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SUMMARY

Classical Residual type error estimators approximate the error flux around the elements and yield
upper bounds of the exact (or reference) error. Lower bounds of the error are also needed in goal
oriented adaptivity and for bounds on functional outputs. This work introduces a simple and cheap
strategy to recover a lower bound estimate from standard upper bound estimates. This lower bound
may be also used to assess the effectivity of the former estimate and to improve it. Copyright © 2000
John Wiley & Sons, Ltd.

KEY WORDS: implicit residual type error estimator, upper and lower bounds, quality assessment

1. INTRODUCTION

Implicit residual type error estimators require to set proper boundary conditions for the local
(usually element by element) error equations. If these boundary conditions are of Neumann
type [1, 2] the obtained estimates are upper bounds of the error. The error estimators based
on the error in the constitutive relation introduced by Ladeveze [3, 4] may also be classified in
this group and also overestimate the error. The selection of the flux on the interelement edges
may use either a trivial flux averaging [1] or a more sophisticated recovering technique yielding
equilibrated residuals [2, 3].The equilibrated residual strategies are expected to furnish more
realistic boundary conditions for the local problems and, consequently, to yield better error
estimates.

On the other hand, residual type error estimators using Dirichlet boundary conditions in the
local error equations [5, 6] yield lower bounds of the error. Basically, the lower bound property
is induced by the continuity of the obtained estimate.
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2 P. DIEZ, N. PARES AND A. HUERTA

The comparison of these two approaches suggest the idea of postprocessing residual type
error estimators yielding upper bound, enforcing continuity and obtaining a lower bound of
the error with a small supplementary effort.

The idea of obtaining a couple of upper and lower bound estimates at the same time is also
suggested by the goal oriented adaptive strategies [7, 8]. Indeed, these strategies require both
a lower and an upper bound of the error in the standard energy norm to assess the error in an
output of interest.

The approach presented here is based on the postprocessing of the upper bound estimate
€est, Which is discontinuous. The postprocessing introduces a correction eco, such that the
corrected error distribution, econt := €est + €cor, 1S continuous. Thus, the correction ecor must
compensate the discontinuities of eqst. Then, a lower bound is computed straightforward using
€est and ecor.

The remainder of the paper is structured as follows. The model problem is stated in section
2. Section 3 is devoted to introduce the local and global versions of error equation, and the
reference error. In section 4, the residual type error estimators approximating the local flux are
described. The upper bound property of this kind of estimators is easily proved. Attention is
paid to the solvability problems of the pure diffusion case. Then, in section 5, the estimate eqg;
yielding an upper bound is corrected to enforce its continuity and a lower bound is recovered.
Also at this point, some additional effort must be done to deal with the pure diffusion case,
where the original estimate is locally determined up to a constant. These local constants do
not affect the norm of eest but do condition e.o, and, consequently, in order to have an optimal
correction, it is worthy to select them properly. Numerical examples demonstrating the good
behavior of the proposed strategy are shown in section 6.

2. STATEMENT OF THE PROBLEM

2.1. Model problem

Let us consider the following linear Neumann boundary value problem in an open, bounded
domain Q C R?

-V - (aVu)+bu = s in
} 1)

aVu-n = g, on 0f)
In order to simplify the presentation, the boundary conditions are assumed to be only of
Neumann type. Accounting for Dirichlet or mixed boundary conditions does not introduce
any additional conceptual difficulty. Moreover, in order to ensure ellipticity, it is assumed that
0<a<a(z)<a
0<b<b(x)<b

for some a, @, b and b.
The weak form of this problem reads: find u € H! () such that

a(u,v):/svdﬂ+/ gyvdl, Yve H'(Q) (2)
Q aQ
where
a (u,v) := / (aVu - Vv + buw) dQ
Q
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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RECOVERING LOWER BOUNDS OF THE ERROR 3

and H! (Q2) stands for the standard Sobolev space.
The Galerkin finite element method provides an approximation up to u, lying in a finite-
dimensional space V, C H' () and verifying

a(up,v) = /;svdﬂ—i—/mglvvdf, Yv € V. (3)

The finite-dimensional space V}, is associated with a finite element mesh of characteristic size
h. The degree of the complete polynomials used in the interpolation of V}, is denoted by p.
The geometric support of the elements of this mesh are open subdomains denoted by (2,
k = 1,...,0e1en. It is assumed that Q = Uﬂk (the mesh covers the whole domain) and

QN Q = O for k # 1 (different elements have in common, at most, part of their boundary).

The goal of a posteriori error estimation is to assess the accuracy of the approximate solution
up, that is, to evaluate and measure the error, e := u — up, or an approximation to it. The
error is measured using some functional norm. One of the most popular options is the energy
norm induced by a (-, -) :

1
llell == [a(e,e)]>. (4)
Local restrictions of the norm are needed to describe the spatial distribution of the error. In the
following, the restriction of a (-,-) to the element Qj (k = 1,...,ne1en) is denoted by ag (-, ).
Thus, the restriction of ||-|| to Qx, ||-||x, is induced by ay, (+,-). In order to describe the spatial
distribution of the error, the value of ||e||; in each element is estimated.

2.2. Error equations and Reference error

The global equation for the error is recovered from Eq. (2), replacing u by uy + e:

a(e,v) = /stdQ—#/anNvdI‘—a(uh,v) =R (), YveH (Q). (5)

The r.h.s. term of Eq. (5), R (v), is the weak residual associated with the approximate solution
Up.

The local counterpart of Eq. (5) is derived integrating the weighted residual of the strong
form, Eq. (1), in 4. It reads,

ar (e,v) = Ry, (v)+/ aVu-nvdl , VYve H" (Q) (6)
92,NQ
where Ry, (v) is the restriction of R (v) to Q:

Ry (v) ::/ sde+/ gy vdl — ay (up,v) . (7)
QU 89,n09

Note that the last term of the r.h.s. of Eq. (6) accounts for the unknown flux on the interelement
edges. In other words, the boundary conditions of the local problem are not known.

