
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2004; 20:639–646 (DOI: 10.1002/cnm.695)

Dynamic deactivation for advection-dominated
contaminant transport

Rainald L�ohner∗;† and Fernando Camelli

School of Computational Sciences; MS 4C7; George Mason University; Fairfax; VA 22030-4444; U.S.A.

SUMMARY

A simple dynamic deactivation procedure for advection-dominated contaminant transport is presented.
The key idea is to avoid any work in regions where the solution cannot change, i.e. where sources vanish
and unknowns do not exhibit any spatial change. Saving factors in CPU of 1:3–1:10 are commonly
achieved. The procedure is general and simple to implement, and should be applicable to a large number
of codes and transport=dispersion problems. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: contaminant transport; advection–di�usion; �nite elements; CFD

1. INTRODUCTION

The intentional or unintentional release of hazardous materials can lead to devastating conse-
quences. In order to prepare e�ective countermeasures, place sensors or legislate, it is impera-
tive to know the maximum possible damage a release in a certain region can have. Given the
many possible boundary conditions (wind direction, atmospheric conditions, humidity, temper-
ature of building walls, emissions of heat exchangers, etc.), a large number of simulations are
required [1–6]. Typically, �ow�elds are precomputed and stored. Di�erent release scenarios
(locations, type of release, etc.) are then simulated for these pre-stored �ow�elds. While the
calculation of the (incompressible) �ow�elds can consume days or weeks of supercomputer
time, each one of the release scenarios can be computed in a matter of minutes or hours
on present-day PC platforms. This should come as no surprise, given that �ow�elds require
�ve unknowns at each gridpoint (pressure, velocities, temperature), as well as the solution of
the pressure-Poisson system, whereas the release scenario only requires one unknown at each
gridpoint (concentration), and no sti� implicit system needs to be solved each time step.

∗Correspondence to: R. L�ohner, School of Computational Sciences, MS 4C7, George Mason University, Fairfax,
VA 22030-4444, U.S.A.

†E-mail: rlohner@gmu.edu

Contract=grant sponsor: DTRA

Received 22 August 2003
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted 11 February 2004

640 R. L �OHNER AND F. CAMELLI

Taking into account that a change in concentration can only occur in regions where con-
centration changes spatially and sources are present opens the possibility of speeding up the
release calculations. The key idea is to update only those regions where concentration changes
spatially and sources are present, avoiding unnecessary work in the rest of the �eld. This last
possibility has been explored here, achieving speed-ups of 1:3–1:10 for realistic cases.
The remainder of the paper is organized as follows: after describing the partial di�erential

equations (PDEs) used, the basic elements of the solver are given. The deactivation criteria
are then de�ned. Numerical examples and timings follow. Finally, some conclusions are drawn
and possible future work is outlined.

2. BASIC ELEMENTS OF SOLVER

Any contaminant transport or release simulation solves the classic advection–di�usion equation

c; t + v · ∇c=∇k∇c+ S (1)

Here c; v; k denote the concentration, velocity and di�usivity of the medium, S the source-
term, and c; t the derivative of c with respect to time. The (in most cases unsteady) velocity
�eld v is assumed to be divergence free (∇ · v = 0) and precomputed, i.e. given as an input.
The spatial discretization of the computational domain is performed with tetrahedral elements.
Denoting by N i the shape-function of point i, the Galerkin weighted residual method for
Equation (1) results in

M · c; t +A · c=−K · c+ S (2)

with

M=
∫
N iN j d�; A=

∫
N iv · ∇Nj d�; K=

∫
∇N ik∇Nj d�; S=

∫
N iS d� (3)

In most instances, the Galerkin weighted residual method will not yield (physically correct)
monotone results for advection-dominated cases. A number of schemes have been devised
to replace the ‘Galerkin �uxes’ by the so-called ‘numerically consistent �uxes’. Upwinding
[7–9], anisotropic balancing dissipation [10, 11] and �ux-corrected transport (FCT) [12, 13]
are examples of such schemes. In what follows, it is irrelevant which one of these schemes
is chosen.
Given that one is interested in high temporal �delity, and that the di�usive terms are

typically very small, explicit time-integration schemes are used for Equation (2). Without loss
of generality, consider the following m-stage Runge–Kutta scheme to go from time step n to
n+ 1:

M · c i= r i=M · c0 + �i�t(S− (A+K) · ci−1); i=1; m (4)

where, c0 = cn, �i=1=(m + 1 − i) and cn+1 = cm. The bulk of the CPU requirements for a
scheme of this kind is in the evaluation of the right-hand sides r i. These required matrix–
vector multiplications can be performed in a variety of ways. The simplest is by performing
loops over the elements, evaluating all matrix–vector products at the element level [14–16].

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

DYNAMIC DEACTIVATION FOR CONTAMINANT TRANSPORT 641

A more e�cient way to accomplish this for low-order elements can be achieved by switching
to an edge-based data structure [16]. Finally, one can also store the matrices in some optimized
way (e.g. via sparse matrix format), and perform the matrix–vector products directly [14, 15].

3. DEACTIVATION

Consider again the advection–di�usion equation given by Equation (1). A change in c can
only occur in those regions where

|S|¿0; |∇c|¿0 (5)

For the typical contaminant transport problem, the extent of the regions where |S|¿0 is very
small. In most of the regions that lie upwind of a source, |∇c|=0. This implies that in a
considerable portion of the computational domain no contaminant will be present, i.e. c=0.
The basic idea of deactivation is to identify the regions where no change in c can occur, and
to avoid unnecessary work in them.
The marking of deactive regions is accomplished in two loops over the elements. The

�rst loop identi�es in which elements sources are active, i.e. where |S|¿0. The second
loop identi�es in which elements a change in the values of the unknowns occurs, i.e. where
max(cel) − min(cel)¿�u, with �u a preset, very small tolerance. Once these active elements
have been identi�ed, they are surrounded by additional layers of elements which are also
marked as active. This ‘safety’ ring is added so that changes in neighbouring elements can
occur, and so that the test for deactivation does not have to be performed at every time step.
Typically, 4–5 layers of elements are added. From the list of active elements, the list of
active points is obtained. The addition of elements to form the ‘safety’ ring can be done in a
variety of ways. If the list of elements surrounding elements or elements surrounding points
is available, only local operations are required to add new elements. If these lists are not
present, one can simply perform loops over the elements, marking points, until the number
of ‘safety layers’ has been reached. In either case, it is found that the cost of these marking
operations is small compared to the advancement of the transport equation. Depending on
how one performs the evaluation of right-hand sides, the lists of active elements and points
are used as follows:

• If the matrix–vector products are evaluated at the element level, computation is only
performed for the active elements, and the RHS of the inactive points is set to zero.

• If the matrix–vector products are evaluated at the edge level, computation is only per-
formed for the active edges, and the RHS of the inactive points is set to zero.

• If the matrix–vector products are evaluated using sparse matrix–vector multiplication,
computation is only performed for the rows and columns of active points, and the RHS
of the inactive points is set to zero.

Further gains in speed can be obtained by renumbering points and elements=edges in the
predominant direction of the �ow. The active points=elements=edges will then be grouped in
a more compact form. This avoids a large portion of the unnecessary IF-tests for inactive
points=elements=edges. In the present study this form of renumbering was not invoked.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

642 R. L �OHNER AND F. CAMELLI

4. EXAMPLES AND TIMINGS

The deactivation option was tested on several examples, of which two are included here. The
results for the runs with and without deactivation are indistinguishable, so that no degradation
in �delity takes place. The examples are meant to illustrate the gains in performance one can
realistically achieve. The particular code used (FEFLO), has repeatedly been benchmarked and
compared to experiments [5, 6], and is routinely used for production runs. The (incompressible)
�ow�elds were precalculated using a projection scheme with implicit treatment of viscosity
and pressure, and an explicit multistage prediction of the advective terms [17]. These �ow�elds
were stored and read in for the dispersion calculation.

