contact problem. The level set method is used to describgawern the evolution of the domain shape
in the design space where the direction of the evolution isrdened based on the calculated shape
derivative. The results of computation are provided andugised.

1 INTRODUCTION

Contact problems appear in many different fields of engingeincluding earthquake or civil engi-
neering or machine dynamics. Therefore modeling of coremtesses is an important topic which is
currently still under investigation. Mathematical modeéscribing the frictional or frictionless contact
phenomenons between a deformable body and an obstaclep-tadled foundation, have been con-
sidered in many works [17, 18] where results dealing withwled-posedness of their solutions and/or
numerical analysis as well as numerical simulation can bado

The contact phenomenons between elasto-plastic bodiesdssved in [6] where contact modeling

approaches for different geometries and types of contaaiescribed. Mathematical models of contact
phenomenons for elasto-plastic materials are discussaedmographs [14, 17, 18]. In many applications
the areas where the contact occurs are very small [12]. Iltieésphat the transmitted contact force
densities are usually rather big in the contact zone anchdddo plastic deformations. Therefore it
is reasonable to consider an elasto-plastic rather thaticclaodel for the material. The high contact
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stress may lead to undesired vibrations or the degradatisarfaces of the contacting bodies as well as
the deterioration of the working conditions for employe@&$ie reduction of high contact stress or the
obtaining the uniform distribution of this stress is the maim of the topology or shape optimization
problems for bodies in contact. The topology optimizatiemsists in such distribution of the material
filling the structure within the design domain to minimize tiven cost functionals describing required
features of the structure. Most research related to togadpgmization has been concerned with linear
elastic structures (see references in [12]). The amourdmds dealing with non-linear elastic structures
or nonlinear mechanical behavior is limited. The abilityd&e into account elasto-plastic materials is of
great interest of industrial engineers.

Structural optimization of elasto-plastic structures baen investigated, among others, in [1, 8, 10,
11, 16]. A major difficulty in shape or topology optimizatiaf elasto-plastic problems as the path-
dependent problems is the sensitivity analysis [10]. Tioeeethe original structural optimization prob-
lem has to be regularized either using the filter techniquaifterent penalization techniques. Optimal
control problems for elasto-plastic structures have bagdiesd in a series of papers [4, 5] where primal
and dual formulations as well as first order necessary optin@nditions are provided. Optimal con-
trol or structural optimization of contact problems forstaplastic materials have been considered in
[2,9, 20].

The aim of this work is to analyze and to solve numericallyshape and topology optimization problem
for two bodies in contact assuming static elasto-plastitened model with linear kinematic hardening
rather than elastic material model. It extends the resnl{g3]. The optimization problem consists in
finding such material distribution inside the domain ocedpby the body in contact to minimize the
contact stress. In the paper penalization approach willseel to regularize the structural optimization
problem. Moreover the level set approach [15] will be useddive it numerically. The small strain
plasticity material model is used [7]. The optimization lgem is discretized using the finite element
method. The generalized Newton method is used to solve $siseatié contact problem. Numerical results
are provided and discussed.

2 ELASTO-PLASTIC CONTACT

Consider a body occupying a bounded dom@ir RY, d = 2,3, with a Lipschitz continuous boundary
I (see Fig. 1). The boundafyis divided into three open disjoint and measurable pagtd > andl 3
such thatmeagl1) > 0. The body is loaded by a given volume force of dengity= f1(x) in domain
Q and a given surface traction of densiey= f,(x) applied on the boundary,. The body is clamped
along the boundary, i.e., its displacement = (uz,uy), u = u(x), x € I'1, vanishes there. Along the
boundaryl 3 the body is assumed to be in bilateral frictional contachwiite rigid foundation. The
friction phenomenon is modeled by the Coulomb’s law. Thedsif; and f, are acting slow enough to
neglect the inertial terms. The domdis filled with a material undergoing under the loading of voku
or boundary forced; and f, elasto-plastic deformation with kinematic and isotropgrdening. In the
elastic range it obeys Hooke’s law [2, 7] defined by a founttheo tensoC such that, for any symmetric
matrix ¢,

CT = AL+ ptr(lg,

whereA andp are the Lamé constants ahdandtr denote identity and trace operators, respectively. For
p> 0 anddA + 2u > 0 the elasticity tensd€ € L*(Q) is assumed to be symmetric, uniformly bounded
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and coercive [2, 7]. Let us also introduce the Cauchy stessoro and the linearized strain tensor
[2, 7], respectively:

1 . ou;
o=o0(u) = {oij}id:l, ande=¢(u) = E(ui’j +uji)i,j=1,...,du ;= a—x' @
i
The summation convention over repeated indices [2, 7] igl tis®ughout the paper. The divergence
operatordiv(o) of a second order tensaris defined asliv(o) = {aij ;}, 0ijj = ?T'JJ, i,j=1,...,d.