The error is estimated approximating the solution of the local error equation (6). The
characterization of any residual type error estimator requires to select both:

e the finite dimensional space where the local error equation is solved (local h or p-
refinement) and

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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4 P. DIEZ, N. PARES AND A. HUERTA

e the unknown boundary conditions for the local problems.

The first point is related with the concept of reference error. Residual a posteriori error
estimation techniques are based on assessing and bounding the reference error and not the
error itself. For all practical purposes, the exact value of the error, e, is replaced by a reference
(or “truth”) error, erf, lying in a finite-dimensional space much refined with respect to the
computational space V. Let us denote by V™ this refined space. V™ is generated either as a
h or p-refinement of V}. That is, denoting by h and  the characteristic element size and the
degree of interpolation of the elements generating V™, either h < h or > p holds.
Thus, the reference error, e.os € V™, verifies the discrete form of Eq. (5), that is

a (eref,v) = R(v), Yoe V™, (8)

The direct computation of ef is computationally unaffordable because it requires to solve a
system of equations with the number of degrees of freedom equal to the dimension of Vf.

Remark 1. The “error in the estimation of the error” associated with the introduction of
this reference space is not important and may be easily controlled using standard convergence
results. For instance, it may be shown [6] that when V' is generated using h-refinement, (that
is, h < h and p = p) the following approzimation holds

_\ 2p71/2
h
lleree|l ~ {1 - <E> llell. 9)

Consequently, forp=1 and h = %h the (norm of ) reference error is 97% of the exact error.
A similar result holds for p-refinement. A priori error estimates describing the behavior of
the finite element solution along a p-refinement process are introduced in [18] and read:

llell < C(h,m)p' " [ullm, (10)

where m accounts for the degree of regularity of the solution u and || - || stands for the norm
associated with H™ (Q). Using this result, Richardson extrapolation yields

_\ 2(1—m)7] /2
||eref||:[1—<§) ] el (1)

It is worth noting that the basic assumption in the derivation of Eq. (11) is that the constant
C(h,m) in the error bounds does not vary from p to p. This assumption applies when m is small
but not when m is large. Thus, although the solution u is C* the value of m in Eq. (11) cannot
be arbitrarily large. Nevertheless, taking m = 3 and going from p =1 to p = 2, Eq. (11) yields
||eret|| = 0.97||e||, which indicates that replacing e by eer is an enough accurate approzimation.

Consequently, both h and p-refinements give a reference solution close enough to the ezact
solution.

Then, the fact of using a reference error (that is, replacing the continuous space H' (Q) by
the refined space V™, and the exact error e by the reference error e..f) does not introduce a
significant loss of accuracy in the error estimation procedure. Consequently, the quality of a
residual type error estimation procedure depends essentially on the approximation of the local
boundary conditions.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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RECOVERING LOWER BOUNDS OF THE ERROR 5

3. STANDARD RESIDUAL TYPE ERROR ESTIMATES

Standard residual type error estimators [1, 2, 3] solve the local error equation (6) using
approximated Neumann boundary conditions. The values of the flux aVu-n|annQ, see
Eq. (6), are determined or approximated along the boundary of each element 2. This section
is devoted to briefly describe this kind of estimators and to recall the proof of their upper
bound property.

3.1. Approzimation of fluzes

The approximation of the flux is based on smoothing the approximate flux aVuy - n, which
is discontinuous. The basic idea due to Bank and Weiser [1] is to average the approximate
flux on every interelement edge. Let T';,, for m = 1,...,n;ns, be the interelement edges of the
mesh. That is, for every m € {1,...,ninc} they exist k,l € {1,...,n¢1en}, k£ # [, such that
T = QN Q. Then

1
aVu|Fm ~ [aVup], = 3 (aVuh|aQI + aVuhlan) form=1,...,04n, (12)

where [-] , stands for the average on I';;,,. The approximation given in Eq. (12) is used in Eq. (6).

More sophisticated flux averaging procedures are used by other authors [2, 3] in order to
obtain equilibrated local problems. They improve the efficiency of the estimator. Here, the
simplest averaging is used for illustration purposes. In fact, the following developments are
also valid for these approaches: it suffices to use a more complicated definition for the average
[aVuh]A.

3.2. Discrete local residual equation

Thus, the error estimate ees; is computed locally by solving the following problem: find
€est € Vkref such that

o (cots0) =Ri @)+ [ [aVurlyomodl, Vo€V (13)
OQLNQ

where V®f is the restriction of V™ to Qy, that is
Vih:={ve H' () /T e V™, v=1 }. (14)

Eq. (13) is the discrete version of Eq. (6) using the approximation given by Eq. (12).

Note that the sum of the spaces V;*f is not equal to V. In fact, Vi, := @ Vel is a space

k

of “broken” functions. In order to recover V™ it is necessary to restrict the space forcing the
continuity: V't = Vref N CO.

A global equation for the error estimate eest is found summing up Eq. (13) for all k
(k = 1, e 8 ,nelem),

Ning

0 (osnt) =R (@) + Y / [@Vusl, - [on], dT, Vo€ Ve, (15)
T'm

m=1

where [v n]; stands for the jump of v n across I',,, = Qr Ny, that is,
[v n]J = (U|Qk) ng + (Uln,) L (16)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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6 P. DIEZ, N. PARES AND A. HUERTA

being ny = —n; the corresponding outward normal unit vectors. The recovered flux, see
section 3.1, is said to be consistent if the approximation of the flux is continuous, i.e. if the
approximation of aVu| is the same viewed from ) and from €. In order to derive Eq. (15)
it is necessary that the recovered fluxes are consistent.