4.1. Building complex

The �rst example considers dispersion of pollutants from a continuous source around a series
of buildings. The geometry, as well as the boundary conditions, are shown in Figure 1(a).
A logarithmic wind pro�le with mean velocity of v=2 m=s at a height of h=10 m was
assumed, the vertical distribution of the velocity given by u=(u∗=�) ln (z=z0), where u∗ is the
friction velocity, �=0:4 is the von Karman constant, z is the vertical height and z0 = 0:001 is
the roughness coe�cient. For turbulence, the Smagorinsky model with Law of the Wall was
employed.
The spatial discretization of the domain consisted of approximately 160Kpts and 835Kels.

A detail of the surface mesh is shown in Figure 1(b). The resulting velocity �eld at the
surface is shown in Figure 1(c). For the dispersion simulation, the �ow was assumed steady,
and a 5-stage Runge–Kutta scheme was used with a Courant-nr. of C=1:0. The dispersion
calculation was run for 200 s of real time on a PC with the following characteristics: Intel-P4
chip running at 2:2GHz, 1Gbyte of RAM, Linux operating system, Intel compiler. Figure 1(d)
shows the resulting iso-surface of concentration for time t=200 s at a level of u=0:01. Note
that at this time the cloud of dispersed material has lifted from the ground, greatly reducing
the possible lethality. It is for this reason that a time of t=200 s was deemed su�cient for
the simulation.
Deactivation checks were performed every �ve time steps. The tolerance for deactivation

was set to �u=10−3. With this tolerance, towards the end of the run approximately a third
of the elements were active. This is re�ected in the timings: the usual run (i.e. without
deactivation) took T =808 s, whereas the run with deactivation took T =275 s, i.e. a saving
of 1:2.94.

4.2. Subway station

The second example considers the dispersion of an instantaneous release in the side platform
of a generic subway station. The geometry is shown in Figure 2(a).
A time-dependent in�ow is applied on one of the end sides:

v(t)= b(t − 60)3e−a(t−60) + v0
where b=0:46 m=s, a=0:5 s−1, and v0 = 0:4 m=s. This in�ow velocity corresponds approxi-
mately to the velocities measured at a New York City subway station [18]. As before, the
Smagorinsky model with Law of the Wall was used for this example. The volume grid had

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

DYNAMIC DEACTIVATION FOR CONTAMINANT TRANSPORT 643

Figure 1. (a, b) Problem de�nition and detail of surface mesh; and (c, d) surface velocities
and iso-surface of concentration.

730 Kels and 144 Kpts. The dispersion simulation was performed using a three-stage Runge–
Kutta scheme with a Courant-nr. of C=0:6. The dispersion calculation was run for 485 s
of real time (corresponding to the time of a train entering, halting, exiting the station and
the time for the next train) on a workstation with the following characteristics: Dec Al-
pha chip running at 0:67 GHz, 4 Gbyte of RAM, Linux operating system, Compaq compiler.
Figures 2(b)–(e) show the resulting iso-surface of concentration level c=0:0001, as well as
the surface velocities for time t=485 s. Note the transient nature of the �ow�eld, which is
re�ected in the presence of many vortices.
Deactivation checks were performed every �ve time steps. The tolerance for deactivation

was set to �u=10−3. The usual run (i.e. without deactivation) took T =5; 296 s, whereas the
run with deactivation took T =526 s, i.e. a saving in excess of 1:10. This large reduction
in computing time was due to two factors: the elements with the most constraining time
step are located at the entry and exit sections, and the concentration cloud only reaches this

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

644 R. L �OHNER AND F. CAMELLI

150 m

18 m 6 m

10 m

Wind Direction

Source Location

(a)

(b) (c)

(d) (e)

Figure 2. (a) Problem de�nition; (b, c) iso-surface of concentration c=0:0001;
and (d, e) surface velocities.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

DYNAMIC DEACTIVATION FOR CONTAMINANT TRANSPORT 645

zone very late in the run (or not at all); furthermore, as this is an instantaneous release, the
region of elements where concentration is present in meaningful values is always very small
as compared to the overall domain.

