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Abstract

This work presents the theoretical framework of a new class of
constitutive models, . which allows to respect five simple physical hy-
potheses on the mechanical behavior of soils. The most significant
of them is that the (effective) stress and the specific volume are the
state variables of soils. The well-known Cam-Clay model may be seen
as a particular case of the presented class of models. However, in its
generality, this class of models allows to describe the progressive accu-
mulation of plastic deformation under cyclic loading.
KEYWORDS: soils, physical hypotheses, state variables, specific vol-
ume, mathematical framework, hardening parameter.

1 Introduction

The Limit State Theory, LST, originally due to Roscoe, Schofield and Wroth
(1958), is today the most widely accepted theory to interpret the observed
behavior of soils.

On the basis of the LST, several elasto-plastic constitutive equations
have been proposed. Many of them well describe the behavior of soils un-
der monotonic loading. The problem which is still under research studies
is a more accurate description of the accumulation of plastic (irreversible)
deformations under cyclic loading and the identification of the physical pa-
rameters which govern it.

In this paper we present the mathematical frame work for a class of
constitutive models, denoted as SUOLO, based on the LST and able to
describe in a unified manner the behavior of soils under monotonic and
cyclic loading. The fundamental characteristic of this class of models is that
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the behavior of soils is always governed by the same set of state variables.
The basis of the mathematical framework can be found in (De Crescenzo &
Fusco, 1993).

2 Stress and Strain Definition

The (symmetric) Cauchy (effective) stress tensor o;; and the relative devi-

atoric stress tensor
Okk

—
3
where §;; is the usual Kronecker symbol, are respectively indicated as

sij = 0ij — b

T
o = {o11,022,033,012,013,023,021,031,032} (1)

T
s = {s1,522,533,512, 513, 523, 521, 531, 532} (2)
The principal stresses are indicated with oy,02,03, where
01 2> 02 > 03

As stress invariant quantities we elect

: Mean pressure

Qo
Il

i

43

1
= (3J§”)) o Equivalent shear stress (3)
[ (o) - :
1 |33 J3 ~ Angular invariant
¢ = garcsin J(0)3/2] " of stress
where )
Il(a) = o =m’o
Jz(a) = %s,-js,-j = %STS (4)
| 57 = det[sy]
and

—r/6 <0< 7/6

m = {1,1,1,0,0,0,0,0,0}"

With the notations
ép , b6q , 66

we indicate the infinitesimal variations of p,q, 0.
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The (symmetric) linear Lagrangian strain tensor €;; and the relative

are respectively indicated as
T
=; {611,622,633,612,€13,€23,€21,€31,€32} (5)
T
e = {en,ez,eas, 12,613,623, €2,€31,€32} (6)

As strain invariant quantities we elect

[ & :Il(e); Volumetric strain
(e)\ 2 o
l & = (lﬁ—) : Equivalent shear strain (7)
() : :
1 g 33:;3 J3 . Angular invariant
€ = 3 arcsin ['— J§5)3/2} ) of strain
where
I{C) = €; mTe
J§C) = %e,-je,] = %ere (8)

and
—-1/6 <€ <7/[6

With the notations
be, , bes , bep

we indicate the invariants of the incremental strain fe. In general, these
quantities do not coincide with the incremental variations of the strain in-
variants unless for the case of volumetric strain.

Incidentally, we remark that, according to the above notation convention,
deviatoric stress and strain vectors may be respectively calculated as

s = o—mp (9)
~ €
e = e—m— (10)

It will be useful to note that, assuming mineral and fluid incompressible
compared to the solid sheleton, within the hypothesis of small deformations,
the increment of volumetric strain is calculated as

e, = —
v
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where v is the specific volume, defined as

Q

V= —F—

Q(m)

and Q and Q™) are the total volume of a soil sample and the volume of the
mineral grains, respectively.

3 The Limit State Theory

Roscoe, Schofield and Wroth (1958) published a paper, which contained
the first attempt to explain the behavior of soils in a global way, giving
new light to the early intuitions of Hvorslev (1937), Rendulic (1936) and
Terzaghi (1943). This paper concerned primarily with the observed pattern
of behavior of saturated remoulded claies in triaxial compressions; the main
conclusions where:

1. the existence in the (p,q,v) space, p,q effective stress invariants, of
a unique Limit State Boundary Surface, LSS, Fig. 1a, on which the
specific volume value reaches the maximum compatible with assigned
P4, ’

V= Vmaz(P) Q)

2. the existence on this boundary surface of a unique Critical State Line,
CSL, where all the (effective) stress paths in triaxial tests terminate.
At this state, large shear strains occur with no change in stress and spe-
cific volume value, which is the maximum compatible with the stress

state (p, q).