Furthermore, if the test functions are continuous, i.e. if v is in V™ C Ve | then [vn]; =0
and from Eq. (15) one gets

a (eest;v) = R (v), Vo€ V™ where still eo; € Vi, (17)

In other words, if the consistency condition is satisfied, the interelement edges are not a source
of flux in the global error equation (for v continuous). In the following, some properties of the
estimate eesy are derived replacing v in Eq. (17) by particular functions in Ve,
Remark 2. In Eq. (15), the definition of a(-,-) must be generalized to accept “broken”
functions in the arguments. Thus, for v,w € Ve

Nelen

a(w,v) = Z ay, (w,v). (18)

k=1
Of course, this generalized definition coincides with the standard one when the arguments are
in H' (Q).

3.3. Upper bound property

The consistency condition implies that the error estimates computed using Eq. (13) are upper
bounds of the reference error. Although this is a well known property of this kind of estimators,
the corresponding theorem is revisited and proved here because it is important in the following.

Theorem 1. The error estimate eesy computed solving Eq. (13) yields an upper bound of the
error, that is

Eupp = [[eest||* > [leret]|*. (19)
Proof. Taking v = ey in Egs.(17) and (8) it follows that
a (eesta €ref) = @ (eref, eref) . (20)

Then, the proof is completed by the following algebraic manipulation.
=a (eref, eref)

—f—
0<a (eref — €esty Eref — eest) =a (eref, eref) +a (eest, eest) -2 a (eest: eref)
=a (eest; eest) —a (eref, eref) 0
Remark 3. It is worth noting that the upper bound eypp is defined in Eq. (19) as the squared
norm of the error estimate. This is because the use of squared norms simplifies the presentation.
Thus, in the following, the estimates of the squared error norms, approzimations of ||ecet||?,
are denoted by €.

Remark 4. In the general case, ees is not continuous (it is in V<L but not in V'f). Thus,
in general, it is not possible to take v = ees, in Eq. (17). However, if a particular choice of the
boundary conditions of the local problems leads to a continuous estimate ees;, then it can be
easily shown that a (€est,€est) < @ (€ret,€re) and, consequently, a (eest,€est) = @ (Eref,eref)-
That 1is, the choice of the Neumann boundary conditions giving a continuous estimate is
optimal.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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RECOVERING LOWER BOUNDS OF THE ERROR 7

3.4. Solvability problems when b =0

If the reaction term vanishes in Eq. (1) (b = 0), the solvability of the local Neumann problem,
Eq. (13), requires proper data ensuring equilibrium. It i swell known that if the source term s
(body load) is not equilibrated by the prescribed boundary flux, the Neumann problem does
not have any solution. Locally (in element ), the equilibrium condition reads

/ sdf) + / gydl + / [aVup] 4 - ndl = 0. (21)
Qe 89,90 89,NQ

The simple averaging described in Eq. (12) does not enforce the equilibrium condition.

Two different strategies may be used in order to ensure the solvability of the local problems.
A first option is to use approximation of fluxes yielding equilibrated local problems.

The second strategy is to restrict the set of admissible functions in the local problem
eliminating from the local interpolation space the kernel of the Lh.s. of Eq. (13). In fact
the second and third estimators introduced by Bank and Weiser in [1] use this strategy. These
estimators are used in the numerical examples and are they denoted by ey and es respectively.

Remark 5. The description of these estimators requires to introduce the hierarchical
decomposition of V', Vel = Vj, @ V™ where VO™ is the hierarchical complement of Vj,
in V', The space VO™ contains the functions v of V' such that the degrees of freedom
(nodal values) of v corresponding to Vi, are null. Typically, for p-refinement, the functions of
veom gre of the bubble type. Then, for all v € V', Iy € Vi and Weom € VO™ such that
v = Up + Veom. Thus, the nodal projection from V't to Vi, T : V' — V}, is defined such that
Z(v) = vp,.
The second estimator, e is then computed as the solution of the following local problem:

ay, (e2,v) =Ry, (v —Z(v)) + /m . [@aVup] 4 -1 (v—Z(v)) dT, Vv € Vet (22)

where the restriction of ey to Qi is in VIt and, therefore, the global ey is in V&,

The third estimator, es3, is locally computed as the solution of

ay, (e3,v) = Ry, (v) + / [aVup], -novdl, VYuve VPom, (23)
N0
where the local restriction of Vo™, V€™ must be understood in the same sense as in Eq. (14).
It is worth noting that es is an upper bound for the reference error but es is not. Indeed,
summing up the local Eq. (22) on k one gets a global equation for es where v ranges on V', and
the same rationale given for ees, see theorem 1, can be followed to deduce that ||ea|| > ||eret]|-
On the contrary, in the global equation corresponding to Eq. (23), v ranges on Vio%. The
upper bound property cannot be deduced in this case because V't ¢ VoM. However, in the
asymptotic range, that is for h small enough, numerical evidence shows that es behaves also
as an upper bound.

4. CORRECTION AND LOWER BOUND RECOVERING

In the previous section, see remark 4, it has been noted that the overestimation of the error
is associated with the continuity defaults of the estimate ecs;. In fact, it has been observed

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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8 P. DIEZ, N. PARES AND A. HUERTA

that if the flux splitting is such that ees is continuous, then the estimate ees; is optimal. Thus,
the idea developed in this section is to introduce a correction of the error estimate in order
to enforce its continuity. This correction allows to deduce a lower bound of the reference (and
exact) error and, hence, to assess the effectivity of the original error estimate.

4.1. Correction and lower bound

Recall that eesy € Vi, that is ees is, in general, not continuous. Let ecor € VI be a
correction of eqs such that
€cont = €est + €cor € I/mfa (24)

that is, such that the corrected error ecqnt is continuous.
Given a corrected estimate econt, & parametric family of lower bound estimates is found.

