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Summary

When treating nonlinear problems with the Finite Element formulation, the need
to solve nonlinear sets of equations arises. Classically, those nonlinear sets of
equations were solved by performing an incremental fiterative analysis with o full
Newton-Raplison method,

Today, one ean choose from a wide range of methods. The modifications to
the original {NR method use tangent stiffness matrices, which are updated at
mogt once per increment. Quasi-Newton methods use secant matrices instead
of tangent matrices. Secant-Newton methods are simplifications of the Quasi-
Newtons,

This work deals, in partioular, with the implementation of these methods in
an object-oriented code and with the comparison between them on several tests,
The expected behaviour of the mathods is observed from the results.

Also, an acceleration line-search technique is implemented to improve the results
supplied by the previous methods.

To solve problems with limit points, are-length technigues are employed to
follow the nquilihrium paths.  The programmed procedures are used to solve
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severnl gnap-through and snap-back benchmark tests.

The computer code, Castern2000, is an object-oriented code which employs the
Lagrange multiplier technique to tmpose boundary conditions. This feature leads
to more than one possible approach to the Quasi-Newton and Secant-Newton
methods, In particular, some speeific techniques have been developed in this
work to treat nonlinear problems with linear constraints.



Chapter 1

An introduction to
nonlinearity

An exhaunsative deseription of the Finite Element formulation for linear problems
can be found in [20,39]. Ag for nonlinear analysis, [] ,].U] are abliged references,

In Section 1.1, two simple examples are firstly used to introduce nonlinearity.
In Section 1.2, some basic notions on the FEM for linear and nonlinear problems
are briefly reviewed,



2 1. An introduction to nonlinearity

1.1 Motivation: two simple examples of geometric
and material nonlinearity

Figure 1.1 shows a bar of area A that is aubject to a load F at one end and is fixed
at the other, The bar i3 made of a plastic material with a bilinear strain-stress
law, Figure 1.2,

A

Figure 1.1: First example: Plastic bar subject to axial load.

g

Figure 1.2: Strain-stress law for the bar in Figure 1.1.
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If N is the axial force in the bar, then, for equilibrium
N =F. (1.1)

since N = A o, we have
'=Aa, (1.2)

If we denote by & the inerement in the hrmgth of the bar, the value of the strain
£ ean be computed ns

(1:3)

— T

Summing up: the foree Fis proportional to o, equation (1.2), and ¢ 13 a nonlinear
function of ¢ = &/l sce Figure 1.2. Therefore, F' is a nonlinear function of the
displacement 8; actually, the F' — § eurve is identieal to the & — £ law exeept for
n scale factor.

This ense is an example of material nonlinearity.

We now consider the elastic bar in Figure 1.3, [10]. This bar has area A and
constant Young's modulus F.

Initial eonfiguration

Figure 1.3: Second example; elastic bar subject to vertical load.
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When a vertical lond W is applied, the axial foree in the bar can be computed

after the equilibrium equation
W =N &b (1.4)

If we assume that 8 is sinall, the following approximation can be made:

sinfl = tan f = ztw. (1.5)

Equation (1.5) can now be substituted in (1.4) yielding

W= -i;-i (1.6)

Using now that N = 4 o = E A ¢, equation (1.6) becomes

41

W=EA = & (1.7)
Since I" — 15 the increment of length in the bar associated to the displacement

w, the strain £ is computed as

V=l et P22
I V22 '

Equation (1.8) ean be manipulated, [10}, to yield the approximation

()@ 1) o

Finally, substituting (1.9) into (1.7) gives

£ =

(1.8)

W= %‘i (:2 W +g 2 ip* + -é -w"'i'). (1.10)

Thus, althongh E is constant, the lond W is expressed from (1,10) as a nonlinear
function of the displacement w.

This is a case of geometric nonlinearity.
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1.2 Finite element formulation of the problem

In Section 1.1 two examples of nonlinear problems have heen presented.,

[n this section, we begin by stating in general ferms the problem we want to
solve. We have a certain body §2 (essentially a solid or a structure, in our case)
which is subject to some external forees f,: and also to some boundary conditions,
After a Finite Element formulation, the bhody @ s divided into several elements
and the basic unknown d (continuous field of displacements) 15 transformed into
a certain vector u of nodal displacements

d=N u, (1.11)

where N is o matrix of shape functions,

After equation (1.11), the veetor of straing, &, ean be obtained as
£= B u, (1.12)

where B s the deformation matriz, which depends on the dusplecements in a
general case,

As for the vector of stresses @, it can also be expressed in terms of previously
used variables, For instance, in a bnear problem, e can be put directly in terms
of & through a constant matrix D, ealled the constitutive matrip

a=De. (1.13)

For materially nonlinear eases, stresses will have {o be obtained by integrating
the constitufive equation.
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Equilibrinun —— the principle of virtual worl

So far we have deseribed briefly the problem we want to solve, In this section. we
are poing to complete the formalization of that problem. That is, we are going to
write the specific equations that govern it.

Let us consider a aiuglu: clement from the diseretization, which will be denoted
by (¢). If some wirtual displacements sul®) yre imposed on this element, then
after the Principle of virtual work, [20,30], we have that

The element s i equilibriwm of the virtwal work wndertaken by czternal forces
equals the work undertaken by miernal forces.

Considering that the latter is actually the work produced by stresses over the
strains that result from virtual displacements, the prineiple of virtual work can
e written as follows:

Element (e) 18 i equihbraum of

: ’ , T s

Ve[ é&Tedv— (8u) f9 =0, (1.14)
(il

for any vector b‘u(” nf mrinel nodal displocements, where &g 15 the vector that

contains the corresponding wirtual strains, @ 13 the stress vector and _fs- V ineludes
all external nodal forces applied lo the element (meluding reaction forces of
neighbour elements).

After a Finite Element formulation, equation (1.14) is rewritten as

7 T4 5 ?II . ?I' 1 v
v= [ @B v 6l 1) = (o) { B gV i"} =9
n I3
(1.15)
for any 6ul®), This means that the ferm §ul®) in equation (1.15) ean be dropped
and the equilibrinm equation finally reads

Q[r:]

[ B e v £ = 19 _ gl — o) — g, (1.16)
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where fj((") i the vector of internal nodal forces and #(*) is consequently the vector
of oul-of-balunce forces, hoth of them associated to element ().

Up to this point, we have dealt with a single element (¢). To obtain an
equilibrium equation for the whole body, an assembly process must be performed
over all the elements, [20,30]. This results in the equation

Bl G av=f, == =% =0, (1.17)
0

where f; and f, represent respectively the mr.ur: vectors of internal and external
forces and it must be noted that vector B! 7 is now integ wrated over the whole
hody (2,

A brief recall of the linear case. The linear stiffness matrix

Equation (1.17) expresses equilibrium for a solid under the application of a cerfain
set of forces, This equation is general in the sense that it holds whether the
problem is linear or not,

To recover the linear case, we need to substitute in equation (1.17) some of the
linear FEM relationships that have already been introduced.

We saw at the beginning of this section that the displacement vector w and
the strain vector € can be connected l':-y the cxprr;-:-:;si(m £ = B u, where B is the
deformation maelriz, see equation (1.12).

If we make the hypothesis that the problem is lincar, we will consequently have
that

a) Straing can be written as a linear function of the displacements.
b} Stresses can be expressed as a linear function of the strains,

Condition b) allows us to write & = D &, where D is the conatitutive matriz
presented in equation (1.13).
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Thus, by a) we have that B does not depend on the displacements; and, by a)
and b), that I does not depend on u, ¢ither.

We can now use equations (1.12) and (1.13) fo express stresses directly in terms
of the displacements

g=Deg=DBu, (1.18)

ane then substitute (1.18) into (1.17) obtaining
) B odV—f, = L B'DBudv-f, = {f” B'DB mr} u—f, = 0. (1.19)
Let us focus now on the integral term m (1.19).
As B and D ave constant, the matrix K, defined by
K s = /“ BT DBV (1.20)

must be constant for a given linear problem. This matrix K, 15 precisely the
linear stiffness matriz K, nsed in linear analysis.

Finally, using the notation established in equation (1.20), equation (1.19) can
be rewritfen as

Knln.-c u—f,=0

or

Kuhm “’=f|‘:‘.1 (.121)

which, under the assumption of conservative forces (1. e, forces which do not
depend on the displacements) represents a set of hnear equations.

[‘,{:('_:,‘I]_l;_,"ﬁ_‘.1 Whl:-!]',], l)ﬂl,‘f()l‘n]ing il li]ll’-!}.u' I-.I.Ill-.ll}"Hil-i; thf.'.‘ gl!l'l{-!.l'ill Il'l(.‘-l'.l'li‘.lni(?il.l [_JI'(J'I'.HIH
reduces to finding a vector u of nodal displacements such that

1.« satisfies the boundary conditions

2.~ verifies the set of linear equations K, u = f,.
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It 15 mmportant to remark that conditions 1. and 2.« cannot be treated
separately, As a matter of fact, the stiffness matrix K, defined in (1.20) 15
a singular matrix, [20,30]. Consequently. an infinite family of solutions could be
found for (1.21). If the problem is well-posed, only one of these solutions satisfies
the preseribed boundary conditions. Two possible options to obtain directly the
solution of the problem defined by 1.- and 2.- are discussed in Section 3.5.

Hence, each time that an instruction like
Solve <set of linear equations=>

appears in the text, we will assume that some method has been adopted to treat
houndary conditions so that the unique solution of the whole problem can be
cotnpubed.

When dealing with a nenlinear problem, the vector of residual forces 18 wnitten
ik

T(ﬂ) =f.i(“) '_.f.-.n (122}

where the external forces f, are conservative and internal forees have become
[lﬂi‘!ﬂndt-!l‘lt o Lhe diﬁplm:t:u‘lﬁ:nts.

The problem of finding u for which
riu) =10 (1.23)

passes through the definition of a tangent stiffness matriz

oo,
K= u  Ou’

which iz the equivalent of the linear stiffuess matrix K, for the linear case (see
Section 3.1),

We can use the deseription of the internal forees

s / B g utv, (1.24)
NaYS
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which vields the following expression of K

af; / aB’ /- o O
= —=i = — g IV n — dVe 1.25
K il g i +.§!B 2 ( }

Equation (1.25) is of a special inferest becanse the two possible causes of
nonlinearity ean be obhserved in it:

1) In a geometrically nonlinear problem, matrix B is not constant, and thus
the term @BT /0w is nonzero,

2) I a smaterially nonlinear problem, e is a noulinear fanction of £, That
means, in particular, that de/de is not constant. Therefore, decomposing
da [ du as

it is easy to see tliat Ba'/au cannot be n constant matrix, either.



Chapter 2

Getting acquainted with
the programming
environment

2.1 Why an Object-Oriented Code?

Object-oriented codes are based on the use of objects of a complex nature. Thas
complex nature is basically due to the fact that more information about the
object’s structure is saved, This vesults in an casier handling of the information.

Castem2000, [3,5,28] is an object-oriented finite element code. Thus, it handles
objects such as points, meshes, stiffness matrices, stress fields, ebe.

The solving of a lll‘t:)l)lﬂ]'tl 15 divided into several elemental processes; a basio
instruction line looks like

new_object = OPERATOR old object_1 old_object_2 ...
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where an operator manipulates one or more old objects to form a new one,

The process typically beging with the bulding of some simple geometrical
objects.  These objects are wanipulated to form meshes, to which a model is
aﬁﬁnninl.t:ti; the process goes on to c{nﬁnc: the lnat‘la-,i, the r:n,rnputiug c.)pl‘.iuns, ate,

As ugers, we need not worty about the complexity of the operations or of the
created objects (for instanee, n “solve” instruction or a “displacement field” object
may turn up to be very complicated items).

Data and results may be studied nminly h}f r:lruwiug or liatin,g: also, components
of vectors can be extracted, maximum values can be computed, ete.

Furthermore, the code can be extended to incorporate operators that
necomplish specific purposes,

In all, uhjm:t oriented codes, Castern2000 in .pﬂrtit:tﬂnr, supply a very efficient
Al pe:iﬁgngin;d taol to solve structural 11I'Dhlt":n'.l.ﬁ.
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2.2 Solving linear problems with Castem2000

In this section, an example of a propgram that solves @ simple linear mechanical
problem is presented. We will be following the process line by line to see hiow
engily and naturally objects are being made up and also how close the whole
process is to what we would do if we attempted to solve the problem manually.

The example we have chosen is the axisymmetrieal shell that is represented
in Figure 2.1. This shell 18 subject to a point load, an internal pressure and its
self-weight.

In the following program, see Table 2.1, we intend to compute the displacements
of all the nodes of the structure; in particular, we will extract the radial
displacement of the eentral node and compare it to its theoretical walue u, =
4.677 pm, Some comments have also been introduced in the file (those lines
beginning with “*" are interpreted by Castem as commentary lines).

t E=1 Im

=~ =

%

-1=0.07 m

p=1785 H,]‘ If.g/n;
E=2.1 10 "N/m’

|

|

I

|

!

|

' p=10000 N/m
|

|

1 p=0.3
!

F=1000 N

Figure 2.1: Linear example — axisymmetrical shell.
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= &% * * 2 + & K # £ & ¥ # =

* & ® F =

w % ¥ ¥

t

spharical shall iz subjact to :

an internal pragsurae

ites self-waeight

- & point load at the cantre

Azsuming that tha problem is elastic and linear, we intend to
computa the radial displacement of the central point of the shell.
The theorstical value of the radial displacement

of the cantral point of the zhell iz 4.877 micrometres.

1

First of all, we define the general computational options:
Axisymmetrical rotation of a
bidimensional problem where linear two-node olements are being usaed

OPTION DIMENSION 2 ELEMENT SEGZ MODE AXIS |
117 1 ¢ G e ———

Wo nosd a center point and twe additional pointa
to define a circular arc

o=01  a=00;b=11;

We now aplit thiam arc into 100 linear elements
11 = CERCLE 100 a & b ;

Ve want the border of tha shell not to move in the vertical dirsction.
As for point a, we must impose the proper conditions

to correctly simulate axigymmetry

bel = BLOQUER b UZ ;

be2 = BLOQUER a UR

# Boundary conditions bel and be2 are put together im a new object be
* via upurntnr ET.

4+ W - E

-

be = bel ET be ;

------ e WODEL AND MATERIAL — B

An elastic model is associated to the basle mesh with eperator MODL,
C0Q2 iam the type of element that results from rotating a SEG2

around the symmetry axis.

mo = MODL 11 MECANIQUE ELASTIQUE cogz ;

The material iz initinlly defined with operator MATR

by its Young modulus E, its Poisson coefficient nu and ite density rho
Finally, o value for the thickness ig included with operator CARBE

ma = MATR mo YOUN 2.1Ei1 NU 0.3 RHO 7.85E4 ;

ca = CARB mo EPAI 0.02 ;

ma = ma ET ca ;

Table 2.1: luput file for the shell example,
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* # F ¥ ¥

R E R R RO

L 3

& F F F

mmmmmm e mem— STIFFNESS MATRIX =moom oo e e e e e

The internal stiffness stil is computed firat with operater RIGIDITE.
Then, boundary conditions are incoyporated te Torm,

again with operater ET, the gleobal atiffneas matrix atil

stil » RIGIDITE mo ma ;

gtl2 = gtil ET be |

e e PORCES —eee- -

e (NIFORM INTERNAL PRESSURE =emmwmmmmmmsmmm i

A uniform pressure ia applied te the model with operantor PRES
fol = PRES COQU mo -10000 NORM ;

------------------- SELF-WEIGHT === m s = - ——

Tha force foZ nssociated to self-weight is obtainad by computing
tha masa matrix first with operator MASSE

and then multiplying it by a unit nodal field

mas = MASSE mo ma ;

ell = CHANGER 11 POI1 ; '

pop = MANUEL CHPO &11 1 UZ =1 |

fo2 = mag#pop

a vertieal force at point b is introduced via opsrator FORCE
fo3 = FORCE FR 1000 b ;

# Finally, all the forces are joinsd with operator ET

fo = fol ET fo2 ET foid ;

# Tha linaar set of squations defined by matrix ati2 and vecter fo

is #olved via operateor RESOUDRE

re = RESOUDRE sti2 fo ;

The radial displacement of point b iz cbtained by extracting the
corresponding component of the solution vacter re

rd = EXTRATRE re UR b !

To end the execution of the program, we print the obtained results
rd = 1000000%rd ;

MESS 'RADIAL DISPLACEMENT AT CENTRAL POINT (UR)’

MESS 'THEORETICAL: 4.677 MICROMETRE" ;

MESS 'COMPUTED: ' rd 'MICROMETRE' ;

15

Table 2.1: Input file for the shell example (continmed).
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Running the program listed in Table 2.1 canses Castem to ealeulate the vector
of nodal displaceruents of the shell and print the computed value for the radial
displacement of its centre point.

To end this section and now that we have hecome familiarized with the original
objective of the test, we present Castem's final answers, see Table 2.2.

RADIAL DISPLACEMENT AT CENTRE (UR)
THEORETICAL: 4,877 MICROMETRE
COMPUTED: 4. 6885 MICROMETRE

Table 2.2: Castem’s answers to the mput file in Table 2.1,

The result supplicd by Castern (i1, = 4.6685 pm) represents less than a 0.2%
error, which is considered fully satisfactory.




Chapter 3

A classical approach to
nonlinear problems:
Newton—Raphson
methods

3.1 An increme,?ftal solution.
The tangent stiffness matrix

As detailed in Section 1.2, the general equilibrinm equation

/SZBT agdV—=Ffe=fi-f.=r=0 (3.1)

leads, in the ease of a linear problem, to a certam set of linear equations.

If the problem does not happen to be linear, we will not be able to write B 4
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ag a linear function of u, as we did in Section 1.2., and equation (3.1) will yield a
set of nonlinear equations. Furthermore, this set of nonlinear equations needs to
be treated clifﬁzrt:nt.ly than a linear set.

To illustrate this point, let us go back to the linear problem.

Figure 3.1 shows several items associated to this problem. It must be remarked
that, in this figure, as well as in all the figures of this kind that appear throughout
this work, both forees and {[ilslllil(‘:{‘lllt‘l'l ts are treated, for the sake of visual
interpretation, as if the problem had just one degree of freedom. In the general
case, scalars will have to be seen as vectors, lines as hyperplanes, and so on.

7

f=f, (u)

f=f, (u)=f,

|
|
I
|
|
i
|
i
i
1
]
i
1

b
a L

Figure 3.1: Solution of the lmear problem for a fixed external force.