In Fig. 1a some parts of the LSS are indicated with dashed lines; this means
that in those parts the experimental points are not interpolated by a well
defined surface.

The intersection of the LSS with the v, p plane, on which

g =0
f# = indeterminate
is a line, which is usually said Normal Consolidation Line, NCL, Fig. 1c.

Based on the assumption of the limit state boundary surface, soils may be
classified as follows:
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1. soils whose state (p,q,v) is on the LSS are defined as Normally Con-
solidated Soils, NCS,

Y= vma:c(p’ q)

2. soils whose state (p, g, v) is inside the LSS are defined as Overconsoli-

dated Soils, OCS,
¥ < Vmaz(P>q)

From the above definitions it follows that, for a same (p, ¢) stress state, the
specific volume vocs of a OCS is always smaller than the vycs of a NCS,

Yocs < Uncs

The typical triaxial responses of a NCS and OCS under the same initial
stress condition are shown in Fig. 2.

4 Physical Hypotheses

In the following sections we present a mathematical model which attempts
to describe the behavior of soil in accordance to the limit state theory. The
basic physical hypotheses of this model are:

1. The (effective) stress o and the specific volume v are the State Vari-
ables of soil, that is: the mechanical soil response ée for a given do,
and viceversa, is uniquely determined only by the current values of
(o, v), regardless the previous stress history.

2. Isotropic mechanical behavior.

3. Soils, subjected to cycles of loading and unloading, present accumula-
tion of irreversible deformations.

4. There exists a single-value function

V = Vmaz(p, q,0) (11)

which bounds always the value of the specific volume v of a soil at a
stress state (p,q, 6), that is

v < vmar(pa q, 9)

For any given 6, Eq. 11 is the equation of a surface, in the (p,q,v)
space, called Limit State Boundary Surface, LSS.
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v

a) LSS in the p, g, v space.

impossibile .
states

0 ]
c) LLS intersection with the v vs. p plane.

Figure 1: The Limit State Surface, LSS.
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NCS

NCS

permanent deformation 2

Figure 2: A drained triaxial test on NCS and OCS

5. There exists a Critical State condition where indeterminate shear strain
€s; occurs with no change in the stress o and in the specific volume v.
The locus in the o space of all the stress levels corresponding to criti-
cal state conditions is called Critical State Surface, CSS. For isotropic
soils, this CSS is represented by a function of the type

q = q.(p,9)
At this critical state condition:

e the value of v is the maximum compatible with the stress state,
that is

v = vma:r(p, q, 0)

e for any given 6, the locus in the (p, g,v) space of the soil states
under critical state conditions is a line known as the Critical State
Line, CSL.

The first requirement is the minimum assumption on which it is possible to
describe the typical soil behavior. In fact we observe in Fig. 2 that

1. the soil response at the same initial stress value is different for NCS
and OCS, hence it depends on the specific volume v;



5 MATHEMATICAL FRAMEWORK

5. The space region bounded by F is a subspace of F, that is

F(P’ (Iaeaﬁwpy) - F(p, q, 971_7;/)

10

(20)

If the current stress point o lies on F, then F and F must coincide,

that is
F(p7q107pyapy) E F(p’q’07py)
and
py = ﬁy
apy _ d‘ﬁy
0v®  golP
0py
ut 6
3h_,‘

for all 7 =1,2,...,m.

6. There exists an FElastic Surface

ﬁ = 1?’(]3_,‘1,07%)
defined as ~
F(p7q707ﬁy) = F(p7q70’?y’py = ﬁy)
where
ﬁy = ﬁy(ﬁy)

(21)

(22)
(23)

(24)

(25)

Note that the above definition implies that, if the current stress point

o lies on f’, then F' coincides with F'.