Theorem 2. Let ecst be an error estimate verifying the hypothesis of Theorem 1 and, therefore,
being an upper bound of the reference error. Let eqony be a corrected estimate as described in
Eq. (24). Then, for any scalar A € R, the ezpression

Elow(/\) = 2\a (eest7 econt) - /\2”6cont||2 (25)
s a lower bound of the reference error norm , that is,
Elow(’\) < ||eref”2- (26)

Proof. Since econt is continuous, it is possible to replace v by econt in Eqs.(17) and (8). That
is,

a (eest; econt) =a (erefa econt) . (27)
Then, using Eq. (27), the inequality (26) is proved considering the following algebraic
manipulation:

0<a (e'ef — Aecont) €ref — )‘eCOUt) =a (6r8f7 eref) + Xa (econta econt) —2\a (erefy econt)
= ||eref||2 + AzllecontHZ - 2)a (eest> econt)
= “eref“2 — €low(A) [ |

Thus, once the corrected estimate econs is obtained, a lower bound of the error is recovered
computing €jow (A), for any value of X\. The natural choice, A = 1, see [14, 15, 10], results in

Elow(l) =2a (eest)econt) - ”econt”2 = “eest”2 - Hecor”2; (28)

which in practice only requires the extra computation of ||ecor||-
However, the optimal choice for A is the value that maximizes the lower bound ey (A). It
is obvious from Eq. (25) that this optimal value is

a (eesta econt) (29)

A =
opt llecont||?

Consequently, given an upper bound estimate eegs;, the optimal lower bound associated with a
corrected estimate econt 1S

2
t a (eest econt)
e i= Elow (Aopt) = — — (30)
llecontl
This is, in fact, the expression adopted in [11].
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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Figure 1. Classification and denomination of the interpolation functions in Vel . The functions

affecting the boundaries, both associated with corners (left) and edges (center) are responsible of

the continuity. The interior bubble functions (right) do not affect the continuity and they are set in
order to obtain the sharper lower bound &gy

Remark 6. Both &/>" and €10, (1) are ezact if the recovering technique to obtain the corrected
estimate econt 45 optimal. Indeed, if the corrected estimate coincides with the reference error,

that is econy = eref, then

ep = Elow(1) = [levet||.

Thus, both the lower bounds given by Egs.(28) and (80) are sharp provided that the
determination of the corrected estimate egony is accurate. In fact, the strategy used to obtain
€cont 18 ortented to enforce econt X Eref.

Obviously, given econt, the estimate 6?(5’3 is sharper than oy (1). Consequently, once egont is
determined, sﬁﬁ: is used to evaluate the lower bound. Nevertheless, in order to set a criterion
for the determination of ecop¢, the expression of €low (1), Eq. (28), is preferred to the expression

of ef?* Eq. (30). This is detailed in the next section.

low?

4.2. Determination of the corrected estimate econt

The correction eco, and, consequently, the corrected estimate econt and the corresponding lower
bound E;)OP:‘E are not unique. Any function econt € V'f produces a lower bound efgf,. However,
as noted in remark 6, in order to obtain a sharp lower bound e.o,; must be selected in order to
fairly approximate eer. Assuming that ees; is a proper approximation of e.ef but in a broken
space, a natural choice is to take the average of the estimated error along the interelement

edges.

In order to formalize this averaging, the following decomposition of the local reference
interpolation space VI is considered:

Vkref — V'kcorner ® V;dge ® kaubble7 (31)

where V;PUPble js the subspace containing the bubble functions (vanishing on 09y), V298
contains the functions having non zero values in the boundary and vanishing in the corner
nodes of element €, and V™" accounts for the degrees of freedom associated with the
corner nodes, see figure 1 for an illustration. This local decomposition induces the definition

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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Figure 3. Averaging of the degrees of freedom associated with the corners

of the following global spaces:

corner . corner corner .__ y/corner ref
‘/brok T ? Vk Vv = ‘/brok nv
edge — edge edge _ 1redge ref
I/brok T ? Vk Ve *— Vbrok nv
bubble ._ bubble
| = ? Vi

Note that VPubble does not have a “broken” version because the bubble functions do not
introduce discontinuities along the edges. Thus, V{'ef,
£
‘/bl're°k — VCO!‘IIEI‘

and V' are decomposed as
brok

P %iiie P Vbubble and eref — |/corner q V'edge ® Vbubble,

(32)
Consequently, the estimate ees; is uniquely represented by the following decomposition

e edge
e _ ecorn T e g ebubble,
Copyright © 2000 John Wiley & SOHS, Ltd.
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RECOVERING LOWER BOUNDS OF THE ERROR 11

d d . .
where eforner g jcomer o8¢ ¢ 11°°E¢ and ebubble ¢ ybubble and e..ny € V' is uniquely
decomposed as

__ _corner edge bubble
€cont = €cont + €cont + €cont (34)

d o .
where eS9rer g yeorner o208 ¢ Jredge ang gbubble ¢ rbubble The determination of econ requires
d
to set the proper values for eSorher eS08° and ebubble,
Following remark 6, econt, is determined starting from eest and such that econs is likely a good

approximation to eyef. The application transforming eest in econt is denoted by M:

i ref ref
M: Ve -V
€est *  €cont:

Thus, to characterize the smoothing operator M it is sufficient to describe econt as a function
: corner edge bubble Q corner edge bubble $
of €est, that is eSort®, eqone and e’ ¢ as functions of eSy™®", eoe and ey " ¢. Indeed, M is
described by the way it maps eest into econt- Thus, in order to characterize M it suffices to
pe _ : edge bubble
define the decomposition of the econt = M (eest), that is eSorter, eg & and e2UbPe) in terms of
the original estimate ees; or its decomposition.
In order to enforce continuity, the “corner” and “edge” components are smoothed
. . - d d .
independently, that is eSohe" = M (eSome") and egsy = M(egee®). As already mentioned, the
simplest option is to average the discontinuous values. In a 2-D framework, every interelement

edge I';, (m =1,...,n,) is shared by two elements, say I';, = Qi N and, therefore
) + Cest

L 1 edge
r,, L 9 <eest N Q ) (35)

see figure 2 for illustration. The same strategy is adopted for the corner points. The contribution
of the interpolation functions associated with the corner points, e{ni®" is computed averaging
the values of the discontinuous function eSyi™®" in each corner point. That results in an
expression similar to Eq. (35) where, for every corner point, the number of values to average
is equal to the number of elements to which the corner point belongs. This is illustrated in
figure 3.