The vector of external forees f, is assumed o be independent of the
displacements. Thus, in a force—displacement plane, the curve f = f.(u) is seen
as n horizontal line. In Figure 3.1 we have denoted this constant foree by f,, to
make it clear that it is a conservative force,

In a linear analysis, internal forces can be expressed as a linear function of the
displacements (f;(u) = K u). Therefore, the curve f = f;(u) is a slanted line
that passes through the origin.
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When solving this linear problem, we will obtain the vector of displacements w,
for which external forees equal the internal forces (f¢ = f;(#)). So, this vector
would be the solution to eur problem.

But suppose now that we are designing a structure to work under a certain range
of londs and we therefore need to obtain things like its maximum displacements,
the evolution of its stifiness as the load increases, ete. In this ease, we will want
to know the behaviour of the solid under the application of any external force
pr C)pmtmunl to the original foree fe (¢ ¢, a force f, that can be expressed as
fa = f“ with @ being any real constant w.lue) Thanks to the fact that
the problem is linenr, the response of the solid is simply represented by the
straight line that passes through the origin and point (u, f.), and consequently
no additional ealeulations are required.

However, similar eonc¢lusions eannot be drawn in the nonlinear analysis. Figure
3.2 represents the one degree of freedom ease. Conservalive external forees are
again considered but internal forces are not linear on the displacements any more.,
The solution will also be noted (u, f,).

7

f=f; (u)

(=1, (u)=f,

Figure 3.2: Solution of the nonlinear problem for a fixed external force.
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In this case, to determine the general response of the solid under an external
load proportional to f,, several nonlinear problems must be solved, the solutions
of which eannet be obtained directly from .

Furthermore, even if we only need the solution for one external force value, our
nonlinear solver may not be (:ﬂpilhlt‘r of ﬁlldiup; vector 4 unless the external foree
is split into several, smaller fractions, each of them being applied at n. time. The
renson for thisg is that we Wlll use some simplificd strategy to “aim” at point 4;
if this point is too “far awny”, we may need to follow the enrve, aiming from one
intermediate point to the next, until the fnal point u is reached.

The last two paragraphs hnpose a change i the approach to the nonlinear
problem. The result of this change is what is called an ineremental approach,
which is illustrated in Figure 3.3 and ean be deseribed as follows,

'A

4 :
f A !
. d B
el A0 1
| A i
i i | i
A7 S |
:,1 - i —
w2y 3y Y Ny U

FigLIrE 3.3: Ineremental scheme.

First, we divide the total external force into N increments or "load
ateps.  Denoling each increment by "Af and the mf.:,rmedmta forces by
nf = n=lg 4 "Af we will have that f,, = Af + "’A_f -+

CRE e IAf 4 NA_f Ls Nf The original problem iz then transformed into the
N nonlinear problems:
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1) Find 1u such that
r('u) = fi('u) - 'f=0,

2) Find 2Au such that, if “u is built as “uw = w4 ?Au, then
r(*w) = fi(*u) - *f =0,

otoetera,

Forn=0, .... N =1

and assuming we know a veetor "u of nodal displacements for which
r("u) = fi("u) - "f=0,

we watit to obtain a vector "t Au of ineremental displacements such that
for point "tlu, caleulated as Htly = iy 1 Ag,

we lm ve that

r("Hu) = fi("Hu) — " =0

Table 3.1: Incremental approach.

Now we must eoncentrate in finding "t | Au.

What we are going to do is lnewrise ench set of nonlinear equations listed
in Table 3.1 and then (Section 3.2) we are going to see if the solution of the
equivalent linear set of equations is similar to that of the onginal, noulinear set.

Let us begin by considering the function defined by

r(u) = fi(u) - "Hf

and making o Taylor expansion of v("Tu) around point "uw. This expansion
consists of an infinite number of terms of inereasing order. However, since a
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linearisation of the problem is performed, only terms of first order are tnken into
account, We will be approximating v(" t '-u) by

rcﬂ+iu) s T(HH) + &

Ao -1 Au,

g4

which has to be mull, Reorganizing terms in the resulting equation

r("u) + ae "HAu =0 (3.2)

ﬂ.nu

we obtain our desived sel of lincer wquations
nK H"i-lA“ 2 —"T'.| (3‘3}

where "r stands for v("u) and we recover the expression of the langent stiffness
malris
r

"

that was pr(:s\::ut.r_':{ 111 Chu.pt.t:r L.

3.2 The need for incremental /iterative solutions

In the previous section, our N nonlinesr problems were transformed into N
linear problems, The idea was to find the selution Ay to the incremental
problem, see Section 3.1, by solving a certain set of linear equations that was
written ﬁyml'}thlliuuliy HYE

"K n-I-'lAu e
However, what 1'1}1]')]3(!'115 15 that the solution of this linearised set of {:tpm.timu-; 15
just an approzimation lo the solution of the original, nonlinear set defined by
equation (3.1), Thus, the vector of displacements

'.u--l-iuI - Ny b H-I—1‘Au

does not give null residual forces r("""lu).
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We have tried to illustrate this last point in Figure 3.4. The solution to the
noulinear problem is denoted hy "+

The obtention of vector "'H'u |.mgi1m by pm‘fnrmiug a Taylor first-order
expansion of the function

r(u) = filu) - "M

around point e, As we are tit:aliug with conservative forces, ""'If i5 conatant,
Therefore, the nonlinear function f = f;(u) will be approximated by the linear
function

f= H.f+ hK (u_ H“)‘
which is tangent to the curve f = f;(u) at point ("u, " f).
The intersection of this linear function with the constant function f = n-tl I
gives point "ty for which
ﬂf K (ﬂ+'|u e nu) = H-Hf-
(or also "K "HAu= "K ("Hu= "u)= "Hf- "f= tr).

f‘ f=ﬂJr+ "K(H—HU)

fe=f; (u)
/ foe n-r-lf

T

iy n'Mu atlg i

“*'Au

Figure 3.4: Solutions to the nonlinear and linearised problems.
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So, the procedure we used in Section 3.1 seems, as itself, rather disappointing,
Nevertheless, what we ean do is take profit of this idea to approximate more
and more fo the solution within each load step. These approximations are called
therations: the final seheme 18 ealled thereby an meremental /iberative solulion and
it works as follows,

o For a certain load step "TLAF, we solve the linear set of equations
nKg ”+IAH= -“l‘, (34}

which 1 identical to the one in the imcremental scheme.

Writing the out-of-balance forees associated to a certain displacement veetor u as
r(u) = fi(w) = "Hf (3.5)

we have that, for equation (3.4), the residual forees "r correspond to the total
increment of load:

U= r("u) = fi("u) - "= —THaAf

The solution to equation (3.4) will be designated by "HAu! to indicate that
it yields just a prediction nhlyl = ny 4 "FlAgl  to the solution of the
nonlinear problem.

e This prediction might however be a good solution for equation (3.4). To check
this possibility, we need to compute at this stage the value of vector
r('ﬂ-{-l“[) - ff(jﬂul-!“l) = M-i-lﬁ
If this value is ¢lose enongh to zero, no iterations will be needed.

o If, om the contrary. r(”""lul) is too different from zero, we start the iterative
part of the process.

What we do is simply consider that pomt ntlyl plays the same role now as "u
did in the prediction phase.

Therefore, our out-of-balance torees are r‘.mu].mtml 4

r('n—l-lulj = f;{ﬂ+|“]) = n+]f
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and we consequently need to solve the linear sed
ntlpl nblgn2 nilld (3.6)

where “'Hrl = '.(n-l-lul) and “'Hff] s the tangent matrix caleulated at 13{:1:1[.
("Hul, fi("Hal)), namely

ar

n-l-lKl _ .
A it 141

The solution "éu® to equation (3.6) is a correction of the one obtained for

equation (3.4); we ean construet after this correction a betler approximation
T i a . = . i

tHlu? (o the solution of the nonlinear set by a simple update such as the following:

nbl A2 — bl Al + n+16“2
n+ln2: M + "Hﬂ\uz

e After this Hrst correction, we have to cheek if point " H Au? supplies a good
enough solution of the problem by evaluating the residual vector

r('n+|.u2') o f_(n-i-l“?) _ r|+i!l
) = 3 ]
s Otherwize, we look for a new vecior et gut sueh that

u-!-lKQ' "+16H3 _ __lr3-|-lr2

and so on.

After o certain amount of iterations, this process will hopefully come to an
end. To know at which iteration to stop, we simply evaluate how close the
approximation nHlyk+l iy to the veal solution (for example, by computing how
different the residual vector r(_""'l'u’(""'l) = fj(:”'Huk'H} —~ " s from zero).

For a generic iteration &+ 1, the sequence is degeribed in Table 3.2, For k = 0,
we nssume that Jul = Aul.
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Solve AHI gk ndlgubtl . ntlok
Update ntl Aghtl — il ALk + el g kot
Update nblyhdl — ng o ndl Ag kel

ekl ket

Cfmwc‘.l'gt'um: control @ if thie approximation 14 ].l_,‘(:lt.'lltl. mmugh, exit.

Table 3.2: literative scheme within load step n + 1.

To end this section, we have to say that the convergence control step, which was
introduced using a force-based eriterion, ean be performed in many other different
ways. For instance, if we alternatively employ a displacement-based criterion, we
can measure the variation in the solution vector when updating displacements:
imagine we compute the sealar ¢ defined by

LERF LAY

- “u+"uﬂ‘+‘" {'J'T)

£

where || - || stands for some vectorial norm (typically, the BEuclidean or maximum
n:_'u'n';'), A very small value of ¢ means that the correction vector ”+l9§uk+l
iz almost not changing the total displacement vector at all and that we can
consequently pass on to the next load step.

Force-based and displacement-based convergence eriteria are the most common,
Other eriterin, such as those iuvnlving EMETILES, need to be used with more
precantion [10].
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3.3 Two interesting flowcharts: procedures
NONLIN and INCREME

I Castem2000, the task of performing the ineremental /iterative scheme described
in Section 3.2 i accomplished by two procedures — NONLIN and INCREME.

Procedure NONLIN (NON LINéaire) essentially manages the ineremental
strategy. that ia

1. it computes the total external foree that corresponds fo the enrrent load
step,
2, it passes the mformation over to INCREME, which iterates to equilibrinm,

3. and, finally, it updates displacements, strains and stresses and prepares for
the next load step.

Figure 3.5 gives a Howehart for this ]JI'E'JL'(-!(ZI'I.I].‘(!.

As fnr pr(.!::u(hlru INCHEME‘ it 18 the one that carries out all the iterative
caleulations, These caleulations are deseribed step-by-step in Figure 3.6,
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Load general options, geometry, material,
model, boundary conditions and
list of load steps.

Begin loop thrnugh the mnmcrements
n=0 N-1

Compute "M f= rf4 "HAf

Call INCREME, which computes
“”I‘lAu, e Iﬁ..‘;‘ u-}-l&a.

Update
n-l-lu = My 4 "-H&ﬂ
n+lE: "E.'-[- "'H;ﬁ.g
ntl, - ng nt+l Ao

/‘?nwc resil I-s/

STOP

Figure 3.5: Flowchart for procedure NONLIN.
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Load information from NOXNLIN

Begin loop of iterations
k=0, mariter

Compute stiffuess ey " 1 it

G‘cm'lputc ntlpk f,-('”""u.k} = H-Hf

Salve the linear set  MHIRE nblgybtl — _nblk

Update
""i'lﬁuk-H - “*']ﬂ.uk + e lﬂuk"'l
H-I-luk-+-1 = My 4 114 IAH.{'-I-I

compute elastic "T1igkt]

Figure 3.6: Flowcharl for procedure INCREME.

29
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peometrical
nonlinearity?

push streases forward
to final configuration

material
nonlinearity”

NO

porforin plastic correction
of stresses

l‘pdut.u
ntl AF 1 — rl+1Aa..{' 4 i | ggrk+1
n-l-iAEk-Irl = i'|+IA€.’\' 3 !I“I'I&Ek-l-.l

convergence cont rol:

YES

s MHldH sood enough? /

NO

STOP

RETURN

Figure 3.6: Flowchart for procedure INCREME (continued),
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3.4 Full and modified Newton—-Raphson methods

Full Newton-Raphson method

In Sections 3.1 and 3.2 we have presented the classical ineremental/iterative
approach to nonlinear problems. As a matter of fact, to illustrate that approach
we have alveady used a specilic method: the so-called full Newton- Raphson method

(or fNR).

In this section, we want to develop a first set of methods (h::giuniug with fNR
and continuing with some variations on fNR) which allow us to solve a given
nonlinear problem, always following the incremental /iterative scheme,

Let us rewrite the full Newton-Raphson algorithm. Suppose we are located in a
certain load step 41, where (", f) is a known equilibrium point and we want
to obtain "Hu, Considering "u as a starting point for this inerement, we can
renamne it Lo """uD, where the right superseript 0 indicates thiat the construetion
of point ntleyl iy previous to iterations 1,2, . ... Consequently, the stiffness matrix
"K and the out-of-balance foree vector "r can also be rewritten respectively as
-u+]R~U anel PHlp0

After these substitutions, all terms in the terative scheme presented in Seetion
3.2 turn up to have a n 4 1 left superseript. To lighten the overall notation, we
drop left superscripts. Thus, in the coming equations, n lKu is written as KV,
ntl Au! is denoted by Au!, and so on

Finally, the original list of instructions ean be rearranged to produce the
compact algorithm detailed in Table 3.3. Figure 3.7 illustrates how this method
works for o one-dimensional prnhlc-m.
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prediction
1. Compute K"
2. Solve the lincar sef K9 Aul = —p0
3. Update ul = + Au!
4. Bvaluate ¢! = r(u]}
5. Convergence control: if point u! is good enough, exit.
correchions
k=1
G, Compute K*
7. Solve the linear sot  KF fubt! = _pk
8. Update uk*l = gk o+ Suk'l'l
0, Evaluate  #f+1 = plubty
10. Convergence control: if point w1 iz good enough, exit.

11, Assign  k=A+41 and go back to 6.

Table 3.3: Algovithm for the full Newton-Raphson method.

Remark 1. Under certain conditions, [10,11], the full Newton Raphson method
shows a quurlrntir:. rate of convergence, 2.e., a scalar 7 can be found for which

b : k 2
Hla|l <y |uf - g

|
where e denotes the solution correspondiug to the current inerement. Thus, INR
results in a powerful technique.

Remark 2, At every iteration, we must compite and factorise one fangent
stiffness matrix, solve one linear set of equations and evaluate one vector of
vesidual forces. Consequently, the fNR is an expensive method.
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Load, f |
[terations
Predictor ——"—
— A
| 20
Lo
¥ - I
aff |8 2
= ] i
T :'I’ i
e =+
o TR — |
;Y ¥y S8 i
= : -—
Displacement, u

Figure 3.7: The full Newton-Raphson method.

Maodifications to the full Newton-Raphson method

Onee the basic full Newton-Raphson scheme is defined, a whole set of ‘modified
Newton-Raphson methods’ ean be derived from it, The idea of these methods is
to keep the original pattern, but using not always up-to-date stiffness matrices.

But why should these modifications be made? Caleulating a stiffness matrix
K and factorising it to solve the corresponding linear set of equations at every
iteration is a very expensive task. Therefore, using a previously caleulated and
factorised stiffness matrix will resull in a much lower computational cost per
iteralion.

For instaneé, while in the fNR method a new tangent stiffness matrix is
computed at every iteration, in the standard modified Newton-Raphson method
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(or mNE) the stiffness matrix is updated just at the beginning of each load
imerement, see Figure 3.8, This means that less work is required because only one
tangent matrix is computed and factorised per inerement. But it also means that
a higher amount of iterations must be expected before COUVETgence is abtbained.
Therefore, we cannot know beforehand if & mNR is going (o he more or less
expensive -globally- than s fNR given a certain nonlinear problem. The alporithm
for the mNR method is hsted in Table 3.4,

pre diction

1. Compute K"

2, Solve the linear set KV Au! = —¢!

3. Update ul =yl g Au'

4. Evaluate r! = r(ul')

5. Convergence control: if point ul iy pood enough, exit.
corrections
k=1

6. Solve the linear set K9 fuftl = _pk
8. Update L + Suk+
9, Evaluate  pft1 = p(uftl)

k1

10. Convergence control: if point u 11 good enough, exit,

11, Assign  k=Fk+1 and go back to 6.

Table 3.4: Algorithm for the modified Newton-Raphson method.

Rernark, This method has a linear rate of convergence, 1.e., a scalar 4 can he
found for which

[

- k
o™ — el = 5 [lu" — o],

where e denotes the solution correspouding to the current increment, [1(1,].1].
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Load, f A

Iterations
Predictor ——"

- e e x m— —

L

At

i Predictor

. -
Displacement, u

Figure 3.8: The medified Newton-Raphson method.

Of course, an infinite number of Newton-Raphson techniques can be produced
by updating the tangent stiffness matrix at different times during the resolution
of the problem.

Among these techniques, we feel that at least one more must be discussed here,
and that is the so-called wmatial stress method. In this case, one tangent stiffness
malrix is computed at the beginning of the firsi load step, namely K, and it is
always used up to the end of the problem. Therefore, ju.‘:‘f. one tangent maftrix is
caleulated and factorised in all. This means, as usual, that more iterations will
probably be needed within each load step (L-lm.l. 15, 1f convergence is attained,
whicl becomes more imprnbuble sinee the tangent atiffness matrix differs more
radically from the employed matrix). This technique is illustrated in Figure 3.9, -
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Load, f A

Af

Displacement, u

Figure 3.9: The Initial Stress method.

3.5 What Castem haT,TJ"lat others don't:
introducing Lagrange multipliers

In previous sections, the resolution of our nonlinear set of equations has been
transformed into & sequence of linear sets which are solved successively. In fact,
as it will be seen in further sections, this will also happen with every method
atudied here.

In this section, we deal with the problem of incorporating houndary conditions
to solve those linear sets,

A standard technique which accomplishes this purpose consists of replacing
those unknowns associated to boundary conditions with their preseribed values
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50 that, finally, a smaller set of linear equations must be solved, [15,20,30],

Castern2000 uses an alternative solution, based on the use of Lagrange multipliers,

The Lagrange-multiplier technigne

This technique consists of augmenting the original vector of displacements u by
two additional Fdimensional unknowns that we denote by A and p (Lagrange
multipliers), [20,21,30]. The augmented vector (u, A, g) is built so as to supply
the stationary solution of the elastie funetronal w given by

w==u Ku—-u f, 42 (A u—b)+ 2" (A, uhbw}+% A=) (A=p),

i'\-u'l"—‘

where f. will now stand for the vector of known external forces (thus excluding
reaction forces) and A, u = b, represent [ linear boundary conditions.