We assume the plastic deformation of the material is godetnethe additive small strain plasticity
model [7, 18]. In this model the material strans sum of the elastic straigf and the plastic straigP,
ie.,
g(u) = €°(u) +£P(u), )
and the stress tensor satisfies
o(u) = Ce®(u) = C(g(u) —€P(u)), and g(u) =C *o(u)+eP(u). (3)

The plastic deformation with the hardening phenomenon @iged by the generalized plastic strain
(eP,&) and the generalized plastic stresgesy). The variableg represents a set of scalar or tensorial
internal variables capturing the feature of hardening bieh47]. The back stresg denotes an internal
force arising during the hardening and causing the traoslaff the initial yield surface. The back stress
X and the internal variabl& are related by [7]

X =—-HEg in Q, (4)

whereH € L*(Q) denotes the hardening tensor [4, 7]. This tensor is assunrteltymmetric, uniformly
bounded as well as coercive. The generalized plastic stragdake values only in a closed convex set
X of admissible generalized stresses. For a given yield immdgt this set is defined as [5, 7]

K ={(0,X) : ¢(0,X) <0}. (5)

The elastic region of the loaded material correspondg(tmx) < O, i.e., the interior of the con&.
In this region the plastic straieP(u) is equal to zero, i.egP(u) = 0. On the boundary of the corg
called the yield surface, whegdo,x) = 0, the plastic strain can be nonzero. The evolution of thstisla
straineP and the internal variablg is governed by the associative flow rule [7, 10] stating thatrates
of plastic strain and the internal variable belong to thenradrconeNk to the setk at a point(ag,x).
For the smooth yield function it implies the existence of tioanegative scalar and the Kuhn-Tucker
complementarity conditions relatidgand the functiorp [7]

(£°,€) =A00(0,X), andA >0, ¢(0,X) <0, Adp(a,X)=0. (6)

where the dot above the symbol denotes the derivative wihea the time variable, i.€,,= ‘;—E. Con-
dition (6) is also consistency condition according to wHiah¢ = 0, plastic loading takes placedif=0
while unloading appears i < 0. The flow rule can also be described using maximal plastickwo
principle for the generalized stresses [7]

g(u(x) :o(x) —o(x):C o) —x(x):H 1:x(x) =

(7)

max {e(u(x)) : a(x) —a(x) :CL:gx)—x(x) :H 1:n(x)}.
(@n)ex
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Let us denote bir?*? the space of real x d matrices. We shall consider the following contact problem:
find the generalized stress field, x) : Q — R¥*9, the displacement field : Q — RY, the generalized
strain field(gP, &) : Q — RA*d x RY satisfying plasticity conditions (2) - (7) as well as

divo+ f1 =0 in Q, (8)

u=0onl; ando,=fy on Iy, (9)

W =0, |or|[<Hi|Oy| onTs, (10)

|Or] < Mi|Oy| = =0 onTrsg, (11)
]OT]:uf\ovy:ﬂ)_\zo,utz—)_\cnonl’g. (12)

For the unit outward normal vecterto the boundaryr normal and tangential components of the dis-
placement field: are denoted [7, 18] by, =u-v =u;-v;,i =1,...,d, and byu; = u— u,v, respectively.
Similarly normal and tangential components of the stredd tieare denoted by, = ov-v and by

O = OV — OyV, respectively.ys is the friction coefficient andl- | denotes the Euclidean norm. System
(2)-(12) governs the elasto - plastic bilateral contacbfmm with Coulomb friction.