Once e and e295° are set it is necessary to find the value of ¢Pubble

that the choice for ebibP!¢ does not affect the continuity of econt. The value of e

selected such that the obtained estimate is as sharp as possible.

Recall that, once econs is determined, the sharper lower bound is 5;?‘5, see Eq. (30). Then,

edge
cont

edge

. It is worth noting

bubble ;
ouo2'€ is therefore

the first idea is to select e22bP'® such that, given eSomer and eZ98¢, it maximizes e2F¢. However,
this criterion leads to a nonlinear global (referred to the whole domain) equation which is

difficult to solve. On the contrary, finding e24bP!¢ such that €0y (1), see Eq. (28), is maximum

leads to a simple linear local (element by element) equation. This is stated in the following
theorem:

Theorem 3. Let eest be an error estimate verifying the hypothesis of Theorem 1 and, therefore,

: d
being an upper bound of the reference error. Let econt = €SSMNeT + eccBr + ePubble pe g corrected

. d 5 s
estimate. Assume that eSS and ecoS; are obtained by averaging. Then, the value of eBibble

mazimizing €iow (1) s such that

@ (cbam™®,v) = a (ot — elome — ctofe,v) Vv € VPRl (36)
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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12 P. DIEZ, N. PARES AND A. HUERTA

Proof. Recall that 1oy (1) = ||€est||? — ||€cont — €est||?, therefore maximize €10y (1) is equivalent
to minimize

_ bubble corner edge
”econt - eest” - ||econt - (eeSt — €cont econt)”'
The problem is reformulated as: find e2ubPle € J/bubble gych that [|ebubble — (eqq; — eSorner — e%SES)H
is mi{)lirmllm. Obviously, the solution of this problem is the projection of ees; — €SOrRer — o8¢
on Vbubble which satisfies Eq. (36). [ |

Thus, taking ebubP!e as the solution of Eq. (36) completes the determination of M. Note that,

cont
in this case, econt depends on the “corner” and “edge” components of eest.

. N d .

Remark 7. The smoothing operator M is linear because eSS, ecc®¢ and ePUPP'e are linear
: corner edge bubble ,' opt

functions of esoi™", eqst and eqsy " . Moreover, the quality of the lower bound €}, depends

on the ability of M to approzimate the reference error eer. Note this quality depends only on
the averaging on the boundaries. It suffices that econt coincides with eer on the interelement

. 4 d . o
boundaries (i.e. for eSSner + eoo8) to obtain an ezact error assessment. That is if

econtlpm = ereflrm for everym =1,... nine,
then econt = €ret and, consequently (see remark 6),

5?0;13 = elow(1) = ||eref”2-

4.8. Computational aspects

The selection of the optimal value of e24bP!e is performed solving Eq. (36). These computations

can be done locally, element by element, because the bubble spaces are orthogonal (the supports
of the bubbles are disjoint). Thus, once ™" and €295 are computed by simple averaging,

the restriction of ePubble to ), ebubble| g computed solving the local version of Eq. (36):
cont » €cont” |, g

bubble _ corner edge bubble
Ak (econt |Qk ’U) = Ok (eGSt — €cont econmv) ’ Vv € Vk : (37)

Eq. (37) results in a small system of linear equations that must be solved to compute
egg,?tblﬂm. The number of equations for each local problem is equal to the number of “bubble”
degrees of freedom in the reference discretization. For example, for lagrangian quadrilateral
elements, this number is equal to (1 — 5)?, being p the degree of the polynomials used to

generate Vref,

4.4. Assessment of the effectivity index and average estimate

Once the lower bound of the error is computed, the effectivity index of the original estimate
||eest|| may be easily assessed. Let et be the effectivity index associated with eest,

o lleest |l
Mest - ||eref|| . (38)
The upper bound property ensures 7es; > 1. Nevertheless 7.5t may be very large and it is not
possible, in the general case, to assess the quality of the estimate. Using the lower bound €y
of the error, an upper bound of the effectivity index 57 is easily computed:

lleestll
Ti= TS =2 e (39)
V/Elow
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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RECOVERING LOWER BOUNDS OF THE ERROR 13

This pessimistic value of the effectivity index is sharp when the lower bound error estimate
Elow 18 sharp.

Once the upper and the lower bounds of the error, eypp = ||€est||? and €low, are available the
average estimate is introduced

1
Eave ‘= 5(5upp + Elow)- (40)
Remark 8. As noted in remark 3, the estimates e, represent approzimations to the squared

norms of the error. The average of the squared norms is larger than the simple averaging of

the norms, that is,
2

1 1
5(5upp =f 510\v) > 5(\/5upp + Elow)

The behavior of this average estimate is analyzed in the examples presented in section 6

5. FITTING LOCAL ARBITRARY CONSTANTS FOR b =0
If b = 0 in Eq. (1) (pure diffusion, no reaction) ees; is locally determined up to a constant
because

“eest”k - |leest+ck”k k= 1;-‘-:ne1em- (41)

DNelen
Then, the estimate ees¢ may be replaced by eest + Y crpdr without changing the upper bound

k=1
Eupp, being {@1, d2,. .., ¢n,..} the basis of the space of piecewise constant functions. That is,
for k= 1,...;Dsien;
1 ifx ey
o (x) = : : (42)
0 ifx¢&Qy

The upper bound estimate eypp is independent of the constants ci. Nevertheless, the choice
of the constants c; affects drastically the value of the corrected error, econt. Moreover, the
correction strategy is expected to work properly only if the average values of ees; are close to
eref, See remark 6. If the constants are set arbitrarily, the value of the correction cannot be
expected to be optimal.