7. In general, for py, — Dy,

Opy
— o0

9v(P)

opy
afgp) -
A — 4o

The definition of the Plastic Modulus A is postponed to item 9. If F

and F always coincide, the above assumptions do not apply.
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8. There exists a Potential Function for plastic deformations, of the form
G(p$ q, 0,ﬁy’py)

9. Analogously to the standard incremental theory of plasticity, it is as-
sumed that an infinitesimal strain increment de can be expressed as

be = 6€() + 6P (26)
where:

o 6€(®) represents the elastic (fully recoverable) component which
may be calculated according to the generalized Hooke’s law

§e® = (C(e))_l so (27)

where C(©), the tangential elastic stiffness matrix, may be func-
tion of the current o and e.

o 6 is the plastic (irreversible) component, defined as

el®) = 6)b (28)
where
> 0, if elasto-plastic response occurs.
oA {
= 0, if elastic response occurs.
0G
b = —_—=
do

_ {86 0G 0G 090G 0G 0G 0G 0G BG}T

80’11 ’ 80'22 ’ 80’33 ’ 6012’ 8013’ 80'21 ’ 80'23, 30'31 ’ 80’32

The value of the plastic multiplier A can be calculated as, (De Crescenzo
& Fusco, 1993),

e If 6o is assigned,

aTéo ,
: if A#0.
sra={ & (29)

indeterminate, if A =0.
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e if e is assigned,

aTéa'®) : T..(G)
, if A # —aTcl9),
x={ A+a"c(® 7 (30)
indeterminate, if A = —aTc(%),
where
6@ = Clge (31)
@ = ctp (32)

and the Plastic Modulus A is defined as

1 |0F _ OF
A = N [a_mépy-i—%&pyjl

_ _[o(er i 0F o )06 oRom ) o
- 0p, dv® ~ 9p, v ) 0p = Op, Ok; ’

for j =1,2,...,m.
The type of mechanical response is-established according to the crite-

rion in item 10.

10. By definition, if

~

F(p,q,0,p,) <0 (34)

the material response is always elastic, regardless the applied stress
increment do or strain increment ée. Instead, if

F(p,q,0,5,) > 0 (35)

it is assumed that the type of material response is established as fol-
lows:

o Stress Based Criterion. Let o be a stress increment applied on
any material state (p,q,0,7,), then:

(a) Elasto-plastic response occurs if
A>0 ; a6 >0

A=0 ; a"6oc=0
A<0 ; aTéo =0
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(b) Elastic response occurs if
A>0 ; aTéo <0

(c) Either elastic or elasto-plastic response may occur if
A<0 ; aTéo <0

This is the only ambiguous situation which this model does
not solve by itself.

(d) Stress increments by which
A<0 ; aTéoe>0

are not admissible; that is, according to the theory, the ma-
terial cannot sustain such type of stress increment.

e Strain Based Criterion. Let §e be a strain increment applied on
any material state (p,q,0,5,), then:

(a) Elasto-plastic response occurs if

A>-aTc®) ;. aTéale) > g
A=-a%c") ;. aT6a® =

A< —aTch) . aTea® =
(b) Elastic response occurs if
A> —aTc®) : aTéol®) <0
(c) Either elastic or elasto-plastic response may occur if
A< —aTc? ; aTéo(® <0

This is the only ambiguous situation which this model does
not solve by itself.

(d) Strain increments by which
A< —aTcP) . aTea(®) > 0

are not admissible; that is, according to the theory, the ma-
terial cannot sustain such type of strain increment.
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6 Additional Mathematical Assumptions

In addition to the main assumptions of the general mathematical framework,
presented in Section 5, SUOLO makes the following own assumptions:

1. The bounding surface of equation

F(pa q, O,ﬁy) =0

is assumed to have the shape in Fig. 3. This type of surface has the
following mathematical characteristics:

It is a closed and simply connected surface in the 01,02,03 space.
It crosses the spatial diagonal m at two points Y and D.

The hardening parameter P, is the value of p at Y, namely, p,, is
the intersection of smaller value of F' with the p-axis. i

The value of p at D is said P, and it is function of p, only, namely
Pa = pd(ﬁy)

The value of F, calculated in any stress point (p,q,0) is a con-
tinuous monotonically increasing function of p,, that is:

oF
—>0 36
- (36)

for any (p,q,6). This implies that the bounding surface expands
or contracts itself as P, decreases or increases, Fig. 3c.
In fact, consider a bounding surface of equation

(o) = F(o,5, = 7") (37)

Suppose that the hardening parameter is varied by an infinitesi-
mal amount dp,, so that the new location of the bounding surface
has equation

7o) = Flo,5, =7 = 7 + dp,)

Hence, the value that FY) takes for any stress point o lying on

F(O), for which

F)o™) = Flo = 07,5, = p)) = 0
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a) F in the 0y, 09,03 space.

|

AV

Y (Py, 0) D (Pd, 0)

b) Mapping of F in the ¢ vs p plane.