2.1 Variational problem

For the sake of sensitivity analysis let us introduce théatianal formulation of this contact problem.
We shall use the dual rather than primal variational forateof the contact problem (2)-(12) with von
Mises yield functionp in (5). This formulation is based on the generalized streissdrs = (o, X) rather
than on the generalized strain tengef, ). Moreover the primal formulation requires to assume safe
load condition to ensure the existence of numerical soijto5, 7, 14]. Recall from [7] von Mises yield
function ¢ has the following form

om(0) = VaP : aP — gy = a® | —ay. (13)

The constanty, > 0 andop : op denote the material yield stress and the product of fourdieraiensors
[7].- Moreover for the symmetric tensorstress tensorsp andoy denote its deviatoric and hydrostatic
components, respectively,
pdf r(o) y df tr(o)
0 =0———Ilg 0 =—=I
d ¢ d @
Therefore using (13) the set of admissible generalizedstse(5) takes the form

Ky ={(t,n) € SxS: |2 +n° | —koy < 0y, }, (14)

wherek, > 0 is the isotropic hardening parameter and a scalar determining expansion of the yield
surface in the isotropic hardening or equivalent plastiaiist[7]. For the sake of simplicity we assume
linear hardening only, i.ek, = 0. We denote by andSthe space for displacements and the space for
stresses as well as back stresses, respectively:

V={ueHY(Q;RY): u=0onT1} and S=L%Q;R%:). (15)

The subspac®; ¢ R4 denotes the subspace of symmetric matrices or symmetrangeorder
tensors. Her&?(Q;RY) andH(Q; RY) denote the space of the square integrable functions as svislea
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space of the square integrable functions and their firsvakéres in domair taking values irRe. For
details see [7]. The set of admissible displacements istddrixy

Kc={ueV: u, =0 onTl3}. (16)

By C! andH ! we denote the compliance tensor, i.e., the inverse tenstiret@lasticity tenso€
and the inverse tensor to the hardening ter$prespectively. Tensoi§~! andH ! are assumed to
be symmetric, uniformly bounded and coercive [7]. Boe Sandv € V we define the linear form
| : V' xV — Rdefined as

I(v):/Qfl-vdx+/r2 f,-vds (17)

whereV’ denotes the space dual to the spdcg]. The friction functionalj.(-) : V — Ris defined as
follows

je() = [ we [ou(w]|ve | ds 18)

The dual formulation of the contact problem (2)-(12) is mhsa the minimization of the quadratic
functional depending on the generalized stEssKy as well as on tensoG~* andH ! with respect
to > € Ky and under the constrainf, o : €(v)dx+ je(v) > I(v) Vv e Kc. Formulating the necessary

and sufficient optimality condition for this optimizatiorrgiblem it results in the following system of
variational inequalities: find € K¢ and(o,x) € Ky satisfying:

/ o:Cc1: (T—O’)dX—|—/ X:H™1:(n—x)dx—
0 0

/Qs(u):(T—o)dxzov(r,n)eKM, (19)
/Q e(v—U) : G(WdX+ jo(V) — jo(U) > (V) Vv e Ke. (20)

The system of variational inequalities (19)-(20) is theldoanulation of the elasto-plastic contact prob-
lem (2)-(12).

2.2 Contact problem regularization

Elasto-plastic contact problem is governed by the systegoopled variational inequalities (19)-(20).
Applying penalization and regularization techniques wallsinansform it into the system of nonlinear
equations. It allows sensitivity analysis as well as nunarsolution of the optimization problem. First
we shall deal with the plasticity conditions.

2.2.1 Penalization of plasticity conditions

Remark, the first two terms of the inequality (19) descrilepglojection of the generalized stress tensor
2 on the admissible sty [10]. For von Mises yield function (13) the orthogonal piijen operator
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Pk, (£) of the generalized stress tensbion the sety with respect to the scalar product 8% Sis
expressed as [4, 10]

s 1 .y 1 [ opt+Xp
Py (2) =2 2max(0,|0D+)(D| 0tr)|0D+XD| ( O+ Xb > (21)

Therefore using the projection operafey,, the constrain& € Ky can be expressed as the quadratic
penalty term equal to th8x Snorm of the difference betweenhandPx,, () added to the dual energy
functional [4] and depending on a given real number pentidizgparameteti > 0. This penalization

is based on the Moreau-Yosida approximation of the indicfataction of the seKy of the admissible
generalized stresses and is elasto—viscoplastic appatigimof the elasto-plastic problem (19)-(20) [4].
It allows to consider the inequality (19) on the whole spather than on the cor€y. The modification

of the dual energy cost functional generates also a newrsyst¢he optimality conditions. The neces-
sary and sufficient optimality condition for this penalizgptimization problem results in the following
system of variational equations and inequalities:&for O find ug € Kc and(0g,Xa) € Sx Ssatisfying:

/ og:C1: (T—Ga)dx+/ Xxa:Ht:(n —Xa)dx—/ g(ug) : (T—og)dx+
0 0 0
G [ [(0~ Py (0)) 11 (X~ Py (x)) :Jdx=0 v (1.1) € Sx S @
/Qs(v— Ug) : Og(U)dx+ je(V) — je(u) > 1(v) YveKe. (23)

In the formula (21) appears the non-differentiable mappirg max(0,x). Therefore the projection op-
erator (21) is also non-differentiable with respect to itpument. In order to avoid numerical difficulties
we regularize this mapping. The regularization of this @ctipn operator consists in the regularization of
the function maf0, -). We denote this regularization as functiéy(-) with the regularization parameter
a > 0. Functionfy(-) has the form
i =X +ix+ 9 for x €[-a,al],
fq (X) = (24)
max(x, 0) otherwise

Using (21) and (24) the regularized projection oper&r(Z) of the operator (21) depending on param-
etera can be written as

3 1 Op +Xp
o _ _ —
RE() =2 fal[ G-+ X0 | ~0w) o (021X ), @5)

Taking into account the regularized projection operatd) (&ther than non-smooth operator (21) in
the system (22)-(23) we obtain the system with the regddrasticity conditions: findg « € V and
(06,0, Xa.a) € Sx Ssatisfying:

/ Oga:Ct: (T—O’a.q)dX—l—/ Xaa:H1:(n —Xa.q)dx—/ €(Usa) : (T—Ogq)dX+
Q Q Q
G/Q[(Oa,a — Py (Oaa)) 1 T+ (Xaa — Pay (Xaa)) 1 Njdx=0V (1,n) € Sx S (26)

/Qs(v— Usa) : Oa,a(U)dX+ je(V) — je(Uga) > 1(v) VVveKe. (27)

Remark, the equation (26) is formulated on the whole sfgac&rather than on the sé&ly.
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2.2.2 Regularization of friction conditions

Let us assume Tresca friction model, ij@, (u) |=h, h> Ois given. Therefore in the inequality (27) the
frictional functional (18) is the non-smooth term due to thés R® — R. We approximate this function
by the smooth functior,, : RA —» R dependent on the regularization parameter 0. In general this
function is assumed to be a convex non-negaiivéunction such thad,(0) = 0. As a functionp, we
choosed,(v) = +/p2+ V2 —p. Using this regularizing function let us denote pi£(-)}, a family of
convex contact friction functionalg (-) : V — R, of classC? depending on the regularization parameter
p>0,ie.,

j2v) = [ mehbg(v)ds e V. (28)
3
The gradientd, j&(-) : V — V'’ of functional (28) with respect to the argument is equal to:
d
/ OvjP(u)vds= / Hh ¢o(u) vds W e V. (29)
s s du

Using (28) the inequality (27) is approximated by the segaenf equations depending on parameters
(G,a,p)
/Qs(v—ua.a.p) : oa,q,p(u)dx+/ Ovjf(Ugap)vds=<l,v> VveV. (30)
s

For the sake of simplicity let us denote By= (&, a,p) > 0 a real parameter. Using the approximations
(22)-(23), (26)-(27) and (30) the original system (19))(Z0approximated by the system of coupled
nonlinear equations: for a givére V' find ug € V and(ag, Xp) € Sx Ssatisfying the following system
of nonlinear equations:

/QOB ZC_li(T—OB)dX—i—/QXB ; H‘l:(r]—xg)dx—/Qa(uB) D (T—0op)dx+
G [ (05— Py (05)) : T+ (Xp — Pr (Xg) :Ndx =0 ¥ (r.0) € Sx S 31

/Qs(v— Ug) : Op(u)dx+ /r3 Ovjl(ug)vds=I(v) YveV. (32)

3 TOPOLOGY OPTIMIZATION PROBLEM

Let us formulate the optimization problem for the state esys{31)-(32). The objective functiond(-) :
V — Ris assumed to depend on the solutigf2) to the state system (31)-(32) in the domé&ln In
general this functional is sum of domain and/or boundamgrdls, i.e.,

Ju@) = [ wiuax+ [ Buyds (33

where the integrand functions: R® — Rand{ : R® — R depend also on the solutian= u(Q) to the
state system (31)-(32). These integrand functions arerassismooth enough and their first derivatives
are bounded for eveny. Each admissible domaiR is assumed to be contained [3] in open and bounded
hold-all domainD c RY. Therefore the setl,q of the admissible domains is written as