Consequently, the constants cx, & = 1,...,De1en, are taken as unknowns and they are
determined such that the resulting lower bound is somehow optimal. Let ¢ = [e; ... cq,,,,]
be the vector of unknown constants. The corrected estimate econy may be seen as a function
of c:

Baelc) = M (eest + Z:n Ck¢k> = M (€est) + iCkM (or) - (43)
k=1 k=1

It is clear from Eq. (43) that, due to the linearity of M, econt(c) is linear. Both the lower
bounds €jow (1) and sﬁﬁi depend on c through econt. The criterion used to select ¢ is obviously
to maximize the lower bound. The maximization of Ef’o‘ﬁ is the more natural option because
eﬁis is the sharper error bound. Nevertheless, similarly to the previous section, finding ¢ that
optimizes E;)O;if, requires to solve a nonlinear problem. On the contrary, to find ¢ such that
€low (1) is maximum leads to a simple linear problem. Thus, the criterion for determining c is
based on maximizing €10y (1) rather than sf’cﬁs.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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14 P. DIEZ, N. PARES AND A. HUERTA

Figure 4. Construction of M (¢r) (right) from ¢, (left). The function in the center accounts only for
the “corner” and “edge” terms, before adding the “bubble” term that affects only the interior of the
elements. Note that the influence of using the proper “bubble” contribution is very important.

The dependence of €)1y (1) on c is written by introducing Eq. (43) in Eq. (28) and replacing

DNelen

€est DY €est + Z cror:
k=1

Nelen

Clow(1) = leest + 3 crdill? = lleest + 3 e — M (eest) — 3 M (i) ckl|?
k=1 k=1 k=1

DNelen (44)
||eest||2 - “eest -M (eest) - kzl M (‘bk) Ck||2'

Then, to maximize €5y (1) is equivalent to minimize the function F'(c) defined by
Nelen

F(c) := |leest — M (eest) — Y M (¢x) cl|-

k=1

The coefficients ¢, that minimize F(c) are obtained imposing that Z M (¢r) ¢ is the

projection of eesy — M (eest) On the space generated by the functions M (¢k) fork=1...n¢1en
(that is, the image by M of the space of piecewise constant functions). Figure 4 illustrates the
shape of the functions M (¢y) and their construction from ¢y,.

Thus, the equation to be satisfied by the coefficients ¢y, is

Nelen

cha M ($1)) = a (eest — M (eest) , M (¢1)), forl=1,... Neten. (45)

That is, ¢ is computed as the solution of a linear nejen X Ne1em system of equations.
Once the coefficients ¢ are computed, the corresponding corrected estimate econt is
introduced in the expression of slow to obtain the sharper error lower bound.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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M (eest)
(76% of eref)

€est

(123% of eref)

<$

Nelen

€est + 2 Cror
k=1

(123% of eyer)
- -~
M

4

Nelen
M (6951; + E Ck¢k> Eref

k=1
(83% of eref)

(A
Y

Figure 5. Illustration of the constant fitting process : the raw estimate eest with arbitrary constants

is smoothed into M (eest) (top), the smoothed version of the estimate corrected with the optimal

constants is much more similar to the reference error (bottom): in the example the underestimation
is improved from 76% (without constant fitting) to 83%.

Numerical experiments demonstrate that the correction obtained with this strategy yields
sharp lower bound estimates because the obtained correction econt iS a much better
approximation to ey, see figure 5. On the contrary, the correction for the standard estimate
(i.e. with arbitrary constants) yields lower bound estimates of poor quality.

It is worth noting that the constants c; are determined solving the global system of equations
(45). Thus, adding these constants to the original estimate ees; accounts for the influence of
the whole domain in the local errors. Consequently, the estimate econy using this information
may be used to assess the pollution errors, that is, the errors affecting each zone of the domain
coming from far from its close neighborhood.

6. NUMERICAL EXAMPLES

We study in this section the behavior of the postprocessing estimate presented above. The
examples selected are such that the analytical exact solution is known and they have been
used by other authors to assess the performance of similar techniques [1, 11]. The quality of
the error estimates is measured using the index p

estimated error

P~ exact (or reference) error

that is, the effectivity index minus one. The use of p is preferred because the sign of p indicates if
the estimate is an upper or a lower bound (positive if upper, negative if lower) and the absolute
value indicates the quality of the estimate (good quality if |p| small). In the following, the value
of p corresponding to every estimate is denoted with the same subscript, that is,

JE

Ex
Px = 777 — 1)
" el

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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16 P. DIEZ, N. PARES AND A. HUERTA

Figure 6. Examples 1 and 2: exact solution

where the subscript % takes the vales “upp”, “low” and “ave”. The superscript C for piow, pl(f)w,
is used to denote the correction obtained with the determination of elementwise constants
introduced in section 5. Moreover, we also use the version p* corresponding to the assessed
effectivity index n* (p* := 7T — 1), see Eq. (39).

As noted in section 3.4, the second and third estimators introduced in [1], denoted by e
and es3 respectively, are used as the original upper bound estimates eest. In the examples, the
performance of these estimates is analyzed throughout the values of pypp.

6.1. Ezample 1

In the first example the reaction-diffusion equation is solved, a = 1 and b =1 in Eq. (1). The
problem is defined in the squared domain Q = (0,1) x (0,1). The boundary conditions are
set to be Dirichlet homogeneous (that is u = 0) on '), := {(z,0);0 < 2 < 1} and Neumann
homogeneous (that is 3—’; = 0) elsewhere on 9. The source term s is taken such that the exact
solution has the following analytical expression:

see figure 6.1 for a representation. The second example described in this section is stated such
that the solution u is exactly the same.