5. CONCLUSIONS AND OUTLOOK

A simple dynamic deactivation procedure for advection-dominated contaminant transport has
been presented. The key idea is to perform computational work only where necessary, avoiding
any work in regions where sources vanish and unknowns do not exhibit any spatial change.
Saving factors in CPU of 1:3–1:10 are commonly achieved. Two typical examples runs have
been included.
The procedure is general and simple to implement, and should be applicable to a large

number of codes and and transport=dispersion problems. Dynamic deactivation works partic-
ularly well for scalar processors, such as those encountered in PCs or workstations. Given
that a large number of parameter scoping and genetic algorithm calculations are currently
being o�oaded to processors of this kind, reductions in computing time of 1:3–1:10 represent
signi�cant savings.

ACKNOWLEDGEMENTS

This work was partially supported by DTRA under the auspices of CAMP.

REFERENCES

1. Hanna SR, Briggs GA, Hosker RP. Handbook on atmospheric di�sion. NOAA DOE=TIC-11223, 1982.
2. Stern AC, Boudel RW, Turner DB, Fox DL. Fundamentals of Air Pollution. Academic Press: New York, 1984.
3. Arya SP. Introduction to Micrometeorology. Academic Press: New York, 1998.
4. Arya SP. Air Pollution Meteorology and Dispersion. Oxford University Press: Oxford, 1999.
5. Camelli F, L�ohner R. Flow and dispersion around buildings: an application with FEFLO. Proceedings of
ECCOMAS 2000 Conference, Barcelona, Spain, September, 2000.

6. Hanna SR, Tehranian S, Carissimo B, Macdonald RW, L�ohner R. Comparisons of model simulations with
observations of mean �ow and turbulence within simple obstacle arrays. Atmospheric Environment 2002;
36:5067–5079.

7. van Leer B. Towards the ultimate conservative scheme. II. Monotonicity and conservation combined in a second
order scheme. Journal of Computational Physics 1974; 14:361–370.

8. Sweby PK. High resolution schemes using �ux limiters for hyperbolic conservation laws. SIAM Journal on
Numerical Analysis 1984; 21:995–1011.

9. Hirsch C. Numerical Computation of Internal and External Flow. Wiley: New York, 1991.
10. Kelly DW, Nakazawa S, Zienkiewicz OC, Heinrich JC. A note on anisotropic balancing dissipation in �nite

element approximation to convection di�usion problems. International Journal for Numerical Methods in
Engineering 1980; 15:1705–1711.

11. Brooks AN, Hughes TJR. Streamline upwind=petrov Galerkin formulations for convection dominated �ows with
particular emphasis on the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics
and Engineering 1982; 32:199–259.

12. Parrott AK, Christie MA. FCT applied to the 2-D �nite element solution of tracer transport by single phase
�ow in a porous medium. Proceedings of ICFD-Conference on Numerical Methods in Fluid Dynamics, Morton
KW, Baines (eds). Academic Press: Reading, 1986.

13. L�ohner R, Morgan K, Peraire J, Vahdati M. Finite element �ux-corrected transport (FEM-FCT) for the Euler
and Navier–Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1093–1109.

14. Bathe KJ. Finite Element Procedures. Prentice-Hall: Englewood Cli�s, NJ, 1995.
15. Zienkiewicz OC, Taylor R. The Finite Element Method (5th edn). Elsevier: Amsterdam, 2000.
16. L�ohner R. Applied CFD Techniques. Wiley: New York, 2001.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

646 R. L �OHNER AND F. CAMELLI

17. L�ohner R, Chi Yang, Cebral JR, Soto O, Camelli F, Waltz J. Improving the speed and accuracy of projection-
type incompressible �ow solvers. AIAA-03-3991-CP, 2003.

18. P�istch A, Kleeberger M, K�usel H. On the vertical structure of air �ow in the subway New York City and
Dortmund (Germany). Proceedings of 4th Annual George Mason University of Transport and Dispersion
Modeling Workshop, Fairfax, VA, July 2000.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:639–646