Uag=1{Q C R':Q c D, Qis suitable regular and satisfies imposed constrag(iQ) <0}, (34)
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whereg is a given function. Consider the following shape optiniaatproblem: find domai®2* € Uyg
minimizing the objective functional (33) on the set of adsiite domains (34), i.e.,

J(u(Q®)) = min J(u(Q)), (35)
Qe Uyg

where ((Q),0(Q),x(Q)) is the solution to the state system (31)-(32) in the dongairin order to find
minimum of the objective functional (33) first we need to cédédte its derivative with respect to the
design variable, i.e., its shape derivative. We shall datelit using the Lagrangian as well as material
derivative frameworks [3, 19]. Since the regularizationpmiag (25) is a smooth Lipschitz function it
is also point-wise differentiable. The solutianto the state problem (31)-(32) is more regular, i.e., it
belongs to the spade€™2(Q) for & > 0. It implies thato(u) is also more regular. Therefore the mapping
(25) is strongly differentiable. Denote #,, (Z)' the derivative ofP,, () with respect tax. Recall
the adjoint variable$z p,q) € V x Sx Sassociated with the state variableso,x) € V x Sx Scan be
retrieved by differentiating the Lagrangian with respectitand (o, ) in the directionss and(t,n). It
gives the system of adjoint equations satisfied by the viesdh p,q):

d d
/Qq(;—(ljj)vdwr/r%vds—/ge(vﬁ) . (p—op)dx+
/Qs(z—vB):OB(v)dXJr/r Ovj(w,vg)zds=0 Y eV, (36)

as well as
/QTB ZC_l(p—TB)dX—I-/QI’]B ; H‘l(q—r]g)dx—/ge(ug) L (p—Tp)dx+
6 [ [~ P, (1)) : P+ (Mg — Pl (ng) - lax-+
/Qs(z— Ug) : Tg(u)dx+ /rz Ovif(t(w),ug)zds=0 V¥(1,n) € Sx S (37)
Therefore using (36)-(37) as well as formulas for shapevdtivies of domain and boundary integrals

([3, 19]) we obtain the shape derivative of the cost fun@idB3) in the direction of a velocity field as
equal to

J(Q)(Q) = /r (W) — 12)Zvdx+ /r (HndD(U) + ,0)Zvds— /r (Hmcf2z-+ 0y f22)0vds+
/I’GB :Cflvads+/pr ; Hfquvds—/rs(uB) ; vads+6(/r[(fa(oB)) 2 p+ (fa(Xp) : qjTvdx+ (38)
[ £ : og(utvds+ [ [Hndi2(up)z+ 2, CuiB(tg)Zevds

where(u,0,X) and(z p,q) are solutions to the state system (31)-(32) and the adjpstem (36)-(37),
respectively. In (38Hmc denotes mean curvature of the boundary
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4 NUMERICAL METHODS

We use the level set function [15] to define and to update thpeshof the sequence of the admissible
domain. All admissible shape® are contained in a hold-all open bounded dontin RY. The level
set function¥(-) : RA*1 — Ris defined as:

W(x) <0 ifxeQ,
W(x)=0 ifxelnD, (39)
W(x) >0 ifx¢Q.

The boundary of domainQ is located as a set of points Ihwhere the level set functio#(x) is equal

to 0. Inside (outside) domaR this function takes negative (positive) values. The donaaith boundary
integrals of functionf are transfered [15] from domaf® into domainD using Heaviside functiofl and

Dirac functiond, respectively,

/Qf(x)dx:/Df(x)(l—H(W(x))dx, /rf(x)ds:/Df(x)zS(w(x))\Dw(x)ydx (40)

The one-dimensional Heaviside and Dirac functions arengixe

0 if <0,
H(Lp)_{ 1 if¥>0, (41)
(W) =H'(W), and 3(x) =3d(W(x)) | OW(X) | . (42)
In computations these functions are smeared out [12, 158. &Vl set algorithm starts from an initial
domainQg. During the optimization process a sequence of domélg, i = 1,2,...N, is generated.