The approximate solution u, is computed using a bilinear interpolation (p = 1) whereas the
error estimates e; and es are computed using a bicubic interpolation (p = 3).

The proposed approach is used to recover new estimates in two sequences of increasingly
refined meshes. In the first series of meshes the refinement is uniform, in the second one the

22(1 - $)2610$2y2(1 —y)2e'%, (46)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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Table I. Example 1: results in a series of uniformly h-refined meshes

17

estimate es estimate es
dof ||5.]||| I'lﬁ_ruelfl‘”‘ p+ Pupp Plow Pave ,0+ Pupp Plow Pave
36 .8469  .7726 3453 1589 -.1386 .0210 | .2713 .0544 -.1706 -.0514
121 4331 .4036 2428 1221 -.0971 .0184 | .2116 .0569 -.1277 -.0310
441 .3083 3064 | .3258 .2132 -.0849 .0745 | .2737 .1706 -.0809 .0524
1681 .2093 .2092 2578 1831 -.0594 .0688 | .1843 .1263 -.0489 .0424
6561 .1144 .1144 | .1129 .0845 -.0255 .0310 | .0691 .0498 -.0181 .0164
150 150
—— pupp = pupp
140} -e- Py Il 140} -0 Py

80 .

g

dof

10°

80

dof

Figure 7. Example 1: performance of the estimates following a uniform h-refinement process for the
estimates ey (left) and es (right)

Table II. Example 1: results in a series of adaptively h-refined meshes

estimate ea estimate e3
dof ||||Zl||| lﬁ% P+ Pupp Plow Pave ,0+ Pupp Plow Pave
36 .8469  .7726 | .3453 .1589 -.1386 .0210 | .2713 .0544 -.1706 -.0514
2560 .0798 .0798 | .0822 .0645 -.0164 .0248 | .0517 .0354 -.0155 .0103
2905 .0478 .0478 | .1263 .1136 -.0113 .0530 | .1129 .0622 -.0456 .0098
3574 .0433 .0433 | .1279 1152 -.0113 .0539 | .1108 .0614 -.0445 .0098

refinement follows an adaptive strategy based on the error assessment [16].
The results concerning the uniformly refined meshes are summarized in table I and figure 7.
In a similar manner, the results concerning the adaptively refined meshes are summarized

in table II and figure 8. The sequence of adapted meshes is shown in figure 9.
It is worth noting in tables I and II that the difference between the exact error (in this case

is known) and the reference error is negligible for accurate enough meshes. As expected, the

values of pypp are indeed positive and the values of pjoy negative. The value of p* is greater
than pypp. Note that pt is computed without any information on the exact (or reference)

Copyright © 2000 John Wiley & Sons, Ltd.
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e
q 06—
100 100 - P
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90} 90¢ e
J R
- -
%0 . , %0 ; i
10 10° 10° 10°
dof dof

Figure 8. Example 1: performance of the estimates following an adaptive h-refinement process for the
estimates ez (left) and es (right)

Figure 9. Example 1: Sequence of adapted meshes with 36, 2550, 2950 and 3574 dof.

solution but it furnishes a good approximation of the exact effectivity index. Moreover, for
most of the meshes (except for the coarsest) the value of the corrected estimate €4y is better
than the original estimate eypp (|p1ow| < |pupp|), that results on paye > 0.

As expected, the adaptive procedure optimizes the computational resources and yields lower
error with less degrees of freedom. However, the adapted meshes have distorted elements, see
figure 9, and the quality of the estimates e; and ej3 is slightly degraded in adapted meshes, see
figure 8. The proposed lower bound corrects this behavior in the case of the estimate ey but
not in the case of e3. In this example, the average e, performs very well in the sense that
behaves as a new estimate, mostly a new upper bound, much more reliable than the original
one.

The effect of varying the degree of interpolation in the reference space (p) is investigated
for one of the meshes (the second mesh of the adaptive process, with 2550 dof) and for the
estimate e;. We are interested in assessing the influence of p in the error estimate and the
corresponding corrections. The results are shown in figure 10. Note that the effectivity of the
original estimate, eest is not improved by using a larger . On the contrary, the larger values of p
are associated with the poorer quality estimates. Nevertheless, the quality of the postprocessed
lower bounds is not so sensitive to the variations of p and their quality does not depend on p.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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Figure 10. Example

©
5

1: performance of the estimators and using different degrees of interpolation in

the reference space (p)

Table III. Example 2: results in a series of uniformly h-refined meshes

estimate es
dof % “ﬁr:ﬁ - P+ Pupp Plow Pgw Pave
36 8483  .7737 | .2729 1571 -.1177 -.0909 .0405
121 4342 4046 | .2059 .1217 -.0838 -.0698 .0304
441 3091 .3072 | .2220 .2131 -.0461 -.0073 .1084
1681 .2099 .2098 | .1844 .1831 -.0321 -.0011 .0949
6561 .1148 .1148 | .0849 .0845 -.0148 -.0003 .0430

Table IV. Example 2: results in a series of adaptively h-refined meshes

estimate eo
dof b Wt | ot pupp plow Pl Pave
36 8483 7737 | 2729 1571 -.1177  -.0909 .0405
2561 .0785 .0785 | .0593 .0586 -.0112 -.0007 .0294
2918 .0482 .0482 | .1216 .1186 -.0077 -.0027 .0596
3628 .0432 .0432 | .1038 .1008 -.0070 -.0027 .0503

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng 2000; 00:1-6



20 P. DIEZ, N. PARES AND A. HUERTA

) IR - -
A e iy
| -0 pLuw
e plnw
] . Dyve
-g- Pt
‘ ' 70 ) |
10* 10° N )
, dof

Figure 11. Example 2: performance of the estimates following a uniform (left) and an adaptive (right)
h-refinement process for the estimate es

Figure 12. Example 2: sequence of adapted meshes with 36, 2561, 2918 and 3628 dof.