\

BO By Bd® B e

c) Expansion of F in the ¢ vs p plane.

Figure 3: The Bounding Surface, '
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may be ezactly evaluated as

7(0) (o)
o oF OF
F(o) = Fo™) + | = a5, = | = ap,
op, 0P,
o=0"* o=0*

The mathematical condition in Eq. 36 assures that

—=(0) <0 fordp, <0
- - oF v
F(o") = ( _ ) dp, = { (38)
o=0*

9Py >0 fordp, >0

Since o* is any arbitrary point on F(D), this implies that
y P p

F(»,,6,3) € F(p,4,0,50)

for any p(f ) > ﬁ(o)
2. The hardening parameter p, is a continuous monotonically increasing
function of v(P), that is
dp,
dv(®
This implies that the relationship p, = ﬁy(v(”)) in item 2 of Section 6
has a unique inverse relationship

>0 (39)

(P = 5§P)(1—)y) (40)
which is a continuous function.

3. The partial derivatives dp,/0v(® and dp,/0h; as well as the coeffi-
cients ¢; are functions of (p,q,0,p,,py,v) only, that is

Opy _ apy
m - 6 (p$Q3 ,Py,Py,’U)
Opy _ Opy —
a_hj = a_hj(p)qae’pyapy,v)
G = cj(p7q707ﬁy,pyav)

forj=1,2,...,m
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4. The system of equations

F(p, Q)o>py) =0

0G _
%(p, q, g’pyapy) =0

admits a solution (p,g,6). For any given @ this solution is unique and
satisfies the critical state surface equation, defined in item 5 Section
9,

9= q:(p,9) (41)

5. For any soil state where

F(p,q,0,7,) <0

oG _
'a—p(p’ q, e’py’py) =0

the plastic modulus A, defined in Eq. 33, can not be equal to zero,

namely

A#0
This condition is clearly equivalent to require that for any soil state
as above

QEQQ%#O

Opy Oh;
sum on j, for j = 1,2,...,m. Notice that this implies m > 1, that is
py must depend on two variables at least: the plastic specific volume
»(P) and another one, h;.

6. The elastic stiffness matrix C(¢) has the following form

(e) _— F
C =ani-m
1-v) v v 0 0
v (1-v) v 0 0
v v (1-v) 0 0 (42)
0 0 0 (1-2) 0
o0 o o acm e

The Young Modulus FE and the Poisson Coefficient v are function of
(p7 q, 0*) 'l)) Only, that is

1

E(p,q,0,v)
V(p’ q, 9’ v)

<
I
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and the elements of v are given by

i = wij — ?kak (50)
where
[ (522833 - -9%3) (313323 - 833812) (312823 = 822813) 1
L [oeus] _ (s11533 — si3) (12513 — $11523)
[wu] = 19 =
S{j
Symmetric (811822 — 32)
i _
o = O3 &
Kk = (‘?skk - 2= 3

3. From the previous item, it follows that the plastic strain, its deviatoric
components and the volumetric strain result to be defined as

6P = §X(cym + czs + c3v) (51)
§el?) = 6AV,G = 6X(czs + cav) (52)
oG
§eP)  — ——
€, oA ap (53)

4. Theyield surface F, item 3 Section 5, is function of the stress invariants
and of the parameter p, and p, only. Consequently, also its gradient a
can be decomposed as b, Eq. 47. Moreover, it can be simply verified

T —
a'do = M op+ §q6q+ 069 (54)

5. The requirement on F in Eq. 36 has two important consequences:

e Being F a continuous monotonically increasing function of p,,
the equation
F(p,q,6,P,) =0
admits only one solution 7, for any admissible stress state (p,q,9).

e The value of the current p, of a soil at an admissible stress state
(p,q,0) is bounded as

Py < Pymaz(P:9,0) (55)



8 SPECIFIC VOLUME PREDICTION 21

where P, ., is the unique solution of the equation

F(P, q>07py) =0
in terms of p,. In fact, by definition,

e _ 1
F@wﬁmwmﬂ=7*)=0

while, according to the requirement in item 1 in Section 5,
= _ 2
F(p’qao)py) = —F—( ) <0