Thig stationary solution can be obtained by using & minimisation procedure,
which requires that

du & w o
5;_0‘ “'CH_D' rle (3.8)

If we u};pund the three conditions listed in equation {3.8), we obtain that the
fnl]nwiug equations sl be verified:

KutAl (Ap)~f. =0, (3.9)
Al wutA—p—b. =0, (3.10)
Al u—A4p—b =0 (3.11)

From equations (3.10) and (3.11) we ean see that the additional unknowns A
and g must be equal vectors, Of course, this remark could have been made right
from the start, as no privileged definition is given for one multiplier with respect
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to the other (in other words, the definition of w is symmetrical with respect to A

and p).

As for equation (3.9), we know that the term K u yields the internal nodal
f(}l'(.‘.t':&i. Thl,l.‘.-i. uuing Bl givnn definition tinf f,,.. we liave that the term

fri=Al Q+p=f.-Ku=f.~f

must account for the reaction fﬂw:f:n associated to w.

We can finally rewrite equations (3.9) to (3.11) under the shape of a new set of
linear equations such as the ft:lluwing

K AT A"\ /u £
A I ~I||Ax]=]|b (3.12)
A I I 4 b,

where I stands for the [-dimensional identity matrix.

Henee, the Lagrange-multiplier technigque consists in the resolition of an
(r 4 21)-dimensional set of equations (therefore a larger set of equations).

Onee this set is solved, the reaction forces can be obtained simply by computing
fr=AT A4p=24T2=24" p, (8.13)

where now A and g are both known vectors.

But why should we be imterested in trmwfmfnﬁng the m‘igiuuf set of -t-:quntinm:‘
into a larger set?

The key idea is that imposing boundary conditions through the standard
'l'.ﬂ(:l'l]]i(]_ll(‘. may turn up to hl'! i ('.111'11]:)'.'.‘1'5()[1'].(.' t.i].'HJ(. MDI.'E()VI!:!," Wilt:‘ll Ll{.iﬂ.lillg W'l'.-h
nonlinesr constraints such as contact boundary couditions, or also when nsing
combinations of different kinds of elements, ete,, we would find out that they can
he easily imposed through a Lagrange-multiplier technique, whereas the standard
method would invelve some clumsy operation sequence.
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Another reason for using Lagrange multipliers is that objects are more neatly
built: first, a stiffness matrix K and a boundary condition matrix A, are
computed; then, matrices K and A, are put together to form the corresponding
enlarged matrix J; finally, matrix J 1s used to solve the necessary sets of equations.
In this way, objecis are used Lo l!l‘ut.ll.lt‘-k“ LEW g:-bjl.ruf.ﬁ, I, Lh::y are nol modified,
in any case, dt-.‘}n-.!nd:'lug on the use that we intend to make of them.

Once the Lngrnngc-:-mulhip!it,-tr option 15 i‘.hum—:u, there is one more decision that
needs to be made: how many multipliers do we want to use?”

If ene Lagrange multiplier A is used, equation (3.12) will have fo be replaced
with the following, sialler set:

K A'N\[u\[/,
(A, 5)(.\)(5:)’ (3:14)
where 0 stands for the [-dimensional zero matrix.

The advantage of solving (3.12) instead of (3.14) 18 that the resolution of the set
that corresponds to one multiplier may invelve preeting of the matrix, whereas
(3.12) will not.

Newton Raphson methods in  combination with Lagrange
multipliers

To end this chapter, one last question needs to be answered:
What happens to Newlon—Raphson methods when waing Lagrange mullipliers?

The only idea we must have in mind to answer that question is that the original
set of equations has been transformed into a new, l(u'gﬂl‘ sel (3.12).
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S0, what we are going to do is {ollow step-by-step one of the Newton-Raplison
algorithms (for instance, the INR algorithm listed in Table 3.3, Section 3.4) and
see how the items that appear in it have to be read *.

Let ud start then by the predietion phase, remembering that the eurrent
imerement munber is 7+ 1, which means that no left superseript equals an 7 41
left superscript.

1. First of all, we must compute the stiffness matrix K O Tn our case, this
stiffness matrix needs to be enlarged jnto the following matrix

K" Al Al
A;: I _'I
A, -1 T

which we will denote by J°.

2, After the previous matrix has been built, we want to use it to solve the set
of linear equations:

J' AU = —R’,

where AU and R? are the augmented versions of Au! and #°, respectively. For
imstance,
Au!
AU = [ AN |
Ap!

Az for the independent vector of out-of-balance forces, what we will have to do i
split the values of the boundary conditions b. in the same way as we did for the
external forees . in Section 3.1, Consequently, we will be able to write

ny — h“lb_i_ "Ab $ o= },’ . :'V,

be = 'Ab+ 2Ab+ ...+ YlAab+ YAb= Vb,

* Notice that the algorithm m Section 3.3 15 a “blank” algorithm, in the sense
that no method to treat boundary conditions has been specified, Thercfore, an
interpretation is needed for all linear sets,



3 A classical approach to nonlinear prablems’ Newlan=-Raphson methods 41

In this context, the independent vector U will have to be enlarged into the

following vector R"
'HJ\' _ i lf

RU = [ np— mtly
ng 1ot lb

3. The displucement update 18 performed simply by adding up the
corresponding augmented vectors:

u! u Au!
Al = a0 ]+ | AX
F‘] Fi} AF‘I

4. After the prediction vector is computed, we must evaluate the vector of
residual forees rl. Before introducing Lagrange multipliers, only out-of-balance
forees were considered. Now, also out-of-balance boundary conditions will have
to be taken info account, This means that we need to build a certain augmented
veetor B! as

filuly— 24 f o AT 4 )
R] = Aq.' 'ﬂl . n+Ib
A, “I , n-l-.lb

Naturally, what we have written for the prediction phase can be generalised for
the corrections (points G, to 11, in Table 3.3, Section 3.4).

At this stage, and before new methods are discussed, we want to review the
notation that has been introduced.

From now on, we are going to designate by ¥ L (k = 0) the following enlarged
gtiffness matrix: v ]
K Al Al

F=|4 I -rI|; (3.15)
A I I

where K* is the tangent stiffness matrix K" = %| . and T stands, as usual, for
wh
the -dimensional identity matrix.
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The augmented vector of unknowns will he denoted by U, in such a way that

uk
Ut = [ af for L = 0. (3.16)
I8
1
Cousgequently, we will be able to write things like
Au'
AU = [ AX (3.17)
&p]
ar Fllﬂ()
Suft!
EU‘I'PI _ Jhi'i'l (3.13)
SFE‘-E-I

ete.

Finally, we are going to introduce an enlarged vector R of residual forces in the
following manner:
n f . n+l f

RO = | np— ntlp |, (3.19)
ng ntly

Filuky = mHlg 4 AT(XE 4 by
A, ut — S - (3.20)
A, u.{' _ "+Ib

After this notation s introduced, the fNR algorithm can be rewritten to
incorporafe a Lagrange-multiplier treatment of boundary conditions.  The
resulting algorithm is listed in Table 3.5,

Furthermore, in a similar way to what we saw in Section 3.4,

L rr:]:rlm:.ing matrix "'!J’t' with " IJ“ vields the mmﬁﬁﬁerﬂ. Newton Ii’.ﬂ.*phﬂ(m
method.,

E.I.l'l('l

o replacing " IF with OF yields the initial stress method.
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on

0. =1 L

[+

pr eeliction

. Compute  JY

_Solve the linear set  JY AU! = —RY
. Update U! - U" + AUI

. Evaluate R!' = R(UY)

. Convergence control: if point U by good enough, exit,

corrections

k=1

. Compute  JF

. Solve the linear st J* §UF! = —RF
Update  UFH = gk 4 skt

. Evaluate RMH = RUF)

10.
11.

Convergence control: if point Ukt s good enough, exit.

Assign k= k+1  and go back to 6.

Table 3.5:, Full Newton-Raphson method in s Lagrange-multiplier context.

Finally, there is a feature of vector R* {k = 0) that we will need to have in
mind later on, which ig that s last twe components are null,

To prove this, we are going to focus on the INR method, although it will be
clear from the proof that the process is not affected by the choice of the stiffness
matrix K at all.

1) Let us start then by proving the proposition for the first value of k.
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Il'l(.'ll-.\-“.':d. f(?l' A = 14 trh(.' ﬁlf(?[?]ld ?.'I.lll'l (.}131‘(']. (}”T['l.'!.lul‘.lﬂ'llt-ﬂ- nf Rk = RJ l'f..’n‘l..(.l
Acu' — "h=A, 4 Au') - "= A, u+ A Au' - b (3.21)
As ul = "Hly) — My s the solution for the previous increment, we have that

A w ="y (3.22)

As vector AUI hias been r.m'n]n.it.tad 50 as to satisfy the linear set J”AUI -— —Rn
we cinl write

)
A Au! = "y g, (3.23)
If we now substitute equations (3.22) and (3.23) into equation (3.21), we obtain
Ao = "y = 4, w14y Aut = T = Mhg (MTRR— M)~ Mg = 0. (3.24)
Therefore, when computing §U ? as a solition for
J'6U% = -R!,

we see that §u? must verify the homogeneons equation

A 6w’ =0, (3.25)

" i T 5
in otlier words, we see that the correction wveclor bu” #rztuﬁw null hn'm'mfm'y
condilions.

2) For k = 2, we have that
Acu? — "= A, (w4 6u®) - "= A, u' + A, ud — b (3.20)
Fquations [3,24) and (3.25) ean now be subtituted into equation (3,26) vielding

Aoul = "p= A, ul 4 A u?— "Hp=0. (3.27)

Thus, the second and third components of R2 are also null, which means that
Sut also satishies null boundary conditions,
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If we repeat the same process for the next iterations, we can enuneiate the two
general conelusions of Table 3.6.

Conclusions

1. The vector of out-of-balance forces BR¥ can be written, for k& =0, as

. fr{uil — H-Hf o A:{'(‘Aﬂ + Pk)
R = 0 . k=0 (3.28)
0

2. Therefore, the correction vector Sub (k = 2) satisfies homogencous
boundary conditions:

A bk =0, k=2 (3.29)

Table 3.6: Remarks on NR variables in a Lagrange-multiplier context.







Chapter 4

Quasi—Newton methods

4.1 Motivation and theory

In Chapter 3, we have presented the classical Newton—Raphson methods, First,
the full Newton-Raphson method, which provides second order convergence (d.e.,
redhiced number of iterations) in most of the cases where tangent atiffiiess maotrices
Hre llk’illlc)blt‘ but requires in return the computation and factorisation of a tangent
matrix at the beginning of every iteration.

On the other hand, the modified Newton-Raphson and snitial stress methods
require a !()W‘tl uunputnhnnn] cost per iteration as far as stiffness matrices are
concerned. However, their convergence rates are nlso lower, which means that
more iterations will probably be needed, with the associated inerease in the total
cost; morcover, the Process 1may even fuil to COnverge,

Naturally, we would like to have a method with the convergence beliaviour of
INR at a compntational cost similar to the mNR technique. Quasi-Newton (QN)
methods were designed for this purpose. These methods, which have their Qi
in the field of unconstrained optimization, are generalizations to n-dimensional



48

4, Quasi-Newton methods

problemns of the well-known “secant methad” for solving roots of one nonlinear
equation. In fact, the choice of a secant itevation matrix instead of a tangent
stiffness matrix ensures the two following properties:

# the secant stiffness matrix resembles the tangent stiffness matrix

e but 4 strict re-computation of this secant stiffness matrix is not required at
all,

All Q‘lmﬂi—-N::WLun methods use secant stiffness matrices, but, r::mvcr;iac:ly to ane
dimensional problems, whercas the tangent stiffucss matrix iy unigue, the secant
matrix is not. Consequently, a whole number of different Quasi-Newton methods
can be produced by emploving different secant stiffness mabrices.

Before deseribing some of those methods, we prefer, first, to formalize the

unifymg feature of all Quasi-Newton techniques: they all use sceant stiffness
matrices,

Assume we hawve st completed iteration k belonging of load step n, Figure 4.1,

A f= £t 4 BY (- ub)
f=f; (u)
T -/ "Hf ri 1

i ! =" 1
B | '1 '.
-
P

| | -

L.Ik-‘ le Ul-r-l-\ u

Su

Figure 4.1: Performance of a generie Quasi-Newton method.
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As usual, we assume that bonndary conditions are introduced in some way into
the nonlinear set of equations that we are trying to solve. Later on (see Section
4,3), we will write specific algorithms for the ense where Lagrange multipliers are
used to treat houndary conditions.

Points w1, u* in Figure 4.1 are known from the previous iterations.
Consequently, the vectors of residual forees rA =1 and r* are also known.

Imagine for a moment that we are dealing with a one-dimensional problem. In
this case, we will be able to compute the slope Bk of the secant line that passes
through points (n‘t"_l,f}'(rﬁ‘_' )) and (uF, f',g(-r-*.""}}. gee Figure 4.1, directly as

N
Suk

Bt = . (4.1)
In an redimensional problem (n = L), and for a gun-.?rit: value of n, we rewrite
cquation (4,1) mto

B buf = ¢k — pk-t, (4.2)

Equation (4.2) is known as the Quasi-Newton eguation, which characterises the
seeant stiffness matriz B® for a general nonhuear problem. It is important to
notice that in this sel of equations, the unknown is the matrix, not the vector,
That is, if a total of . equations are listed in (4.2), n? unknowns will be obtained.
Therefore, as it was briefly indicated at the beginning of this section, the secant
mabrix that passes l.hl'm.lgh two specified points s not rmiqw.f:, and there 15 & need
to impose some additional equations on Bt (nﬂ = n equations, to he precise) in
order to be able to determine it.

Defining,
yk—l gt k=l (4.3)
F=1 o guk = b =gk (4.4)
we will be able to write t.'.quut.jc.m (4.2) in its most common form
BE o=V =it (4.5)

From now on we will continue to use the notation [s.y|, which is widely accepted
in the Quasi-Newton context, rather than our urigirml notation, [u,r], After the
methods have been explained. we will go back to the [u,r| formulation,
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ke

Onee a secant matrix B i compited, vector u b will be obtained as shown

in Figure 4.1, 1.¢., by solving the linear set
B s = ot (4.6)

and updating subsequently \

uttl = “ﬁ -I-ﬂl'-

A new secant matrix BFT! that passes through points (uk f,[u‘]) and
wF L Fi(uF 1) can then be computed, vielding » new approximation w2 and

5O 011,

This “direct” extension of the one-dimensional secant method into n-
dimensional nonlinear problems induees the computation of the “generalized”
slope, i.e. matrix B, which is an approximation of the tangent matrix. This
strategy defines the Direel Quasi-Newton family, in opposition to the Inverse
Quasi-Newton techniques which are concerned with the approximation of the
inverse of the fangent matrix, namely H = B~ 1. In fact, the Quasi-Newton
equation ( 4.5) can also be written as

Hk yk‘l=ﬂ‘:_l. (4.?)
which, together with some extra conditions, enables the determination of matrix
H* . lnverse Quasi-Newton are usually preferred, because equation (4.6) can be
transformed into

s = —H* ot (4.8)

50 that there is no need for solving linear sets of equations.

Somme Quasi- Newton methods ~direct and inverse- are discussed in the following
section.



4. Quasi-Newtan methods Bl

4.2 Discussion of various Quasi-Newton methods.
Algorithms for Inverse Broyden and BFGS

The Brovden method

Let us consider the divect form of the Quasi-Newton equation that was introduced
in (4.5),
Bt gk = k!

A it was already explained in Section 4.1, if n is the number of equations in
(4.5), then n? — n additional equations en B* are needed to determine its 1e
components,

Notice that condition (4.5) definecs completely the behaviour of B"" along the
direction given by gk=1 Moreover, it is the only new information sbout BY with
respect Lo B~ For this reason, Broyden suggested that nmm-ice:; B* and BF-!
should have the same behaviour in any direction except 8 =1 To'ace sompligh this,
the BIUP‘(ILH method requires that the 'HH.HII.L IIII\t.!:I‘C B* beliave in the same way
as BF=1 on the orthogonal complement of a*

Bt x=pB1 for all z such that 27 &1 =0 (4.9)

It can be proved, [11,14], that (4.5) together with (4.9) determines one and only
one makrix Bk in terms of Bkh ], following the expression

Ek—i _|]( L'PI)T

£ opk-1 . (¥
B"=8""+ (gh=1)T" gk—1

(4.10)

It is interesting to remark at this point that equation (4.10) deseribes a simple
update of B after BF1

Notice that defining vectors v¥~! and wf=! as

it _ gt B

v (sh=1)T _.ra
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we can rewrite equation (4.10) as
Bk = Bh=1 4 b1 (w-i'—!)}“‘ (4.11)
which is the common expression of the rank-ome update, so termed becanse

the modification ¥~ (w* 17 is a rank-one matrix. Equation (4.11) must be
initianlized with o certain B'; some options are discussed later on.

The inverse version of the Broyden method
Al

Once BY is computed from equation (4.10), we need to solve the linear set (4.6)
; P ——
to obtain vector 8%, This operation can be avaided if an expression for H k rather
than for BF is obtained. By doing so, we can compute s directly following
equation (4.8)
BF of = 5. (4.12)

In order to obtain an expression for H* from H k=1 the Sherman & Morrison
lemma must be employed, [25].

Lemma (Sherman & Morrison)
Let vaw € [R™ and assume that B is a real n-dimensional nongingular matrix.

Then, 1) B+ v w! is nonsingular if and ornily if
T g1
a=1+4+w" B w#l

2) If & # 0, then the inverse of matrix B+ v w! can be computed as

(B 9Ty =Bl —% Byl B

Proof: See

25).
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From the lemima and since (Bk_l ]_I = H‘"_l, we can write ('BA']_I = Hk 0s

[ﬂk—l _H‘-‘—l yk—lj (ak—l)'f‘ H,‘.‘-'I

ko oppk-1 .
B =H"'+ TV (T ) (4.13)
which can also be expressed as
R (I |
B = |14 YL (=0T gh-t, (4.14)

(3!\-—1).’!' (Hi-'vl yk—l)

where I denotes the n-dimensional identity matrix. Equation (4.14), which must
be initialized with a certain HY is the fundamental relation in the Inverse Broyden
metliod, Notice that, for this inverse QN method, the update formula for H k i
obtained by inverting explicitly the update formula for B* rather than by using
the inverse Quasi-Newton equation and imposing additional conditions on H*.