6.2. Example 2

Now, we consider the Poisson equation, @ = 1 and b = 0 in Eq. (1). The domain and the
boundary conditions are exactly the same as in the previous example. The source term s is
taken such that the exact solution is also the same, see Eq. (46). In this example we only study
the application of the developed postprocessing strategy to the e; estimate.

Again, the proposed strategy is used in a series of uniformly and adaptively h-refined
meshes. The results for the uniformly refined meshes are summarized in table III and figure 11.
Figure 12 shows a sequence of adapted meshes and table IV with figure 11 describe the behavior
of the different estimates. The notation pgw is introduced to denote the correction introduced
in section 5. As expected, the value of pgw is much better than the value of pjoyw.

The influence of p n the different estimates is shown in figure 13. These results correspond to
the second mesh of the adaptive process, with 2561 dof. Once again, due to the phenomenon
described in the previous example, increasing p does not result in a better effectivity index
for the upper bound estimate. Nevertheless,the lower bound estimate econt With the constant
element by element correction (measured by pgw) is roughly independent of p and much better
compared to the original estimate.
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Figure 13. Example 2: performance of the estimators and using different degrees of interpolation in
the reference space (p)

Figure 14. Example 3: adapted meshes for k =1 (left) kK = 3 (center) and k = 4 (right)

Table V. Example 3, k = 1: results in a series of adaptively h-refined meshes

estimate es

dof Hi|||| ”ﬁU” l ,0+ Pupp Plow pgw Pave
69 .0397 .0397 | .3788 .3730 -.0109 -.0042 .1993
1637 .0069 .0069 1250 .1224 -.0052 -.0022 .0619
3938 .0044 .0044 | .1925 .1849 -.0109 -.0064 .0934
4668 .0040 .0040 20561 .1992  -.0092 -.0048 .1019
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Table VI. Example 3, k = 3: results in a series of adaptively h-refined meshes

estimate es

dof % ”Tlrjﬁ” P+ Pupp Plow ﬂgw Pave
169 .0298 .0294 | 1.0167 .6153 -.2412 -.1991 .2749
580 .0139 .0138 .7023 3618  -.2468 -.2001 .1168
1436 .0078 .0077 .4700 3375 -.1211  -.0901  .1438
3795 .0047  .0047 .3860 3242 -.0626 -.0446 .1546
65685 .0036 .0035 .3407 2861 -.0615 -.0407 .1345

Table VII. Example 3, k = 4: results in a series of adaptively h-refined meshes

estimate es

dof Hz“ “ﬁr:ﬁ - P+ Pupp Plow Pl%w Pave

220 1310 .1200 | .4449 .1384 -.2960 -.2121 -.0211
372 .05687 .0548 | .4858 .2090 -.2626 -.1863 .0304
723 .0312 .0297 | .5364 .2418 -.2603 -.1917  .0477
3297 .0126 .0122 | .4800 .2293 -.2346 -.1694 .0491
6859 .0077 .0076 | .4154 .2440 -.1790 -.1211 .0770

200

180

1404

120

80,

Figure 15. Example 3: performance of the estimates following an adaptive h-refinement for £k = 1
(left), & = 3 (center) and k = 4 (right)

6.3. Ezample 3

This example was introduced in [1]. We consider the Laplace equation, a = 1, b = 0 and
= 0 in Eq. (1). As in the previous example, only the ey estimate is used with the proposed
postprocessing strategy.
The domain (2 is defined by @ = {(r,6) : 0<r <1, 0 <8 < kr/4} where r and 6 are the
polar coordinates and the analytical solution is

u(r,0) = r*/* sin (i—") . (47)

That is, 2 is a circular sector and k is a parameter that sets both the size of the domain and
the regularity of the solution. In the following we consider the cases k =1, k =3 and k = 4.
Dirichlet boundary conditions are imposed along § = 0 and Neumann boundary conditions are
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Figure 16. Example 3: Histogram representing the occurrences of the local effectivity index for es (left)
and for the proposed strategy (right)

forced on the rest of the boundary. The boundary conditions are such that the exact solution
is the analytical expression given in Eq. (47).

For each one of the values of k, the error assessment is performed for a sequence of adapted
meshes. Figure 14 shows examples of adapted meshes for each value of k.

The results are shown in tables V, VI and VII for k = 1,3 and 4 respectively and also in
figure 15. It is worth noting that using the constant fitting (the difference between pgw and
Plow, see figure 15) is relevant specially for k = 4, that is, when the singularity pollutes the
error estimate based only on local computations.

In order to analyze the spatial distribution of the estimated error, figure 16 shows the
histograms describing the occurrences of the values of local (element by element) effectivity
indices for both the estimated error and the lower estimate. The example corresponds to the
second mesh obtained for k¥ = 1 (with 1637 dof). An almost uniform distribution is obtained
since the values are close to 100%. As expected, the second Bank and Weiser estimator e,
produces local estimates which overestimate almost everywhere the exact error. The local
corrected estimates, as expected, underestimate the exact error. The bound property for the
global error is then reproduced locally in most elements.

7. CONCLUDING REMARKS

A simple postprocessing strategy has been presented to recover lower bound estimates from
standard residual estimators producing upper bounds of the error. The main idea is to smooth
the discontinuous estimate eest and to obtain a continuous approximation ecqnt to the reference
error epef. A lower bound of the error is computed using econg.

For the pure diffusion problem (when the reaction term in the PDE vanishes) the estimate
eest is determined up to a local (element by element) constant. In order to improve the
postprocessing in this situation the local arbitrary constants are found such that the sharpest
lower bound is obtained.
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Numerical experiments show that the proposed strategy furnishes sharp lower estimates, of
tter quality than the original upper ones.
The presented strategy may be used in the framework of error estimation for outputs of

interest, where upper and lower bounds of the energy error measure are required.
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