Each domain; is characterized by its level set function. Therefore thapshevolution process may
be associated with fictitious time varialileO <t < T, T > 0 is a given real constant and the level set
function is dependent on space and time variablesW.e-,W(t,x). In classical setting the evolution of
the level set function from domai®; to domainQ;. 1 is governed the Hamilton—Jacobi equation in time
interval [0, T|

ov .

a5 +C | 0¥ |=0, W(O,x) =Wy(x) in D, (43)
where functiori¥y(x) determining the shape of the initial domad is given. The normal velocity of the
domain boundary (x) is identified with the shape derivative (38) of the objecfwectional (33) in the
direction normal to the boundafy. Since the shape derivative is given as boundary integeahdinmal
velocity ¢ has to be extended on the whole computational dordgi8, 15]. This extension is usually
associated with the regularization of velodltyThe equation (43) is solved usually by an explicit second
order upwind scheme on a Cartesian grid of design domawith Neumann boundary conditions. In
order to ensure the stability of this scheme the time stefidhaatisfy CFL condition relating the length
of time and space discretization steps [15]. Since duriegtdration process the level set may become
too flat or too steep in order to regularize it periodic reatitation of the level set function is performed.
For other types of the level set methods such as binary oewise constant see [12, 15].

Both the state and the adjoint boundary value problems (@2)-as well as (36)-(37) are discretized
using bilinear quadrilateral finite elements. Ersatz niatapproach [3, 10, 11] is used to avoid meshing
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problems with the shapes of domaiasand singularity of the stiffness matrix. This approach @xiss
in filling the domainD \ Q with a weak material characterized by law value of Young nhesland
mimicking void. The discretized state and adjoint equatiare solved numerically using generalized
Newton method [20].

5 NUMERICAL EXAMPLE

Shape optimization problem for a body occupying two-dintms domainQ C R? in bilateral contact
with the rigid foundation has been solved numerically in lslaenvironment. The functional (33) with
W(u) =0 and((u) = a(u) - ve-v is chosen as the objective functional wheris a given function. The
aim of the shape optimization problem is to reduce the corsizess. The constraint functiafu) in
(34) is equal to volume constraint, i.gu) = Vol(u) = [odx—Vo. The domainQ C R? is chosen as
follows (see Fig. 1)

Q={(x1,%) ER:0<x, <8 A 0<V(x) <X <4}, (44)

where the functiorv(x;) = 0.125- (x; — 4)? describes the boundafs. The boundary™ of the domain
Q is divided into three disjoint pieced’; = {(x1,%2) ER?:x; = 0,8 A 0 < V(x1) < X <4}, I =
{(x1,%) ERZ:0<x <8 AX=4},T3={(x,%) ERZ:0<x; <8 A V(X1) =%}

DomainQ is filled with the solid material characterized by the Youngduli E; = 10- Eg and with weak
material in the form of distributed voids characterized g Young modulE, = .1-Eg, Eg = 2.1- 1P
MPa (see Fig. 2). The Poisson’s ratio is equal t8.3. The shear and dilation moduli are equal ta. 8"
MPa and 11-10° MPa, respectively. The yield stresg = 367,4 MPa. The hardening parameters are
equal tok; = 1-10° MPa andk, = 0 MPa. The body is loaded by the boundary tractipa= —6.5- 10’

N along the boundary 1, the body forcef; = 0 in domainQ. The hold-all domairD is a rectangle
[0,8] x [0,4]. This domain is divided into 86 40 grid. Fig. 3 displays the obtained optimal topology.
The areas of weak material appear in the central part of thed2 and close to the clamped boundary
I">. The mass of the optimal structure is larger for elastotiglasaterial in comparing to elastic material
model. The algorithm tries to avoid the generation of ptastines which are less rigid and induce larger
displacements. Von Mises effective stress is displayedign4: It concentrates in the areas close and
above the contact zone. The obtained normal contact ssedmost constant along the optimal shape
boundary and has been significantly reduced comparing tinitired one.

L

15}
r e o o o
3

Figure 1: Contact between domaid and the rigid foun- ) . _ .
dation. Figure 2: Initial computational domaii.
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Figure 3: Optimal topology domai@*. Figure 4: von Mises stress distribution

6 CONCLUSIONS

The obtained results indicate that presented approacld losshe application of the level set technique
can be applied to solve numerically a topology optimizatiwablem for bodies in bilateral frictional
contact where nonlinear small strain elasto-plastic vititedr kinematic hardening material model rather
than elastic material model is used. It allows to formulageassary optimality conditions for this type
of nonlinear problems and it is capable of finding topolodies generates minimum contact stress. This
approach is flexible and can be extended to solve other shafmpaogy optimization problems for
structures governed by nonlinear equations.
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