From an algorithmic viewpoint, instead of employing equation (4.14), it is more
conveniernt, 11.2‘2?]: to relate HL' to HY through

o - [I + ok “k—l)?'} [I+w&-—l wk—z)?‘lm [I ) (su)rr' " —

1
=TI [r+wf (17| 8", (4.15)
i=k

where the auxiliar vectors @'t are defined as
i (o H'y)
()T (H' y')
Before discussing the algorithmic advantages of equation (4.15), it is convenient
to deal with the initialization of the Quasi-Newton updates, As commented
previously, it is necessary to imtialize any Quasi-Newton method with a matrix

B" (diveet QN) or HY (inverse QN). The simplest choice is B'=TIo H' =1,

where I is the n-dimensional identity matrix.

d=0,...,k = 1. (4.16)

Nevertheless, if the computation of tangent stiffuess matrices is available, it
seema that g better choice could be

B =K', (4.17)



54 4, Quasi=Newtan methods

that 1s, initializing the algorithm with a true tangent matriz, This choice of the
initial secant matrix is expected to yield better secant matrices B* than BY = I
(in the sense that these matrices B¥ are going to look more like tangent. stiffness
matrices than the ones we would obtain after B! = I).

Asstume then that BY is the true tangent stiffness matrix al the beginning of
the inerement. If we want to use the inverse version of the Broyden method,
equation (4.15), matrix KU should be inverted in order to define Hu, A more
efficient strategy is to rewrite the computation of the prediction s

= Aul = g0 0

into the linear set

K%' = K" Au! = 7,

At this point, the algorithmic convenience of equation (4.15) becomes clear:
since it relates H* to HY, the computation af a generie correction vector .q"“',
equation (4.8), involves a matrix—vector product of the form

z=—H" ¥
which can be transformed into the linear set
K"z = —rk.

where the same matriz, KV, is employed at every iteration. This justifies the use
of equation (4.15) instead of the basic equation (4.14),

The final algorithm for this version of the inverse Broyden method is presented
in Table 4.1. In this algorithin we have recovered the original formulation [u. |
through equations (4.3) and (4.4). We will be assuming, as usual, that su' = Aul,
Also, two anxiliary vectors £ and v arve defined.
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L. Compute K"

2. Solve the linear set K'Y Au! = !

3. Update  u! = u? + Au!

4. Evaluate ¢! = r(ul)

5, Convergence control: if point ul s good enough, exit,
k=1

6. Solve the linear set I{“ 9= —r;*'

k=1 oassign t=uv

k=1 compute ¢= 1_[‘l (I + e (bu')1) v

8. Compute and store  w* = BukyT I(Ju*‘—ﬂ t

9, Compute and store  fuft! = ¢ 4 ((6uf)T #) wh

10, Update  u*t! = ub 4 gut+!

11. Evaluate k1 = r['u""“)

12, Convergence control: if point w**! is good enough, exit.

13, Assign  k=4k+1 and go back to 6.

Table 4.1: Algorithm for the Inverse Broyden method.

Remark 1. All linear sets are solved with matrix K", see step 6. Thus, only
one tangent stiffness matrix needs to be compited and factorised per inerement,

Remark 2. Step 7 ()t the algorithm does not require the computation of matrix
HL&--I”""-‘-’ (du' ] ), sinee the matrix-veetor products of the form (f+a b’ e
can be computed as e (b" ¢)a. In fact, apari from the linear sets of steps 2. and
6., all the operations mvolved in Table 4.1 are vectorial operations.
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Remark 3. For each iteration k, the computational cost consists approximately,
(12,27, of

e evaluating one vector of out-ot- balance forces and solving one linear set (the
game a8 in mNR)

s recovering 2k vectors from storage (w', du' for i =1,... k),
s computing 2k scalar products.

Therefore, the total cost of iteration k inereases with k. This means that just a
few iterations per increment will be permitted for this method to be competitive,

Remark 4, Under certain conditions, illj‘ this method ean he proved to have a
superlinear rate of convergence, t.e., n succession {5} such that limy__ v =0
ean be found for which

luf* = ol < 4 [lu = o],

where & denotes the solution corresponding to the current imerement,

Symmetrical rank-one update

As we have already indicated, in general we will want to iterate with a secant
matrix that is as similar to the tangent stiffuess matrix as possible. In many
applications, tangent matrices are symmetrical, as will be shown in thn numerical
examples. [t seems thus interesting to begin with a symmetrical BY and transfer
this property at every iteration, Therefore, to impose hereditary symmetry as

B+ symmetrical = B* symmetrical (4.18)

seems a reasonable choice.

It ean be proved, [11], that the direct Quasi-Newton equation (4.5) together
with (4.18) leads to the following npdate formula for B
| ph=1 gh=1y (gt _Hk-I gh=1yT

b oph-1, (¥
B =B 7 (yk.-l_Bl'—1 —lJl =1

(4.19)
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Equation (4.19) is known as the symmetrical rank-one formule. According to
[11]. this method shows a poor perfomance and is not frequently employed,

Rank-two updates
Direct rank-two up dates

In many applications, the tangent stiffness matrices are not only symmetrical
but also positive definite. Thus, it is a reasonable strategy to initialize a Quasi-
Newton method with a symmetrical positive definite (SPD) BY and transfer these
properties af every iteration. That is, we want l‘n satisfy the Quasi-Newton
equation (4.5), the symmetry condition (4.18) and

Bt! positive definite = B* positive definite, (4.20)

The ouly rank-one update with hereditary symmetry is the one shown in equation
(4.19), so there is a need for more complicated updates if condition (4.20) must
b verified as well.

Rank-two updates, where B* s obtained by adding to BY! two rank one
matrices instend of one, fulfill this need. In particular, a family of rank-two
updates is defined by

L_ =1 gh=1y (h=1)T 4 =1 (=1 _ gh=1 Sh=1yT
(3*"]). c‘."l
(! =B T S ety 4
= ((cn‘n‘—l'}tr a,{,‘—])? € (C ) : (.l'..z].)

fi
BL‘ :Bﬁ‘—l + (y

where ¢ 1 represents any vector belonging to IR". Equation (4.21) satisfies both
the Quasi-Newton equation (4.5) and the lmu‘ditnlf ‘il}’lﬂlﬂ{-!tl.‘}’ condition (4.18),
[11]. It has the interesting, pmpﬂ-rw fh&’r vector €~ has not been chosen yet
(for instanee, for *~1 = y" =1 BF=1 k=1 we pecover the rank-one symmetrical
update, (4.19)),

If 1t is reguired for matrix B in (4.21) to be positive definite if BF-1
positive definite, that is, if :unrhhm,m {H‘:) }41-.].3'] and (4.20) must be satistied
simnltaneously, a netural choiee for ¢l s ] _l, [llll.
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Substituting .
¢y (4.22)

mnto {:qt,ml;iuu [-1.21) atiel rﬂ:ﬂrranging the 1‘t:51[1ﬁng t-.‘.xpr(:winn of Ek, the Davidon-
Fletcher-Powell compact update formula is obtained, [14],

Joe | k=1 o= INT =1 k=151
gt (ah™ el o BTN (R GET GESRY
Borp = |1- (k=) yk~] ]B [I_(a‘* et e )

which deseribes the DFF method,

Inverse rank-two updates

In an inverse Quasi-Newton context, it is possible fo lmp(ﬂl‘ hereditary
gymmetry and positive definiteness on the inverse of matrix B, i \
- symmetrical == H* symumetrieal (4.24)

b L positive definite = b positive definite (4.25)

After some algebra, [4], the Broyden-Fletcher—Goldfarb-Shanno update formula
for H ean be obtained

ko I_M 1|y 'l""k_l i Il sl o (4.26)
BRGS (yk—l)f!‘ k=1 (y" T gk (yf.-—l)’!' gk=1"

which describes the BFGS method.

It is interesting to remark, by comparing equations (4.23) and (4,26), that one
can be obtained from the other simply by interchanging

ij
Be— H

In this sense, equations (4.23) and (4.26) are said to be dual or complementary.

The detailed algorithm for this method, [4.18,27], 1s listed in Table 4.2,
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1. Compute K"
2. Solve the linear set K Au! = —r!
3. Update ul = u! -+ Au!
4, Evaluate r! = r(ul}
5. Convergence control: if point ul iy good enough, exit.
k=1
1 k
{3, Cfmu;putt: and store wh = m‘p’%&mrj
7. Compute and store {1 + \/ 16“"51;;%?:-*‘ 1TA] ]r

10.

11.
12,

14.

. Compute p= H'_I (T4 (W) ek

. Solve the hinear set KV q=-—p

Compute and store  uft! =TI (I +w' (v)7) ¢
Update ubt! = uf 4 gubt]

Evaluate pf41 = p(ubt1)

3. Convergence control: if point utt! s pood enough, exit.

Assign bk =k+1 and go back to 6.

=1

Table 4.2: Algnrii'.lnn for the BFGS method.

Remark 1. As explained in Remark 1 for the Inverse l:huytlt n method, step 10
does not require the computation of matriz I+ w' (v’ }

Remark 2, For each iteration k, we need to solve one linear set and evaluate
one vector of out-of-balanece forces, recover 2k vectors from storage and compute
4k sealar products, [4,27].
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The cost of o BFGS iteration is therefore highcl‘ than that of & Brovden
iteration. However, if tangent stiffness matrices arve SPD, this difference iz
supposed to be compensated by the fact that BFGS iteration matrices, which are
SPD, are better —that is, more similar to the true tangent matrix- than Broyden
matrices (nor symmetrical neither positive definite),

Remark 3. The BFGS method, when accelerated with a certain line-search
procedure, shows the same kind of superlinear convergence as the Broyden

method, [11].

4.3 Getting Quasi—Newtons to work in Castem —
total and partial approaches

If linear boundary conditions are treated via Lagrange multiphers, two options
are possible when developing Quasi-Newton methods:

Option T (Total approach): use a secant approximation BF of the Jacobinn
matrix J*:

Bt b, (4.27)
Option T describes the natural way in which Quasi-Newton methods approach

nonlinear problems, as it approximates directly the whole Jacobiun matrix,

& n 1 . = k i
Option P (Partial approach): compute a secant approximation B to K*
b k T
B = K", (4.28)
and then employ constent matvices A, and I to build BF as

B A AT
B =4 1 -1]|=a (4.20)
A -1 1

Option P takes profit of the fact that all submatrices in J are constant except for
matrix K in other words, it coneentrates all efforts on the only nonlinear part of
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the Jacobian matrix J. Of conrse, if constraints were not linear, option P wonld
have to be discarded.

The following issue now arises: do options P and T lead to different or to the
same methods? In other words, is the hinearity of constraints automatically taken
iut(; account, i a H'llﬂh HY WH}’ that the strategy (1-27'] resilts i an i‘l!il].il‘ﬂ}{itil.&hitm
of the type (4.29)7

In the remaining part of this chapter, it will be shown that options T and
P vield different methods for the rank-one updates (Broyden method) and the
same method for the rank-two updates (DFP and BFGS). Moreover, when two
different methods result for options P and T, the numerical tests show that the
partial appronch has a slightly better perfomance in terms of number of iterations
and computing time,

To develop these two approaches, we need some of the notation that was
introduced in Section 3.5, namely the augmented vector of unknowns

ok
Ut = A’: : (4.30)
(.l
und the augi nented vector of residual forces:

ng _ onl

RV = | "b- ntlp . (4.31)
nh .. nkly

. Fiuky— L F 4 ATOK 4ty _
RF = A uwb— "lp=0 y k30 (4.32)
Aok — " =0
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4.3.1 Total and partial versions of the Inverse
Broyden method

Option T (Total approach)

As we did in Section 4.2, we start by discussing the direct version of the Broyden
method, After an update formula t'm B* has been obtained, we will invert this
expression to obtain a formula for HE.

Recall, first, the tqtmh(mh that define the direct Broyden uutluul For this
option, sinee we are trying fo approximate the Jacobian matrix JE equation
(3.15), we are dealing with augmented vectors, Henece, we need the following
version of the Quasi- Newlon equation:

B* sU* = R* - R/ (4.33)
and the Broyden condition given by
Bz =B'Z  forall Zsuch that 27 UF = 0. (4.34)
It ean be proved that equation (4.33) together with (4,34) determines B* as

Rﬁ.‘ (JULI)T . Bk—l , R‘ (EU{.)T

i TR 4.35
(JU“)-" 5U" |}§U‘{ ”2 (4.35)
Recalling the defimtion of vectors R* and §UF. we can write matrix RF (5U"”)T
A
[y = g AT b
R (s0H) = 0 (6 8 4ub) =
0
RY (6ufYT RE (oA RE (8p*)7
b 0 0 0 1 (4.36)

0 0 0
where R‘l' denotes the first component of Rh.

R = fifut) = "y AT 4 ph). (4.37)
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Substituting equation (4.36) into (4.35) yields

R (gu")! R (80)" Ry (6p)!

|||||

b = k= 18U |2 sU"|? sU |2 ‘
Bt gy | U BU IO ) ()
0 0 0

To study the effect of the update (4.38), let us assume for a moment that Bl
i¢ & real Jacobian matvix (BY ! = JE=1). Then equation (4.38) yields

= K suhyT o RN AT o RE (buty!
kil Bl l gpy SrOR) g7 L)
¥ Y eu s AT [ AT (4.39)
A, -1 '
A o § I
Hence, Option T for the Broyden method does not lead to an approximation such

. i &l -
as that in equation (4.29), since matrices A;‘.r have been modified. From now on
we are going to refer to this method as “Broyden-t”.

To obtain the mverse version of the Broyden-t update, we need to invert
equation (4.38). This can be done by Sherman&Morrison’s lemma thanks to
the fact that matrix BY in (4.38) cun be rewritten as

Bt — BE1 4 ob (g5 (4.40)
'Wll{.‘-ﬂ"
1 'R*l 1 Il
k —— — R :', 4'11 ]
8T [6U* |2 e
fuk
ph= | 6t | = suUt. (4.42)
bt

Using the lemma to invert (4.40) and manipulating the resulting ERPression, we
pot
EU"' - g (Rk _Rk—l)

kT k-] v
BT BV (R - RV (#%)y B (4.43)

HE = By
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The expression for H" in (4.43) can be treated in a similar way as indicated in
equations (4.13) to (4.16), where now we will have that
¢ St — gl (R = RAY)
(ﬂk‘}ff' Hk—l (Rr(' _ R-"- -1 )

The algorithm that regults is given in Table 4.3. For coherence with the rest of the

notation, all augmented intermediate vectors are represented by capital letters.
We have also introduced a new step where the auxiliary vector ﬂk 15 defined.

1. Compute  J"
9. Solve the linear set  JV AU = —RY
3. Update U'=0Y 4 AU!
4, Evaluate R' = R(U")
5. Convergence control: if point U is pood enough, exit,
k=1
6. Solve the linear set  JV V = —R*
7. k=1 assign T=V
k=1 eompute T = []}:k_][fnln wi [JU")?'} v
8. Recover from storage ﬂ"" - (Euk 153“‘6‘;‘“] — Uk
/4

9. Cmnpi,ﬂ.e‘f and store W‘L' = (ﬁk):" (tISUk—T}

1. Compute and store sUM =T (I(ﬁkjrr T) wk

11; Update UL = p¥ 4 sUkt!

12, Evaluate R = RUMT)

13. Convergenee control: if pont U k1 g good enough, exit.

14. Assien  k=hk+1 and go back to 6.

Table 4.3: Algorithm for the Inverse Broyden-t method.
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Option P (Partial approach)

I this case we intend to approximale matrix K" with o certain matrix B,
Therefore, we will need to impose the Brovden condition as

_ k s o=t T o b
E!"l z= BL z for all z such that 2! éuf = 0. (d.44)

If the Quasi-Newton egiation (4,:!3} iy complemented now with (4.44), the
following expression for B* i obtained:

b ok-1  RY (6uf)T
A —l(k—) (4.45)
| 6u*|[*
where le represents the vector defined in (4.37). We are going to refer to the

y =L 1 ’
reslting mehod as the “Broyden-p” method. After B iz obtained, equation
(4.29) is employed to define the secant matrix B* as

B AT AT
Bi=|a4 1 -I
A =I I

Equation (4.45) is analogous to (4.35) since one can be obtained from the other

by interchanging
du o— 6U

B+—B.
In this case, the update formula for B" reads

R} (§ul)"
b vk w00 ,
B*=B""" 4 0 0o ol (4.46)
0 0 0

that is,

pi=1  Ri (fu")' o1 7

o [B p BLEEE AT A
B A I =I
A: I I
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: v gak=—1 v
where, of course, only submatrix B hias been modified.

Sherman&Morrison's lemima can now be applied to equation (4.46) using that

B* = B*1 4 o (g7, (4.47)
where now 5
I - 1 ]I = 1 ,{\ 4 )
= [ 0 | = B (4.48)
[| e 0 || but||

Sut
gh=1{ o |. (4.49)

0

The inverse update formula that follows is

5Ul j= Hk—t (Rﬁ = Rl‘.—l

b ogh—1
H" =H 1 (ﬂk)‘jr gh-1 (RF _RK-—I

)) (84T Bt (4.50)

Equation (4.50) is identical to (4.43) except for the definition of ﬂkh This means
that an algorithm for this inverse Broyden-p method can be produced simply by
changing the definition of ﬁk in the Broyden-t algorithm.

Table 4.4 gives the step-by-step deseription of the Broyden-p method.

Remark. Sinee the definition of the auxiliar vector ﬁ}" in the two options of
the Broyden method differ, the sealar products in steps 8-10 in Table 4.4 involve
“shorfer” vectors than in Table 4.3, This may have a relevant significunee for
viry constrained problema.
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10,
1.
Bvaluate RFH = RUHH
13.
14,

. Compute and store wh

67

. Compuite JU

. Solve the linear set  J? AU! = ~RY
Update U =U" + AU

 Evaluate R' = R(U')

. Convergenee control: if point UI is good enough, exit,

k

I

1

. Solve thie linear set JOV = —RF

k=1 assign T=V
k=1 compute T = H}:ﬁe—l(f + W' (JUE}T) Vv

. Recover EU"" = (Eu"'ﬁﬁ,&",ijpk] from storage and build

(6u”,0,0)

) = 1
(85T (SUT-T) T

Compute and store SUAH =4 (([f:i":)I T) Wt

Upr.ln.tu U‘HI = Uk |- ﬁUk'H

Convergence control if point UF1 s good enough, exit,

Amign F=4k+41 and oo back to 6.

Tahle 4.4: A]gﬁritlnn for the Tuverse Bl'nyt..l.t:n-[.h method,
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4.3.2 Total/partial version of the BFGS method

Option T (Total approach)

DFP method

As previously seen, for this method the Quasi-Newton equation is
complemented with hereditary symmetry and positive-definiteness of the secant
approximation B¥ to the Jacobian matrix J¥:

B;"'_l syminetrieal and positive definite = Bt symmetrical and positive definite.

(4.51)
These requirements lead to the following expression for B*:
k=1 kT k¢ k=141 k=1 ¢ k—1541"
B = [1- St ] I oAl A NME o A T
where R’f B Rff“]
Fl=g _R-1 = 0 (4,53)
0

Substituting equation (4.53) into (4.52) yields, after some manipulation, the
fullowing expression of B* in terms of BF;

. (BT Mt AT AT
I L i ol (4.54)

A: =I I

where M*‘] denotes a certain n-dimensional correction matrix, The important
point about equation (4.54) is that it deseribes already a Type P oupdate of matriz

! o il » -
B*. That is, only the submatrix B®  has been modified, although this was not
s indtial reduest,

Henece, when using a DFP updu.tt: i.ugt"hht'.r with Lagrange IIHllfriI?li'-“?l'Hs options
T and P yield the same method.
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BFGS method

In this method, we use the inverse form of the Quasi-Newton equation

H* (R* — RFV) = sU", (4.55)
together with the requirement

H*~! sPD = H' SPD, (4.56)

Conditions (4.55) and (4.56) determine

(4.57)

H: = [I- bu’ (dk_t)'rl k=1 [I gt wtlk}T] : sul (guﬁ.'*,'.f'

(CL_'—f)q_.la;;-L: a (al’—l )TI 5“&' (ck"l )"P Jukl

where (:""I is the same vector as in equation (4.53).

Since the BFGS method s an inverse Quasi-N:‘wLmL method, a direet version
is required to study how BF~1 is transformed into B¥. This results in, [11],

ck—l (‘ck.—] )’!' -Rk_' I(Rk— ! )’l'

.k' e k-..[ ' |
B" =B 23 (&-u,t,-)],' k=1 F (5“")”' Rk_] " (1.53)
which can be rearranged into
(BN AT AT
B = Aﬂ _r _I . (4-59}

A, ~-I I

with NF-! standing for some n-dimensional correction matrix.  Again, the

4 . . . . k=1, -
important point about equation (4.59) is ithat only submatrix B 15 modified,
although this was not required a priori.

Therefore, option T leads automatically to an update of type P. This means
that the associnted algorithm can be obtained gimply by substituting vectors u
and r in Table 4.2 for theiv enlarged versions, U, R. This algorithm is listed
in Table 4.5, Apain, all angmented auxiliary vectors are represented by capital
letters.
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e |

10,
11
12.
13.

. Compute and stove

. Compute Jo

. Solve the linear set  JY AU' = —R"
 Update U' = 0"+ AU!

. Evaluate  R'= R(U')

., Convergence eontrol: if point -U1 18 good enough, exif,

k=1

b _ 10k
W= T R

ute and store V= RE - (BUNT (BB | i
Compute and store V¥ = R ['l +\/ U TR R

. Compute P =[] ,(I+ V! (W)l Rt

. Solve the linear set JU Q=-P

Compute and store U"‘_H ﬂ, ol (I W' V')I ) Q
Update gkt = gk 4 g+
Evaluate R,"'l"l = R(U'{"}'I )

Convergence control: il point U g good enough, exit.

. Assign k=k+1 and go back to 6.

Table 4.5: Algorithm for the BFGS method, options T or P
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4.4 Numerical examples comparing total and
partial versions of the Broyden method

Example TRUSS

As a first example, we consider the truss problem presented in Chapter 1. The
geometric and material parameters for this test can be found in Figure 4.2,

Initial configuration

z2=5 "
£E=100 E=2.1 10
A=10 =0

Figure 4.2: Truss test.

This truss is apalysed with a single element. An incremental/iferative analysis
15 performed with an ineremental load AW = 60, Figure 4.3 shows the
nondimensional load /deflection curve after 8 load steps.

The total and partial versions of the Broyden method are compared in Figures
4.4 and 4.5 for load steps 1 and &, for which the relative displacement error is
plotted vs. thé number of iterations. A very strict tolerance parameter £ = 10-8
has been employed to discriminate the behaviour of the methods. However, the
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Figure 4.3: Truss test. Load vs. vertieal displacement.

simplicity of the test vesults i a similar belhiaviour of the two options.

Table 4.6 gives the number of iterations and CPU time (in hundreths of second)

for the whole analysis,

Method Iterations CPU time
ybroyden_p 44 1 239
(broyden_t 45 1 246

Table 4.6: Total costs of the QN Broyden methods for the truss test
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method.



74 4. Quasi-Newton methods

Remarks:

o This test is one-dimensional, Thus, the load/deflection curve for this test is
a typical curve like those used to illustrate the methods.

o Only a few iterations are required to achieve convergence in each load step,
which means that this is a simple test.

¢ Both the fizures and the cost table indicate that there is no substantial
difference between the two versions of the QN Broyden method.

If we apply two more increments of load, we obtain the load /deflection curve
of Figure 4.6,

“WALALLAZ) ™

[ 1. | Y 3 —

a4, 10 e

— R —

[

[ ] N

e 0b |
iz

Gk o A L

[T i, R L b 1« Wt 2,000 .49

Figure 4.6: Truss test. Load vs. vertical displacement.

Figure 4.6 shows an unreallistically large jump of the deflection in load step 9.
This incorrect result is due to a limitation of the strategy of applying successive
inerements of load, In Chapter 8, we will go back to thig test to see that more
sophisticated strategies are required to capture the real response of the structure,
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Example CYLINDER

This test consists of a small-strain analysis of a perfectly plastic material. A
hollow eylinder is subject to an inner pressure p, (7], see Figure 4.7

E=2.1 10" N/m’

|
0,=24.0 10" N/l
¥=0.3

Figure 4.7: Cylinder test.

The eylinder is analysed with bidimensional 8-noded plane strain elements.
Figure 4.8 shows the pressure vs. radial displacement response of the solid.

The Broyden-t and Brn}rdcn-p methods are compared in Figures 4.9 and 4.10.
A tolerance £ = 1079 has been used, In Fipure 4.9, associated to load step 5,
the two methods show a very similar behaviour. Figure 4.10 corresponds to a
more nonlinear load step 12. This results in a sharp difference between the two
methods.

A

Table 4.7 gives the total amount of iterations and CPU time associated to each
option. Only 11 increments are accounted for since the Broyden-t method failed
to converge in load step 12,
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iR

[ oy al I RN 1 tig I, 1 0,0% 0,97 UL
Figure 4.8: Cylinder test.
Internal pressure v, radial displacement.

Method lterations CPU time
gbroyden—p 59 1 961
(broyden—t GO 1 958

Table 4.7: Total costs of the QN Broyden methods for the cylinder test

Remarks:

e For the first 11 inerements, the two methods, Broyden-t and Broyden-p, show
approximately the same behaviour.

s However, for load step 12, the partial version converges in 14 iferations,
whereas the total version fails to converge.
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Example SHELL

In this case, the spherical shell of Figure 4.11 is studied, [7,19,30]. The shell is
clamped at the border and londed ab the centre (r = 0) with a force P,

0.08588 in

|
|
0.9 ir 0.9 ir
in T in _!

\ R=4_758 |r|

~ E=10 x10° Ib/irf
=) 5

Figure 4.11: Shell test,

An elastic largesstrain analysis is performed with 6 axisyminetrical elements. A
total load P=80 Ib is applied in 80 steps. Figure 4.12 shows the load/deflection
curve associated to this test. In Figures 4.13 and 4.14, corresponding to
inerements 26 and 41, the two versions of the Broyden method are compared.
A tolerance € = 1079 Lias been used.
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Figure 4.12: Shell test. Load va, maximum vertical deflection,

Table 4.8 gives the total amount of iterations and CPU time associated to each
nptiun.

Method [terations CPU time
gbroyden_p 504 16 241
gbroyden_t 544 17 230

Table 4.8: Total costs of the QN Broyden methods for the shell test

Remarks:

s The shell test is more complex than the truss or eylinder tests, thus requiring
a highey amount of iteratious,

o The partial version of the QN Broyden method shows a slightly better
hehaviour than the total version.
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and partial versions of the Broyden Quasi-Newton
method.
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Example NECKING

The necking problem is a well-known benchmark test in nonlinear solid mechanies,
[26], where both material and geometric nonlinearity are present . A circular bar,
with @ rading of 6.413 mmn and 53.334 mm length, see Figure 4,15, is subject
to uniaxial tension. Necking is induced by a shght geometrie imperfection (1%
radiug reduction) in the central part of the bar. The elastoplastic constitutive
law can be found in [26], Figure 4.15 also shows the deformed shape after n 14
mm pull.

A mesh of 50 8-noded axisymmetrical elements is employed to perform an
incremental /iterative analysis with 200 load steps, with a tolerance & = 1014,
The performance of the total and partial versions of the Broyden method are
compared in Figures 4.16, 4.17, 4.18 and 4,19, corresponding respectively to two
initial steps (2 and 3), an intermediate one (87) and an advanced one (197). Table
4.9 shows the required number of iterations and CPU fime.

Lo

Figure 4.156: Necking test. Initial and defornied meshes.
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Method [terations CPU time
qbroyden_p 1 914 137 826
gbroyden_t 1 809 123 613

Table 4.9: Total costs of the QN Broyden methods for the necking test,

Remarks:
o [n this ease, the total version of the Broyden method shows a slight advantage
over the partial version,
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Example THERMIC

In the mechanical tests already presented, tangent stiffness matiices are SPD.
The Broyden method is not especially designed to deal with this type of problems.
since it does not satisfy hereditary symmetry and positive definiteness,

To assess the behaviour of the Broyden method in a non-symmetrical problem,
a simple thermic test is performed, [27], where the diffusion of heat in & nonlinear
material 15 studied., Nli'i'!':“l.lﬁtl-t“lt.}" 15 associated to a non-constant, tenmiperature-
dependent conductivity I of the form

K(T)=1+21T™, (4.60)

where T ia the temmperature.  This nonlitiear constitutive law results in non.
symmetrical Jacobian matrices, [27].

The problem domain, see Figure 4.20, is a sector of a hollow dise with a
rectangular hole. Figure 4.20 also shows the boundary conditions: preseribed
temperature in the rectangle and the inner are, a convection eondition in the outer
are, and periodieity in the left and right sides. The use of Lagrange multipliers
to handle linear restrictions has enabled a simple and straightforward treatiment
of these periodic boundary conditions,

An tterative analysiy with a single step has been earried out setting parameter
m in equation (4.60) to 2. The resulting temperature field is plotted in Figure
4.21,

The two options for the Broyden method are compared in Figure 4.22. For this
test, the total version shows an oscillatory behaviour during the first iterations.
These oscillations are subsequently corvected and then the two methods show
approximately parallel convergence curves, Table 4.10 shows the computational
cost for the two Broyden methods,
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Figure 4.20: Thermic test. Finite element mesh and boundary
conditions..
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Figure 4.22: Thermic test. Comparison of the total and partial

versions of the Broyden Quasi-Newton methaod.

Method [terations CPU time
qbroyden_p 25 G54
qbroyden_t 39 1373

Table 4.10: Total costs of the QN Broyden methods for the thermie test.






Chapter 5

Secant—Newton methods

5.1 Secant-related acceleration techniques or
making Quasi—Newtons run faster

As we saw in Section 4.2, a peneric iteration k of a Quasi-Newton method involves
the evaluation of one vector of residual forees and the resolution of one linear set
of equations (as in mNR), plus the recovery of 2k vectors from storage and the
computation of Eﬁ:(Bi'f)yr"ir-:n)/*‘H'{BFGS) scalar produets, ld;J.‘B.'.ET].

The increasing cost of the iterations is indeed a handicap of the Quasi-Newton
methods in the sense that, if convergence is not reached within a small number of
iterations, the total cost of the method may tnrn up to be prohibitive. However,
the use of secant matrices has been shown to supply a very good alternative to
tangent mafrices,

Thus the so-eulled Secant-related acceleration technigues ov simply Secant
Newton methods (SN), [10], appeared as a modification of the Quasi-Newton
scheme with o constant r;nmp-t.f.ﬂu.f.in?r.ﬂ.ﬂ cosl per tleration. The keyword
‘weceleration’ indieates that SN iferations are computed faster, since the fiest
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iteration of the QN and SN versions cost the same but then the QN iterations
have an inereasing cost whereas the cost of the SN iterations iz kept constant,

In all direct /inverse Quasi-Newton methods, matrix B* [H k can be obtained as
a funetion of Bk_ ! /Hi'hl and other pamrameters, equations (4.10), (4.13), (4.19),
(4,23), (4.26). Iu the corresponding Secant-Newton version, mabrix B"'/H’“ is
built es if the previous secant matriz had never been wpdated, In other words,
B'J“_I/Hk_l is replaced with B°/H" in the QN update formula that gives the
value for matrix B"/H F. Phis is equivalent to a Quasi-Newton without memory
where only the last correction is recalled.

In the following section, the Inverse Broyden and BFGS methods in their
Secant-Newton form will also be presented,

5.2 Algorithms for Secant Inverse Broyden and
BFGSS methods

Secant Inverse Broyden method

Reealling the original update formula for the Quasi-Newton Inverse Broyden
method, equation (4.13), the Secant-Newton version of this method 15 obtained
after exchanging HF for HY in the previons equation, which yields

(‘a*‘—l i HU yk—l) (‘!k—l)ﬂ' _H‘l')
(s4=1)T" (HO yk=1)

B =H" ¢

Thus, vector sF is obtained by postmultiplying (5.1) by (=rk),
(Si'—l = Hﬁ yk—l) (3.‘:—1 ]T HU _rkl -
(gh=1yT' (H“ yk-—l) \ -

(3&‘—1 — gY yb-vl') (ak—l}?" HU
(sk=1)T (HO y*-1)

8,(' = Hll {—'I"k] r= Hn 1I_

= Bv (—f‘k] J (alt—l )T' H“ (_ !"k). (5.2)

We can now introduce
i = B (k) (5.3)
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which 15 in fact the typical mNR correction vector.

! wo llll\’l‘?

Using equation (5.3) and recalling the definition given in (4.3) for y*~
that

H” p}t‘—] = H{" (,JM' _ r.‘]"l) - HU rk o H“ rk’-l = il—l = ik‘ (54)

Replacing now equations (5.3) and (5.4) into (5.2), we obtam the following
expression for sk, [27]:

‘:__-ﬂ‘“ 3‘:_1_[&&_]“‘5&!)

k=T <k S
* (_31.:—1).?‘ (‘;k—l = jk} (s )8 (5.5)
whicl ean be rearranged to yield
= p) et pat = pat, (5.6)
where oL o
and -
e f#"”] )J (EL_I — 54, (5.8)

From equation (5.6) it is clear that the correction vector 8* will be obtained by
performing a linear combinatron of vectors 3, sf=1, %=1, which correspond
respectively, equation (5.3), to the previous Broyden correction vector, the
previous mNR correction vector and the current mNR correction vector. Notiee
that only two vectors (8571, 8 1) will need to be transferred from one iteration

to the next and that just two sealar products are performed to obtain 7 and p.

The complete algorithm for this method is listed in Table 5.1. As in the QN
version, if the first secant matrix B" is chosen as the tungent stiffness matrix K"
the computation of the inverse matrx H U should be avoided. This is accomplished
by solving linear sets with matrix K" patlier than performing divect products with
matyix HY = (H“)"l.

Apart from this, the original context [u,r] is recovered in Table 5.1, For that
purpose, we have mtroduced the notation

st =&, (5.9)



62 5. Secant=Newton methods

1. Compute K Q

2. Solve the linear set K" Au! = —r!
3. Assign &u' = Au!

4. Update u' =u’ + Au!

5. Evaluate r! = r(ulj

I s good enough, exit,

6. Convergence control: if point u
k=1

7. Solve the linear set K9 fuk+! = —p

8 Compute 7= (6u)T" (6uk — sult!)

9. Compute  p = MF—TM

10, Compute fultl = (1 4 p) dult! 4 p uk - p ik

11. Update ubtl = ko gubtl

12. Evaluate  r#1! = p(uF*1)

13, Convergence control: if point uktl i good enough, exit,

14, Assipn k= k-1 and go back to 7.

Table 5.1: Algorithm for the Secant Inverse Broyden method,

Remark 1. For eacli iteration k., we need to evaluate one vector of out-of-
Lalanee forces and solve one linear set of equations (the same as in mNR), recover
two vectors from slorage and compute two scalar prnduut:s. Therefore, the cost
of & Seeant Inverse Broyden iteration is constant, as it was intended from the
beginning,

Remark 2. No rate-of-convergence properties are known for the Secant-Newton
methods.
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Remark 3. If ‘!‘:QN iterations are needed for the QN version of the Broyden
method, the total cost per increment (measured in terms of sealar products) is,
approximately,

kg

LN-I—J-
o 34 =8 s

whereas, if kgy iterations are required for the SN version, the total cost per
increment is cgy = 2 kgy. Thus, the SN version is more efficient if, approximately,

kgn (lqw +1) k-

t-.:lll—

Remark 4. If p is equal to zero in equation (5.6), the following value for the
correction vector is obtained

ak =§k __'HO (_rk) = {KU)-I (_rk)-:

which corresponds to the modified Newton-Raphson method, In this sense, the
SN Inverse Broyden method can also be regarded as a refinement of u mNE in
which a weighted line su :mnlmmtmn of the mNR correction vector &t " together
with veetors a k—1 and 8! 14 I.mlfurnwd

Secant BEGS method

The Secant BFGS (or BFGSS) method is obtained by replacing matrix . Lot
with H" in the QN BFGS update formula, [10],

-| k=1 f k=1 s h=15T k=1 ¢ k—15T
i B (yh 0 (8 L )
Hpposs = [I T a1 ]H [I (F=1)T ,k—l] (GF—T)T k-]

Using equation (5.10), the correction vector s* can be compiited as

- (5:10)

| k=1 (k-1

{ k g ] ) k

=H' (-r') = [I (ys—t)u I— 1] ([I -1,_r 31—]] (=" )
k=1 {sk l)f

b W—,( —#), (5.11)
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Equation (5.11) can be manmpulated in a similar way as in the Secant Broyden
method, The final result of this nmnipulatiuu 15, u.'sing tlie prr.wiulls definition of
3k, equation (5.3),

=(+0) 3 +(-0)8 4 (C-+O)BrCa) Y (512)

with 4. B, € being the three following scalar values:

('yk—l )T 5!:—]

A= W (5.13)

(W) 3 |

B = W (5.14)
k=131 =k

£ == A (5.15)

T (eI kT

From equations (5.11) to (5.15) it ¢an be seen that a BFGSS update involves the
storage of two vectors and the computation of four scalar products,

Table 5.2 contnins the step-by-step algorithm of this method.

Remark 1. For each iteration k. we need to evaluate one vector of mit-of-balance
forces (the same as in mNR), recover two vectors form storage and compute four
sealar products (7, 79, T3, T4)-

Remark 2. The Secant BFGS method ean also be interpreted as n refinement
of the modified Newton-Raphson method. The mNR corvection ean be recoverad
by setting the values of A, B, T i (5.12) to zero,

Remark 3. As commented previously, no rate-of-convergence properties are
known for the Secant-Newton methods,

Equation (5.12) can be further simplified into the linenr combination of only
two or one correction vectors. The resulting methods, developed by Crisfield,
[1{]], are known respectively as SN2, SN1.
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1. Compute KV
2. Solve the linear set K‘J Aui = —pl

Assign ! = Au!

[ =

Update u1 = ¥ o Au'

Evaluate r! = r(u')

(92

I g good enogh, exit.

6, Convergence control: if point u
k=1

Solve the linear set Kn sukt! = *-"'!"k

=

R, Compiite
p = (ph=1 = k)T g
Ty = (rk—l kT gkt
ry = (Bul)T ¥
4 = (6uh)T (b1 — £k

9. Compute

10. Compute
Fult! — (L4 ) b 4 (—€) gk 4 (€~ (14 C)B + CA) but
11. Update uwFt! =ub + Sul+l
12, Evaluate  pft1 = p(uf*1)
18, Convergence control; if point w1 is good enough, exit,

14, Assign k= k1 and go back to 7.

Tahle 5.2: .-Ugurii;luu for the BFGSS method.
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5.3 Again two choices when working with
Lagrange multipliers

As presented in Section 4.3, fwo different choices for the secant matrix B* can
bo made when treating boundary conditions via Lagrange multipliers. These two
choiees (Option T ~Total- and Option P -Partial-) lead to different methods in
the case of the Broyden technique, but they deseribe exactly the same update in
the case of the BFGS method.

Similar conelugions will be drawn for the Secant-Newton version of the studied
ON method; that is, two different Secant Broyden arve devised while only one
BFGSS is prmlm:ur.l.

5.3.1 Total and partial versions of the Secant
Inverse Broyden method

Option T (Total approach)

To obtain the secant version of the Broyden-t method, matrix H¥ 1 in equation
(4.43) must be replaced with H' The resulfing expression,

sU* — H" (R" — RF1)

AT 50 516
(ﬁk)"g"ﬂﬂ (Rk—Rk_t) (") HY, (5.16)

- W

can be manipulated as in equations (5.3) to (5.6),

Recalling that (8%)7 = (8uf XY &) and defining Jffk = H® (-RF), we
obtain the algorithm that is Lsted in Table 5.3, This algonthm corresponds
exactly to the enlorged version of the one in Table 5.1, A new step containing
the definition of vector ﬁk has also been introduced,
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Compute 7 = (84" (60

97

. Compute  JV

. Solve the linear set  JY AU! = ~R?
. Assign 60" = AU

Update U' =04 AU

,Bvaluate R!' = RU")

. Convergence control: if point Ul s good enough, exit.

k=1

" . o | L
Solve the lineat set  JO ST = — R

. Reeover from storage Al = (buk, 82k gut) = §U b

ko ekt
)

— ol

g4y ot
Compute  p= =

. Compite UM = (1 4 ?) «St}'k“ + p sUk - # th’k
2. Update Ukt = Uk + SU""H

Evaluate R = RUMY

. Convergence control: if point UMt s good enough, exit.

cAssign k= Ak 41 and go back to 7.

Table 5.3: Algorithm for the Secant Inverse Broyden-t method.

Option P (Partial approach)

To obtain the general update formula for this method, we ean either substitute
H ! for HY in (4.50) or directly take the algorithm in Table 5.3 aud replace the
definition of ﬁk with

B = (6uk,0,0)
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The final nlgm‘i thim that 18 obtained i the one presented m Table 5.4,

1. Compute JV

2. Solve the linear set J" AU = - RO
3. Assign 5[71 ~ AU!

4. Update U'=0U"4 AU

Bvaluate R = R(U)

o]

#

6. Convergence control; if point Ul s good enough, exit,
k=1

. Solve the linear set  JY Sﬂk“ = R

8. Recover $UF = (Sui",ﬂ.}tk.ﬂpk) from storage and build
A = (8u*,0,0)

0. Compute * = [‘34')'!' (ﬁff‘l N J&A'-I-l]

kT eapl
10, Compute p = M

- T
11. Compute U = (1 4 ") i +p 8UF — i
12. Update  UFH! =k 4 Ukt
13, Bvaluate  RFH = R(UHH)
14. Convergence control: if point U b+l g good enough, ext.

15, Assign  k=k+1 and go back to 7,

Table 5.4: Algorithm for the Secant Inverse Broyden-p method,
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5.3.2 Total/partial version of the BFGSS method

In Section 4.3.2, the partial and total approach to the BFGS method resulted in
the same n}gm-ithm. Thus it seems reasonable to expect only one secant version
of the BFGS method. As formulations T and P are equivalent, the final algorithm
for the BFGSS method will be obfained by endarging all vectors and matrices in
the BFGSS algorithm presented in Table 5.2,

The enlarged BFGSS algorithm is listed in Table 5.5,

Remark . Similarly to the case of the Broyden method, if kgy and kgy
iterations are requirved respectively for the QN and SN versions of the BFGS
method, the SN version is more efficient if, approximately,

1
kgny = 3 [qu + 1) A’Qi\l'
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]

= R = S S .

10,

11
12,
13,
14.

. Compute  JV

. Solve the linear set  J' AU' = ~R"
. Assign 5[-)'] = AU

CUpdate  U'=U" 4 AU

 Evaluate R' = R(UT)

. Convergence control; if point Ul s good enough, exit,

k=1

. k41 ;
. Solve the linear set  JY U Y R

. Compute

— S
ry = (RE=1 — REYT st
ry = (6U)T R¥

ra = (6UMT (RF! - R¥)

i CUIH.’]'J'lltU ."'l = e B == o CI — ﬂi

3! ] L T

Compute
SR = (14C) EC}RL-H e (=) Effk +(C—(1+C)\B +CA) sk
Update T = gk 4 guts]
Evahiate R = gott!)
Conyergence control: if point UFH! is pood enough, exit,

Assign bk =4k +1 and go back to 7.

Table 5.5: Algorithm for the BFGSS method.
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5.4 Numerical examples comparing total and
partial versions of the Broyden method

In this section, we are going to present some examples comparing the behaviour
of the total and partial versions of the SN Broyden method. The comparison
between Quasi-Newton and Secant-Newton methods is made in Chapter 6.

Example TRUSS

As o first example, we consider again the test deseribed in Figure 4.2, The analysis
is performed exactly under the same conditions as in Section 4.4,

Figures 5.1 and 5.2 represent the behaviour of the two versions of the SN
Broyden method for load steps 1 and 8,

Tuble 5.6 gives the total amount of iterations and CPU time required for the
whole analysis.

Method Iterations CPU time
shroyden.p et 1 176
shroyden_t 45 1 209

Table 5.6: Total costs of the SN Broyden methods for the truss test.

Remarks:

s The truss Lesh is too simple for the two versions of the SN Broyden method
to show a significant difference.
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Example CYLINDER

Let us consider now the cylinder test introduced in Fignre 4.7, This cylinder has
been analysed in the same conditions deseribed in Section 4.4 to compare the two
versions of the SN Broyden method. Figures 5.3, 5.4 and 5.5 show the behaviour
of the two options for load steps 5, 11 and 12,

Tahle 5.7 contains the number of iterations and CPU time associated to this
analysis,

Method Iterations CPU time
shroyden_p 73 2 392
shroyden_t 38 2 656

Table 5.7: Total costs of the SN Broyden methods for the eylinder test.

Remarks:

s The pﬂ:ﬁ;ﬂ version of the SN Broyden method is more clearly better than
the total version for this test.

¢ Contrary to what happened for the Quasi-Newton Broyden-t method, the
Secant-Newton Broyden-t method achieves convergence for load step 12.
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Example SHELL

The shell example of Figure 4.11 is studied now. Figures 5.6 and 5.7, associated
to inerements 26 and 41, are presented to illustrate the behaviour of the 5N
Broyden-t and Brovden-p methods, These figures ave associated to the same sort
of analysis performed in Section 4.4.

In Table 5.8, the total iterations and CPU times are presented.
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Method [terations CPU time
abrovden_p 524 15 789
shroyden_t h42 16 208

Table 5.8: Total costs of the SN Broyden methods for the shell test.

Remarks:

e For the shell test, which is more complex than the truss or cylinder tests, the
partial version of the SN Broyden method is just ﬁligh'r.ly betier than the total
VETsion.

Example NECKING

We recall now the necking test presented in Figure 4,15, When solved with the
two SN Broyden procedures under the same conditions as in Section 4.4, the
reaults shown in Figures 5,8 , 5.9 and 5.10 are obtained. These three figures show
the behaviour of the two versions for some of the initial steps, 2 and 3, and for
the last converged step, 87.

Table 5.9 gives the total amount of iterations and CPU times,

Method lterations CPU time
shroyden_p 540 32 928
shrovden_t 600 36 436

Table 5.9: Total costs of the SN Broyden methods for the necking test.
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Remarks:

e Both versions of the Secant Broyden method diverge for the 87th of the
planned 200 lond steps, Thus, this test is too nonhnear for Secant methads.

e Up until load step 87, the partial version is just slightly better than the total
option,
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Example THERMIC

The nonlinear heat diffusion test presented i Figure 4.20 is veproduced with the
Broyden Secant-Newton methods, to study their performance for non-symmetrical
problems.

The value m = 2 employed in the constitutive equation (4.60) to compare the
Broyden Quasi-Newton methods results in a too nonlinesy problem and the SN
Broyden do not converge. To allow the comparison between the two SN Broyden
methods, the degree of nonlinearity is decreased by setting m = 1.5.

The total and partial versions of the Broyden Secant-Newton method are
compared i rure 5.11 and Table 5.10.
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Figure 5.11: Thermie test, Comparison of the total and partial
versions of the Broyden Seeant-Newton method.
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Method Iterations CPU time
sbroyden_p 34 588
shroyden_t 59 1051

Table 5.10: Total costs of the SN Broyden methods for the thermic test.

Remarks:

111

» For this test, the partial versions of both the QN and the SN Broyden method

show a significant advantage over their total counterparts,






Chapter 6

Numerical examples
involving
Newton—Raphson,
Quasi—Newton and
Secant—Newton methods

In this chapter, various numerical examples will be shown which compare NR,

QN and SN methods,

In the first part of the chapter, a comparison between Newton Raphson
methods 18 presented.

i the second part, Newton-Raphson methods are contrasted with Quasi
Newton and Secant-Newton methods.
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Newton-Raphson methods

Example TRUSS

To begin with, we recall the truss test that was presented in Section 4.4, see
Figure 4.2, In this case, the problem is solved nsing the full Newton-Raphson
(fNR), modified Newton—Raphson (mNR) and initial stress (k0) methods,

Fignres 6.1, 6.2 and 6.3 represent the behaviour of those methods for load steps
2, b and 8,

Table G.1 gives the total amonnt of terations and CPU fime required for the
whole problem (8 load sleps).

Method Iterations CPU time
NR a7 933
mNR o0 2 034
kO 200 4 235

Table 6.1: Total costs of the NR methods for the truss test.

Remarks:

e In Figures 6.1 to 6.3, the I:ypinnl hehaviour of the Newton En-]':p].mn'n methods
can be observed: quadratic convergence for the {NR and linear convergence for
mNR and initial stress methods. Between the fwo modifications of the fNR, the
mNR shows faster convergenice than the k0 method,

o The modifications to the INR method require an important computational
cost with respect to the fNR.

o As the load level increnses, the simplified methods mNR and k0 show
intlrﬁhuingly bad behaviours, This s due to thie fact that the pruhlt:m Erows
more nonlinear as more lond 15 applied.
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Example CYLINDER

We now analyse the eylinder ease that was introduced in Chapter 4, see Figure
4.7, In Figures 6.4 to 6.7, the three Newton-Raphson methods are compared for
load steps 4, 8, 11 and 12,

The total amount of iterations and CPU time are given in Table 6.2,

Method [terations CPU time
INR ho 1779
mNR 651 16 023

k0 - —

Table 6.2: Total costs of the NR methods for the eylinder test.

Remarks:

o For tlis example, the three Newton-Raphson methods show the expected
behaviour,

e As it ean be seen from the figures and definitely from the table, the
modifications of the full Newton-Raphson method ecan turn up to have a
prohibitive cost.

s The almost horizontal line that represents the ki method for load step 12
Figure 6.7, indicates that this method fails to converge for this last inerement,
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Newton-Raphson, (Quasi-Newton and Secant-Newton methods

In this part of Chapter 6, we diseuss the behaviour of the Brnyq:lc.'n and BFGS
methods in their QN and SN forms. Full Newton-Raphson and modified Newton—
Raphson methods are also plotted as a reference,

For the whole analysis, the partial version of the Broyden QN and SN methods
have been used, since this version has been shown to give slightly better results
than the total version, see Sections 4.4 and 5.4,

Example TRUSS

[n this case, we study the truss example, Figure 4.2, In Figures 6.5 and
6.9, the behaviours of the following methods are shown: (NR, mNR, inverse
Broyden (partial version), BFGS, secant inverse Broyden (partial version) and
BFGSS. These two ﬂgurmﬁ correspond to the first and last load steps, respectively
inerements 1 and 8,

Table 6.3 sums up the costa of the 6 methods, in terms of iterations and total
CPU time.

Method lterations CPU time
fNR 37 933
mNR 00 2034

ghroyden_p 4 1239
bfgs 4l 1313
shroyden_p 14 1176
bfigs: 44 1 185

Table 6.3: Total costs of the NR, QN and SN methods for the trass test.
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Remarks:

o For ths test, the figures show the expected behaviour of the QN and SN
methods,  That is, they present a rate of convergence that ranges from the
quadratic convergence of the fNR to the linear convergence of the mNR.

¢ This one-dimensional test is too simple to diseriminate between the Quasi-
Newton and Secant-Newton methods: the QN and SN form of the methods are
confounded and also Broydens and BFGSs show a practieally identical behiaviour,

s QN and SN methods have a similar total cost, which lies between those of
the INR and mNR methods.

o In this particular case, the fNR method has required the computation
and factorisation of 37 tangent stiffness matrices, see Table 6.3, whereas the
secant Broyden method has caleulated just 8 tangent stiffiess matrices in all,
Nevertheless, the INR still has a lower cost. This can be explained by regarding
the nature of the test: the truss example is a one-dimensional problem; this means
that the computation of a tangent stiffness matrix for this problem is a simple
task, Henee the advantage of the fNR,
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Example CYLINDER

When solving the cylinder problem, see Figure 4.7, the curves in Figures 6,10 and
G.11, associated to steps 4 and 12, are obtained.

The iterations and CPU fimes demanded by each method are given in Table
6.4

Method [terations CPU time
fNR a0 1 779
mNR 651 16 023

qbroyden_p T3 2430
bigs G1 2142
shroyden_p 73 2 392
bigss 67 2116

Table 6.4: Total costs of the NR, QN and SN methods for the cylinder tost.

Remarks:

s For this example also the expected results for the QN and SN methods are
obtained.

s For load step 4, all the QN and SN methods shiow a similar behaviour, A
slightly better response i1s observed for the BFGS.

e For load step 12, the QN and SN forins of each method are diffieult to
differentiate from one another, BFGS and BFGSS show & better behaviour than
the Broydens,

e The better behaviour of the BF'GS and BFGSS methods is confirmed in Table
6.4

o As for secant methods in general, although they have been developed ns
relinements of the mNR method, they turn up to supply a much better result
that the mNR n its original form,
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Example SHELL

125

For the shell example, see Figure 4,11, load steps 1, 17, 26 and 38 are shown in

Figures 6.12 to G.15.

The amount of iterations and CPU times are accounted {or in Table 6.5.

Methaod [terations CPU time
fNR 411 11 967
mNR —

qbroyden_p 504 16 241
b 458 15 279
ahroyden_p H24 15 789
bfgss 512 15 706

Table 6.5: Total costs of the NR, QN and SN methods for the shell test.

Remarks:

e This test is too nonlinear for the mNR to achieve convergence.

o BI'GS requires less iterations than the rest of QN/SN methods, but the total
CPU time is very similar. An explanation of this fact is that the BFGS method
uses a more sophisticated update which involves SPD stiffness matrices, thus
vesulting in a smaller amount of iterations; but each iteration costs more than
tho=ze agsociated to the rest of the QN[SN methods, and therefore the total CPU

fime 15 higher,

e Since this example 15 reasonably small (6 axisymmetrieal elements), the
computation of tangent stilfness matrices involves a small eost. It 15 for this

reason that the INR method requires both fewer iterations and CPU time.
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Example NECKING

For this example, we consider the necking problem in Figure 4.15. The results
associated to load steps 2 and 3 are given in Figures 6.16 and 6.17, respectively.
In Table 6.6, the total iterations and CPU times for the NR, QN and SN methods

are added up,

Method [terations CPU time
fNR 2 632 225 336
mNR — —

qbroyden—_p | 914 137 826
b 1 583 115774
shroyden.p -
bfgss

Table 6.6: Total costs of the NR, QN and SN methods for the necking test,

Remarks:

o This is a highly nonlinear problem, for which neither the mNR nor the SN
methods achieve convergence.

s The high amount of degrees of freedom of the problem causes the fNR to have
a high cost with respect to the QN.

s Between the QN methods, the BFGS method shows a better hehaviour, both
in terms of iterations and of CPU time, since it uses 5PD iteration matrices,
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Example THERMIC

The last example shown in this chiapter is the thermic test presented in Figure
4.20. The goal that is pursued with this example is to compare the behavionr of
the BFGS and the Broyden methods, both QN and SN, for a non-symmetrieal
problem.

Figure (.13 and Table 6.7 show the results obiained usmg the Quasi-Newton
methods with m = 2 in the constitutive equation (4.60). Secant-Newton methods
are compared, with m = 1.5, in Fignure 6.19 and Table 6.8. For both problems, the
partial version of the Broyden method tends to be superior to the BFGS miethod,
as expected for a non-symmetrical problem.
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Metliod Iterations CPU time
qbroyden—_p 25 654
qbroyden_t 39 1373

bigs 28 1015
Table 6.7: Total costs of the Quasi-Newton methods for the thermic test
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Methaod [terations CPU time

sbroydeti-p 34 b88

abroyden—t 59 1 051

bigas 44 779

Table 6.8: Total costs of the Seeant-Newton methods for the thermic test,



Chapter 7

Line searches

7.1 Theory and detailed flowchart

So far, we have diseussed several methods that supply different solution techiniques
for nonlinear pl.‘nlﬂurlm. In this chapter, we will be concerned with performing
simple modifications of those solutions to yield better results,

We begin by assuming that Suf*! s the correction vector provided by some
NR. QN or SN method at iteration k. Up until this point, displacement updates
have been performed following the expression

ubt! = gk syhtl (7.1)

What we are going to do now is keep the advance direction determined by Eu}""'l,
but maodify it modulus so that a diffevent update

u = b oy futt (7.2)

is obtained. The seale factor pppy in equation (7.2) is the advance length,
[10,18,27], which has been implicitly set to 1 in the previous chapters . Obviously,
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we want bo compute 5 so that veetor ub+lin ('?.Bj be hetter than the one in
(7.1). In other words, we will be searching for a better solution uht! along the
line determined by point u"" and the direction ﬁukH.

From the beginning, our main objective has consisted of finding a displacement
vector ub ! for which r(uft!) = pluf + SuFHY) = 0. Tn the line-search context,
sinee uf and SuFt! are fixed, all functions of u* ! ¢an be rewritten, thanks to
equation (7.2), as functions of 1. Thus, our problem reduces to finding the
value of the scalar 74 for which

r(Mkg1) =-r(uk + W sult1y =, (7.3)

What happens is that, in general, the real solution uft! o r(u“""l) = () does not
lie on the search line, This means that we can panemdse the vectorial function of
residual forces given in (7.3), but not caneel it

A typical alternative requirement consists of finding the value of 7y | that gives
the mininnnu absolute value of the function ¢ defined by

Plnpgr) = (BT r(uk 4oy subth), (74)

The expression of 1 given in (7.4) is a linearised version of the lotal potential
eneryy associated to point L M1 suft1, [10]. This means that we have
transformed the veetorial problem of minimising the out-of-balance forees in (7.3)
into the sealar problem of minimising the energy function (7.4).

We could use any minimisation tm.'.huir.lm-.'. Lo abtain k41 for which |,/,(,“_+“}|
15 the least possible, [14]. Nevertheless, we want to use a simple strategy, since
the evaluation of function ¢ involves the evaluation of a vector of residual forces,
which 15 an t.-x[.mnﬂiw_' operation from a computational point of view; fruﬂwm,m_n'a,
more accurate values of 1, will give smaller norms of the residual forces, but,
ag we have already seen, not cancel them. For this reason, most of the line-
search procedures, [10,31], demand for the modulns of V(1 q) Just to be small
in comparison to the modulus of $(0), 6.,

[t )] =< & |ib(0)), (7.5)

with = heing the bne-gearch tolerance. This toleranece is set to large values that
range from 0.5, [18], to 0.8, [10], thus not making (7.5) a restrictive condition.
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To find an #4 that meets equation (7.5), we want to use a technique which
profits of the fact that the values of 1£(0) and (1) are almost known:

o For np4q = 0, the residual forces equal r(n) ) = r(0) = r(uk) = r* where

vector ¥ can be obtained from the previous iteration,

s For M1 = 1, we have T(T”;.H') = 7'(1) = r(u&'“) = w"’c"‘}1 which needs to be
calenlated anyhow at the end of iteration k4-1.

Therefore, to abtain the values of
P(0) = (sulthl (7.6)
(1) = (6ut 1T pFH, (7.7)

we will only need to perform two scalar products.

The first thing we need to do s check if condition (7.5) 15 satisfied for M1 = 1.
If this is not the case, we perform a simple interpolalion in the plane (1,9)
between points 7,41 = 0 and 54y = 1, Figure 7.1, This results in

. _ W0
Te+1,1 = l/‘(‘()) — (1) (7.8)

where the additional H‘}Ahindux Lin ngyq,y indicates that (7.8) 15 a predietion of
et 1 ’

w(0) N

N =10 Ml N =1
~ |

(1)

Figure 7.1: Line-search interpolation procedure,
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A common approach is to compute 71 from (7.8), update ubtl = ot
M1, suft and pass on to the next iteration k + 2. However, if condition (7.5)

[1h0tkg1, 1)l < & [B(0)]

15 not met, we can jmil‘. as well go ol performing ‘line-gearch iterations’ by
interpolating hetween points ({] N 'rj!(ﬂ)) ardd (?H:+Ll . "x’(’fk+l.l))i then between
points (0, £(0)) and (Hegq,2 + Ykp1,2)), and so on. In this case, the value for
the step-length nyp 1 ; associated to line-search iteration 7 1s computed as

i(0)
L) - i!r‘(m--q-l,f—lf

M1 i = The41,i— (7.9)

If the ratio (npyq,-1)/0(0) 18 positive, that is, if (0) and P(ngq i) have
the same sign, then an extrapolation instead of an interpolation is avtomatically
performed. This extrapolation can give very large values of Metd i which in
general will not lead to good results. To avoid this situation, we specify an upper
bound for 141

I a similar way, for large negative V&]‘llf:s of 1/1(:';#._}_11;_1 )/'l,!*((}), we will get a
value of 7y 41 that is very close 1o zevo. This is also a bad situation, as point
ub 1l will he placed very near fo w* and thus the algorithm will not progress,
Consequently, we also speeify a lower bound for 4.

If a pruvi('}usly get number of linessearch iterations is not sufficient fo verify the
line-search convergence condition (7.5), we are going to update

alftl = T k41 0p0 fuf 1 (7.10)

m;t'l pass on Lo flie next ileration & + 2, The term W.‘-}-I,n W in (7.

10) represents
the aptimum value of oy, which yields the least ratio [O(44)] / |

S(0)],

Figure 7.2 gives a Howchart that lists all the imstruetions needed to perform a
complete line search,
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Compute  (0) = (5uk+l)?' o

Compute uftll = gk 4 g b+l

Evaluate r""'L” - r(u"‘" I-I-UJ

Compute (1) = [ﬁuk‘f'l )'4” phA10

Assign
Hopl, = 1

Papl. = (1)

Compute Mgl ] = E_@V)l{—ﬂr}{lj

Mhot1,1 < Umin YES
or

Net1.1 = Wit

NO

Assipn

Figum 7.2: Flawchart for the line-search procedure.
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Begin iterative line-seareh loap

1= 1, nitmaz

Compute  wfH10 = uF 4y | Gubt!

Evaluate r"""l“. = r(u’“‘l"')

Compute (1) = (Bub+))T phtli

YES ASSIED
Nopt = k41,

Popt = ’;’(*?oph)

|¢(=rk+1,a‘)f:'/"/ﬂnif/l

NO

NO

[ipopt| < & [(0)|

0
Compute 754 1,6 = The+1.4-1 W‘FTJ!?((EL)I}:')'

Assign uftl = b+l
Met1,i = Tmin \ ,
- YES Assign b+l = yk+10
Nk41,i = Tmaz /
NO

Update uft! = uk flopt Suktl

Figure 7.2: Flowchart for the line-search procedure (continued).
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7.2 Performing line searches with Castem

When using Lagrange multipliers to treat boundary conditions, augmented
vectors U = (u, A, p) are obtained, This means that two different line-search
techniques are possible:

Option T (Total approach)

Update the solution following the expression
Uttt =k 4 gy UM, (7.11)

where the advance length 5. affects the whole augmented vector §U K+l por
this option, .4 1 an approximation to the minimiser of the function

Wlggr) = UMY ROUE 4 ) SUFH, (7.12)

Option P (Partial approach)

Compute the new approximalion k! performing a line search update only on
the displacements u

U’L‘+l = (ﬂk M) Eu.k-l-I,;\k + 6)&“‘-'-1,}&* + 6F!-‘+1 ), (7.13)
where 71 18 a close value to the stationary solution of

Pneyr) = (@O RYUE + nyyy ST, (7.14)

To compare the fwo options, we first want to remark that the vector of residual
forees in (7.12), R(U* + npyy 6UH), is null excopt for the first block of
components By, Indeed, thanks to the fact that constraints are linear on w and
nsing equation (3.29),
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Ry(U* + npyy SUFHY
R(Ul‘ i Ml ] EUA:-F]) = Ar.‘ U"‘k + Mgl ﬁuk-l-l) . “-H'b -
A, (‘Hk + Tt 1 .§uk‘+l} . “'Hb

Ry(UF 4 gy U
O+ 41 0=0
0+ m410=0

Th(:l.'f.'f()l'l:i il
(UMY RWE + iy SUMH) =

Ry(U* + gy SUMH
= (buktl  aAM+T gt 0— 7pp 0 =
0— w0
= k41T ko k41
= (6w )" Ry(U" + gy 8UTT),

which means that equations (7.12) and (7.14) define exactly the same function i,

Hence, the alternative updates (7.11) and (7.13) use the same value of the
step-length 75, . These two updates have been tested on several examples; the
following conelusions have been drawn from the obtained results:

s The two versions show a similar behaviour

e but the Total version introduces a distortion of the Lagranpe rnultiplic-rﬂ which
delays convergence,

e The Partial version consgumes less CPU time.

In view of these results, we decide to use the Partial version (7.13)-(7.14) of the
line search.
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7.3 Numerical examples

In this section, two numerical examples are shown where the line search procedure
detailed in Figure 7.2 has been cmployed,

Example TRUSS

The initial stress method with line search aceeleration is also used to analyse the
truss problem of Figure 4.2, The same method without acceleration is employed
as # reference,

Fignres 7.3, 7.4, 7.6 and 7.6 show the behaviour of the two strategies for various
steps. For this very simple test, a reduced number of iterations per increment is
required with the accelerated algorithm. The associated computational cost can
be found in Table 7.1,

Method [terations CPU time
k0 200 4 235
kO_1s 32 1113

Table 7.1: Total costs of the initial stress method
with and without line search for the truss test.
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Example CYLINDER

A simular comparison is carvied ont with the eylinder fest of Figure 4.7, The
influence of the line search can be assessed in Figures 7.7 and 7.8, corvesponding
to steps 4 and 6, and in Table 7.2, It ean be seen that, in spite of an oscillatory
hehaviour, the acceleration ILAIAEES Ol i111purf-uul‘. reduetion 1 the t:umputmimml
cost,

Method [terations CPU time
kO 788 19 152
ko_ls 282 9 331

Table 7.2: Total costs of the initial stress method
with and without line search for the eylinder test

Remarks: The line-search aceeleration is especially effective with low-order
methods such as the initial stress method.
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Chapter 8

Arc-length methods

?.1 Some words about, load control and the need
r continuation techniques

In Chapter 3, the ineremental/iterative solution for nonlinear problems was
introduced. As we have already seen, this procedure consists of splitting up
the total load f, into N wmerements of loud "Af, so that

f.= 'Af+ 2Af4 ...+ Ylap4 Nap= ¥y, (8.1)
Onee this fragmentation is performed, we only need to focus on ench load step.
Indeed, all the discussed methods deal with the ealeulation of ntly for which

Fi(" )= L F = 0, given that "u is already known from the previous increment,
This iz also known as a lead contrel procedure.

In this chapter we start by presenting some cases in which the decomposition
of the load described in equation (8.1) may not provide a good solution to the
problem. Later on, some alternative technigues will be presented.

Figure 8.1 shows a typical “brittle collapse” load-displacement eurve: botli load
aned 1Ii:q|;luc:¢~.nu-.-||t, inerenge until a lmad potnd A 15 nchieved; bheyond this j';(:il'n‘.,
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displuuemeut Eoes on growing but load starts to deervease. When \1:5iug a load
control procedure, we are going to obtain solutions for all loads below the limit
load, but the algorithm will fail to find a selution when point A is passed by.

If we are making an analysis of the behaviour of the solid before collipse, we
muy come to the conelusion that this divergence has oecurved procisely beeause
a limit point has been passed by, However, this is a dangerous interpretation to
make, since a failure of the algorithm may be also due to a bad choice of the
increment of load, ete.

On the contrary, we may want to follow the equilibrium path of the structure;
for instance, becanse it is mtegrated n some bigger structure, or because we
believe that point A is just a local maximum and not the ultimate load, or even
becanse we want to make sure that we have gone past a limit point. In this case,
a load control procedure will be of no use.

Load, f * |

—

Displacement, u

Figure 8.1: Brittle collapse.

The curve in Figure 8.2 describes a ductile collapse, This behaviour is identical
te the one represented in Figure 8.1, except for the fact that the load stays
constant instead of lessening past point A, As in Figure 8.1, if inerements of load
are applied, the load-displacement curve can be followed up until point A, but no
further.
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Load, | A

Displacement, u

Figure 8.2: Ductile collapse,

Let us consider now the curve in Figure 8.3, In this case, A 15 a loeal maximum,
If a load control is pcrfur:‘nﬂd by irupuﬁing gome small merements of load, we will
be able to get close enough to peint A. The next nerement, if converged, is going
to yield point C, passing over everything that happens under the straight line
AC, Figure 83 deseribes what is known as a .el'n.r:,p-ih'r'o'u.lqh response.

Load, f A

Displacement, u
Figure 8.3: Slmp-thruugh.

To obtain good solutions to the problems illustrated in Figures 8.1 to 8.3,
we could use an alternative technique, which consists of applying increments of
displacement rather than of load. This displacement control procedure would
allow us to follow the path AB and beyond, since in this case we would use
increasing values of the displacement axis,
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In the case of Figure 8.4, however, neither of the two procedures, load or
displacement control, is good enough, A load control would give the same
problems as in Figure 8.3, while a displacement control would force loads to
jump from A to C, ignoring the .m:r.p-bur:ﬁ: behaviour around point B.

Load, f A

i
!
'
i - F"
c Displacement, u

Figure 8.4: Snap-back,

For cases such as the one in Figure 8.4, we will need to use the so-called
continuation methods, which are discussed in the following section. These
methods allow us to obtain points on the iuud-lt.l{-:flu\‘:tiun curve by prescribing the
distance from one point to the next rather than by requiring increasing values of
loads or displacements,

8.2 The arc-length method. A general
formulation including various control strategies

The arc-length method

Arc-length methods were firstly introdueced by Riks, [22], and Wempner, [29], and
have been thoroughly studied later on by Crisfield, [8,9,10], and others, [6,16,24].
As indicated in the previous section, these methods consist of imposing fixed arc
lenghts between points on the load-displacement curve, so that any struetural
hehaviour can be captured,
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We begin by defining the total load associated to the current inerement as

"-Hf = Mf 4 rf-i-lAf‘ (8.2)
We are now going to write the increment of load " + lAf as

"af= "Haa g, (8:3)
where f, denotes a fixed referential load and o is the so-called load-level
parameter. 1f " Aq is fixed o priori, then equation (8.2) deseribes a load coutrol

[u'c:u,'.e.flure. For the are lmlgth niethod, however, the value of ntl Ay is unknown
al the beginning of the inerement.

Let "1 Au be, as usual, the solution associated to the increment of load "*1Af,
Then, the expression

\/(HHA“)T i+l Au 4 tﬂ'HAf}T H+|,ﬁf (8.4)

gives the distance between points ("‘u.“ f) and ("‘+Ju1"+'l' f) m the load-
displacement space.  Reealling from (8.3) that "'Hﬁf = n"HAq f. and
introducing a seale parameter ¢ to weigh the contribution of load and tliﬁplm?t‘mt‘l‘l i
terms, we go on to require for this distance to equal a prescribed arc length Al

\/(w-l-lAu)T" n+1 Ay + ¢ (M1 Aa)? (Ift}fr fe = AL (8.5)

The value ¢ = 0 leads to the so-called cylindrical arc-length methods; ¢ = 1 vields
the spherical methods,

The arc-length condition (8.5) involves n-+ 1 unknowns (n for "+l Au and one
more for the sealar "t Aa), which need to be computed from the n equilibrinm
eguations

fil™la)— M= fi("us "HAw) - ("f + "HAxf)=0  (86)

together with the additional condition (8.5).

Riks, [22], and Wempner, [EQL snggest to obtain those i 4 1 variables by using
an extended Taylor development., So, we begin by computing a prediction 4l A
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to " Aa and also a prediction "t Aul to "t Au. For this purpose, we need to
solve the Newton set of n linear equations

”a.',.an l’l'i"laul = "-q-lAfl - "+l|f_\lf.\'l f,'.il (8'?)

where we hiave tiow a total of n 4+ 1 unknowns, If we define 4 new vector "t [Au']'r
through the expression

nHl A = el Al "ﬂA“.'l": (8.8)
then equation (8.7) can be rewritten n terms of " Ay s
nrHKﬂ ”+|Aw;- = fii (8.9)

where the 7 subindex stands for total load. The ave-length condition (8.5) ean
be now applied to the prediction "1 Au! yielding

\/(”"'IAu] 7'onkl Aul 4 ¢ (?;-rrlaul‘)z (fe)rl' f.= Al
or also, using " Aug rather than "t Au! and aveiding square roots,

(" aa)? [ aup)” " Aup + e (FOT £ = (A0 (8.10)

The sequence of computations will consist of:
1. Compute ”'HAHT by solving (8.9).
2, Obtain the value of " Aol from (8.10) as

nFlApt = 4 (8.11)

The choiee of the sign in (8,11) will be discussed later on.

After ""'l.ﬁuf;-- and "HAq! a prediction n+l Au! to the displacements can be
abtained from (8.8).
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We cun now update displacements

nMuI = My "'HAul (8.12)
and also external forees, computing first the new value of the load level,

nHal = Mg o+ A (8.13)

where "o is such that "f = "o f,. After "Hal iy obtained from (8.13), the
updated load " £l is obtained as

n+1f'l _ n-l—lwl £ (8.14)
In general, (""‘1111,”"*" fl) will not be an ncﬂuilihrium point, Therefore, we will

need to iterate on u, and also on w since "t Aa s not preseribed a priori, until
convergence is achieved,

In a general iteration, we look for a displacement correction vector L guk 1 guch
that
(" 1y ke I) p r(n-Huk b gkl ) = 0. (8.15)
Unider the a.rr‘.-]ongth formulation, and (h'r:)l')pil':g n + 1 left superscripts, (8.15)
yields L | _
K(uk) 6t = —p(uf) + 80kt f,, (8.16)
where K¥ can be any iteration matrix depending on the method that is used and

the term 8! f, accounts for the variation of external load due to the iterative
correction of the load level a.

Equation (8.16) can be inverted symbollically to give the following expression
for 6“‘{'“

sult! = (Kb~ (—r(uf)) + sat (KWh) T £ (8.17)
If two vectors suft! and Jui:f..‘"l are now defined as
st = (K@) (—r(u)) (8:48)

sult! = (K@)~ £, (8.19)
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then equation (8.17) can be rewritlen into

Syt — g ¥ Skt 61&:‘;”- (8.20)

The arc-length condition must then be imposed. We are going to demand
for points (un__fu) . (u"""l,f'{""l) to keep the same distance Al all through the
iterations. Consegquently, the are-length restriction will be expressed as

(At tIT AukH! e (A2 (£ 0T £, = (A1, (8.21)
Recalling that Auf ! = Auk + Sukt!, whete the ave-length eondition 18 verified
for Au®, and using (8.20); equation (8.21) can be manipulated to yield the
following quadratic equation on ekt [8,9,10},

ap (80t gy st fay =0, (8.22)

with @y, ay, ag being the three scalar values given by

ay = (Suyt ) bult! ¢ (F) fo (8.23)
ay =2 (Auk + 8aF )T gubt - Aak e (F)7F, (8.24)
ag =2 (Aukv]ff' 6ﬁfc+l T (Sﬁk+1)’1' Sﬁk-i-l (8.25)

The sequence of computations can be arranged as follows:

1. Compute Sik'“ hy solving
K(u") ga*t! = —p(u) (8.26)

(qvquivulmn; to equation (8.18)),

2. Compute Juf‘l'-#l by solving
K(uk) sulbt! = 5, (8.27)

{equivalent to equation (8.19)].
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3. Compute the values of ay, a9, ag from (8.23), (8.24) and (8.25).
4. Solve equation (8.22). Here, two cases are possible:

If no real values are obtained, that is, if equation (8.22) has two conjugate
complex roots, the process will stop®,

If two real values are obtained, one of them® will be used to compute ukt!

from (8.20).

Finally, we can updatu the load-level parameter, and also displacements and

forces, as
aftl = ot + skt

N 8

fk-&-l =.fk =K ﬁn,kvl-l fﬂ i f.l!k+| ft‘.“

Additional considerations on the are-length procedure

1. Choosing the sign of the prediction " Aol

As indicated in [13], the natural choice for the sign of "+ Aa! s
i (”+Iﬂﬂ’} = sign ((‘”ﬁh.u)’fI "+Iﬁu*f'),
Writing this scalar product as
("Aw)" " Aup = " Au] " Burll cos(" Aut! Aug)

we have that

* Parther considerations on this situstion will be made later on,
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s An acute angle between the previous inevement of displacement "Au and
”Hﬂ.uqﬂ will foree us to inerense the load level

s whereas an obtuse angle ("Aw." ! Aup) will yield a negative value of "1 Aq !
and thus a decrense of the load level.

2. Choosing the appropriate root nH gkl

Let us assume that the quadratie equation
ay ("1 8a T ay "HloaH fay =0

u+16ﬁ€r+l and n+15mg+1

has two real roots . We will denote the nssociated

correction vectors respectively ns ”+15uf+1 and "t ’5“54'1-

To choose between these two roots, and since we want to continue to move in
the same direction as in the previons iteration, we demand for the angle defined
by vectors ] Au and "M Aubt! to be acute. This means that we need to build
the two vectors

N N T AL .

We will take the correction “'"l{'ir.vf*l that gives a positive value of the scalar
product i T

=1 AT ke ] o

("= u™) Auit .

If both sealar produets have the same sign, we will choose, [ﬁ], the load-level

correction “'"'1(’5{1',?'“ that resembles the most Lo the solution é.t.l'ﬁ;l;] = —ay/ay to
the lincarised version of the quadratic equation, ag ntlgaktl gy =0,

3. What to do when complex roots are obtained

When complex values of the roots are obtained, the algorithm will fail. Some
anthory, however, detect this situation and foree the are length Al to decrease;
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in this way, an additionul computational effort is required as we need to go back
to the previous iteration, but in return the algonithm does not stop.

Nevertheless, this situation (presence of complex roots) 13 not likely to happen
if an automatic update of the are length is performed.

4. Automatic update of the arc length

Since an appropriste value of the are length Al is unknown a priori, it 15 not
advisable in general to choose a random value for it and keep this value all the
way through to the end of the problem. Besides, this appropriate value may differ
{rom one step to the next,

Crisfield, [10], sugpests a recomputation of Al at the beginning of each
inerement following the expression

N,
AL L R (8.28)
Nr:.fd alils

Alpew =
where Al 18 the are length that we have used in the previous increment, N,y
is the total number of iterations that have been needed before convergence and
Nopt 18 the desired number of iterations. In this way, if Noyd = Nopt, the arc
length will be inereased. If, on the contrary, the previous increment has required
a number of iterations Ny = Nopt, the are length will be made smaller.

Alternative updates have been suggested. In (2], the expression

Alpew = § i (8.29)

ig emploved and compared to Crisfield’s update, equation (8.28).
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A general formulation of the arc-length method that includes load
and displacement control

Let us recall the ave-lengtli condition in its original form
(Aw)T Au + ¢ (Aa)? (F)T £, = (AD (8.30)

As indicated in [13], equation (8.30) can be generalised by introducing an -
dimensional diagonal matrix P as follows

(Au)T P Au+ ¢ (Aa)? (f) fo=(AD* (8.31)

[ this way, most solution strategies can be obtained by defining an adequate P
matrix in (8.31).

s The uriyimf Crisfield—Ramm, mw:-fr:ﬂ.yth. methed is recovered using P = I
ndeed, this choice of matrix P turns us back to equation (8.30).

s To pﬂﬁ)”n a lowd control, we only need to get P to a zero matrix and nssign

s A di.!pfcbct’:wmm'. sontral on the m-th (lugrtet? of freedom u,, will be assaciated
to the fn!lnwiug; defini 1.i|1;.:n of P:

Pii=bp, i=1,...;n

In this case, we also need to set ¢ to zero.

o Finally, a general arc-length method can be produced that takes into account
only some specified components of u; this 15 accomplished by setting to zero the
rest of the associated diagonal terms of matrix P,
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8.3 Flowcharts for procedures ANONLIN and
AINCREME. Programming continuation methods
in Castem

Procedures ANONLIN and AINCREME

To introduece are-length techniques in Castem, two procedures, ANONLIN and
AINCREME, have been developed, These two procedures play equivalent roles
to NONLIN and INCREME, see Section 3.3, for the load control strategy.

The main differences between the ovigiual and the *A" (Arc-length) versions is
that the total external load, which is simply u[,}dnl'.t:d in NONLIN. needs to be
actually computed in AINCREME, together with displacement vectors, for the
arc-length version.

Figures 8.5 and 8.6 give the flowcharts associated to procedures ANONLIN and
AINCREME. It is interesting to remark that now no list of load steps is given
as an input to ANONLIN, This means that a coutrol on the load level must be
performed; for instance, if f, is taken as total maximum load, the condition

g =1

will foree the overall computations to stop.
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i

ond general options, geomelry, material,

model, boundary conditions and
e lnng;t]l.

Seln =10

Ciall AINCREME, which computes
“'l'IAu'. "'J"l.ﬁ‘u, Ii-}-l&f‘ ”-HAE, n-{-lAﬂ

Update
L[5 - Moy + u-|~nl¢n.
n-*l-lu = Pyt n-l—lAu
IH-]f = 'Hj _1_ ”‘I'Iﬁf
nhle = Ng g NHIAL
ity = gy 14l AL

/Suv‘t'f rt-:::anlbe-:/

NO
Assign n=n+ 1 bl =1

YES

STOP

Figure 8.5: Flowchart for procedure ANONLIN,
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Load information from ANONLIN

k=0, maxiter

BEHIU'| ]t.u':]'n of Herations

Compute stiffness matrix

rl-I-l'K#

|. Salve the linear set

R n¥lgdt = f
,

161

(::Dl',l'lpllt.t-." 1} l'.k = fl'(" .*-1,“15) =

T lfk

Solve the linear set " H gk nklgah+l

-1 r&-

Figure 8.6: Flowchart for procedure AINCREME,
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!

i C;pmpi.ltt:
ay = (Su?:l--l )'r réjﬂ-'{!-r-i-l +e (fr.)l ft.'
ay =2 (Auk 4 gut+1y! 5“'_’?‘ + Aok (fa)* £s
ay = 2 (Auk)T SatH 4 (gakt )T gkt

Solve the quadratic equation
ay (5(?’”"“]2 + a9 saktl 4 ay =0

NO Compute
STOP R ) Qe — Al
VO Aup)T o4 Auge ()7 f,
YES
CDI'I][JHM?

ikl g k4l . nblgakdl o ondlg ket uwi-lsulfﬂ

Compute "“HaAul = #Hlaq! ”'*"lﬁu-li.

Update
?I-l-'lAﬂ,k‘-l--l — T ]A”_;‘\' + n.}.](gnlj',v.i I
nbl Agh+l = wkl Ak fo ML gy k]

n-l--lAka A u'HAJri'+ netl g o kel £

comptite elastic " gak-+

Figure 8.6: Flowchart for procedure AINCREME (contimied),
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i1+ |A££‘ 1 ”-HAE‘: + H+IJE$‘-I ]

(THI'L\’ETJ.'.E;L‘I‘ICL' Ci)“l:l'ﬂl:
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NO
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Figure 8.6: Flowchart for procedure AINCREME (continued).



164 B Arc-length methods

Interpretation of the arc-length procedure in a Lagrange-mmltiplier
context

When working with Castem, the number of unknowns increases sitce we have to
deal with extended vectors U, R,

A ressonable generalisation of the are-length condition (8.30) consists of using
several seale parameters ey, o, ¢, so that all vectors, b (imposed displacements),
f. (external loads) and A/p (Lagrange multipliers) are taken into consideration,
The enlarged version of eguation ('-8.30) then reads

(Aw)T Au+ (Aa)? [q,( be) b + ¢ ((f ) fot ¢4 (gA.\)'f'm + (o) 'Ap,)] N

As for the rest of the are-length procedure, we will need to translate the equations
in Section 8.2 into their enlarged version. This means, in particular, that both
forces (-fc ) and preseribed displacements (b)) will be updated. We are going to
nge ¢/ = 0, sinee numerical tests have shown no improvement otherwise,

For instance, the prediction Aal will be obtained from

Al
\/ﬁ'}'IAUT')T' AU + e (be)! b 4 cf (fs )T e

LR L A (8.32)

where """]AUq' is the solution of the linear set
JV AUy = B, (8.33)
[t equation (8.33), a new veetor F. hiag been defined as
fe
Fﬁ — bw
b,

Ve ) =kl eofe
For & generic iteration b + 1, two augmented vectors 6U” ° aud SUf}T“ are

ohtained by solving
JE s — _ Rty (8.34)
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JE sUkH = P,

The three coeflicients ay, ay, ay can then be computed from

ay = (UK SUEM -y (be) b+ op (£ f

ay = 2 (AU* + 80T sUktt 4 Aok (e (6)"b + ¢ (£0) )

ay = 2 (AURYT 0™+ 4 (50" T 80"

After solving the quadratic equation (8.22), we compute

and HAnally update

spktl _ H}HI 4 Bkt wg;ﬂ

o

k1 _ ok § Akt

U&"l'll = U-‘.‘ 4 5U1'+|

i - (f

k41
6k+1
bk-l'-]

X

Lk'
bk

ke

) + baitt B,
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8.4 Various numerical examples involving snap-
through and snap-back

Example TRUSS

Wi consider first the truss example deseribed in Figure 4.2, As it was already
indicated in Section 4.4, this test results in an unreallistic load /deflection curve
when analysed through 10 increments of load AW = 60,

If we switch on to an are-length strategy, we see that this 18 actually a case
of snap-through. Figure 8.7 shows the real nondimensional load/deflaction curve
for this example. This eurve hag been obtained using o eylindrieal are-length
formulation, thus with ¢, = cp = cp = An automatic control is performed
using Crisfield's formula (8.28) with a desived number of iterations per increment

N,,Pg = i, WIEALL/E14
i} 40 T T T T
b, 20 L
-,
.18
9,00
TSE
Wi
o, 30 i i i = e
[ ] d. A 1410 1 S 200 1

Figure 8,7: Truss test, are-length formulation. Load vs, vertical
displacement.
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Example SHALLOW ARCH

In this case, we study the shallow arch represented in Figure 8.8, [6,19]. This
arch has a rectangular section and 15 made of an elastic material. The structure
is (:ln_mpnd at both ends and is Hubjm_'t toa central load F, A lal‘gﬁ—stl‘ﬂ.‘m analysis
of one half of the structure ig performed using 10 beam elements, A spherical
formulation with ¢ = ¢y = 1,¢/ = 0 has been employed. An mitomatic eontrol
(8.28) is also used in this case with Ny = 4.

Figure 8.9 shows the load/deflection curve corresponding to the centre point.
As it ean be seon from the figure, this is also a case of snap-through.

In Figure 8.10, the load is plotted vs. the horizontal reaction H.

(=863.6 10" m b=25.4 107 m
h=27.69 10" m e=4.7625 10" m
= b —-l
O v s 74

£=7.2305 10° N/mi
pm()

Figure 8.8: Shallow arch test.
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3
il e T = T T T T T T
ui |
18 |
ind |
LTI ¥
v
i i i i i 1 i S T— i =
"] R 14 156 20 1 i 1§ i i e L]

Figure 8.9: Shallow arch test. Load vs,
cenfre point.

vertical deflection al

abi T

Al

T

104d

50 L

1} i — b

xBoe o 500 o0 g
Figure 8.10: Shallow areh test, Load vs,

I
—ee 1}

LS00 4000
horizontal reaction,
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Example SHELL*

For this example, we recover the presentation of the shell test, see Figure 8.11.
In this case, we keep all the geometric and mechame parameters but we load the
structure with an eccentric force PP (hence the *), that is, we use r # 0. We are
going to name the value ecc = /0.9 eceentricity of the load,

Figure 8,12 shows the value of the load v, the deflection of the central node for
an eecentricity ece = 0.42. This curve has been obtained by using a cylindrical
are-length formulation. The discretization consists of 14 axisymmetrical elements.
An automatic update of the avc length is performed using equation (8.28).

In Figute 8 13, the load is plotted vs. the vertical deflection of the leaded node.
As it ean be seen from the figure, this curve has an initial steep slope and a
snap-back tendency,

t=0.015Y6 in

0.08588 in

E |
0.9 in || 0.9 in l
|_ i ) P | -

R=4.758 in
~ E=10 x10° In/irt
v=0.23
Figure B.11: Shell* test,

If we continue to load the structure with increasingly eccentric forees, we obtain
the eurves in Figures 814, 815, 8.16 and 817 (note that different scales are
used). These figures show the total load vs. the deflection of the loaded node,
corresponding to eccentricities

Figure 8.14 : ecc = 0.50, Figure 8.15 : ecc = 0.60
Figure 8.16 : ece = 0.70, Figure B.17 : ece = 0.80
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Figure B.12: Shell® test, eccentricity 042, Load va, vertical
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deflection of central node,
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Figure 8.13: Shell® test, eccentricity 0,42, Load vs. vertical

deflection of loaded node.
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0n,on LI (] . Ui ning 0.0k Hed@ 0.1z
Figure 8.14: Shell® test, cccentricity 0,50, Load vs, vertical
deflection of loaded node.

T
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i G080 0.8%  bo@% W .08 6 B8 B0 D.ON D.06 010
Figure B.15: Shell* test, eccentricity 0.60. Load vs. vertical
deflection of ltmdcd nodle,
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Figure 8.16: Shell* test, eccentricity 0.70. Load vs. vertical
deflection of loaded node.
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Figure 8.17: Shell* test, eccentricity 0.80. Load vs. vertical
deflection of loaded node.
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Example SHALLOW DOME

To end with the sef of arc-length examples, the following test is studied, A truse
structure in the shape of a shallow dome is loaded with a central foree, [2,17].
This structure is made of an elastic material and it is pinned at the ground level,
see Figure 818,

This is a highly nonlnear example with several equilibrium paths. A technique
to detect all the patha is discussed in [17)],

For o eylindrical formulation and the usual option for the automatic control of
the arc length, the promary path, [2], hias been obtained, Figure 8.19,

The detection of bifurcation peoints is beyond the scope of this work. However,
other equilibrium paths can be traced by modifying manually the resolution
strategy, see Figure 8,20, The idea that was used here consists of the following
gteps:

s Find a feature F that differentiates the chosen path from the others, for
inatance, two points that have symmetrical deflections for this ease and not for
the rest of the paths.

o Solve a new problem to which F has been introduced ns an additional
boundary condition,
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COORDINATES OF THE NODE POINTS OF DOME STRUCTURE

Node X Y z
i 0.0 0.0 6.0
3 -15.0 25.9807 4.5
4 -30.0 0.0 4.5
g 0.0 0.0 0.0
10 ~30.0 51.9615 0.0
11 =51.9615 30,0 0.0
12 ~60.0 0.0 0.0

A;=0.1 in"

Nodes 1 Lo 7 are free
Nodes 8 lo 19 are pinned

E=30 10°tb/m
=0

Figure 8.18: Shallow dome test.
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178 Cancluding remarks

computational efficiency of the algorithms, in terms of computing time, has not
been affected by the object-oriented context, where information is stored and
manipulated in a different manner from conventional codes,

Specific Quasi-Newton and Secant-Newton algorithms have been developed
to solve nonlinear sets of equations with linear constraints. Their numerieal
performance has been compared to that of classical methods, with eneouraging
results,  Beyond the context of nonlinear structural analysis of this work,
these algm"{tllma might be extended to other fields such ag linearly constrained
optimization.
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