Thus, being F' a continuous monotonically increasing function of
p, and f(z) < F(]), it results

py < ﬁyma:r:

6. From the particular form of the elastic stiffness matrix in Eq. 42, it
follows that the elastic strain, its deviatoric components and the vol-
umetric strain result to be defined as

. op 1
feld) = 3B(")m + 2G(e)5s (56)
bs
(e) — _“°
be = 5G® (57)
. op
ele) = 20 (58)

where B(©) and G(®) are defined in Eqgs. 43 and 44.
Notice that, from the assumption on B(®) in Eq. 45, it follows that

op

§0(e) = vl =
B)(p)

(59)

8 Specific Volume Prediction

From the complete mathematical formulation of the present constitutive
model, Sections 5 and 6, it is possible to derive the following important
relationships for the specific volume v:
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3. From the above items 1 and 2, the following remarks immediately
follow:

e the limit state boundary surface, LSS, defined in Section 4 for
any given 6, has equation
V = Vmaz(P> ¢, 0)

where vmaz(Pp, ¢, 0) is calculated in Eq. 68;

e the normal consolidation line, NCL, defined as the intersection of
the LSS with the v, p plane, Section 3, has equation

v o= vma:z:(p7 q, 9)
g =0
# = indeterminate

o if, and only if, v = Vjnac(p,¢,0) , NCS, the current stress point
lies on the bounding surface F,

F(p,q,0,p,) =0

Instead, if, and only if, v < Vmaz(p,q,0) , OCS, the current stress
point is inside the bounding surface F’,

F(p,q,9,p,) <0

4. A possible soil state, to be used in the relationships in Egs. 60, 61 and

62, is
Vo = v
Po = DX
o =0 (70)
f, = indeterminate
ﬁyo = D

where (py,vy) is an arbitrary point lying on the NCL. In this case,
Eq. 63 becomes

# 1 3P (5. ) — 5
v=uvy+ / B(e) dp + vyp (py) - vyp (p)\)

PA
In fact, on the basis of item 1 Section 6, one can verify that the unique
solution of

F(P = Po,q = %79 = 007?3,) =0
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in terms of p, is p, = p,. Hence, from item 2, to the stress point with

Po = DPx (71)
% = 0 (72)
6, = indeterminate (73)
Pyo = Pa (74)

it corresponds the specific volume

Vo = vma:c(po, 9o, 00) (75)

Eqgs. 72, 73 and 75 prove that the soil state defined in Eq. 70 lies on
the NCL; then it is admissible.

9 Plastic Strain Prediction

According to SUOLO, the plastic strain increment 6€(P), caused by a given
stress increment éo, eventually results to be function of (o, v) and éo only.
In fact, Eqgs. 28 and 29,

i alloy,  for A#0

indeterminate for A =0

where:

e Being F’ and G function of (p,q,0,p,,py) only, it results, items 2 and
4 of Section 7,

a = a(P,q,o,Cf,PTy,Py)
b = b(P,q,&U,ﬁy:Py)

e Taking into account the assumptions in item 3 of Section 6, the plastic
modulus expression in Eq. 33 may be eventually expressed as

A= A(paan,pyapyvv) (76)

On the other hand, the hardening parameters p, and p, are given by scalar
functions of the type, Eqs. 62 and 18,

Py, = Dy(v,p)
py = Py(p.q.0.5,) = py(p,q,0,v)
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Being the stress invariants (p, g,6) function of o only, it immediately follows
that all the above relationships are eventually function of (o, v) only.

Finally, we remind that in the stress based criterion, item 10 Section 5,
only the quantities a,d0 and A appear; then, this criterion eventually de-
pends on (o,v) and éo only.

10 Critical State Conditions

One of the physical hypotheses states the existence of a critical state line,
CSL, in the (p,q,v) space, described, for any given #, by the system of
equations, item 5 in Section 4,

q = q.(p,9)
(77)
v = vmaz:(pa qve)

On this line, and only on this line, indeterminate shear strain occurs with
no change in the stress and specific volume value:

log = constant
v = constant (78)
be;, = indeterminate

The mathematical model SUOLO, described in Sections 5 and 6, satisfies
this physical requirement.

In fact, the conditions in Eq. 78 are mathematically verified if, and only
if, for a stress variation do = o, the material responds with

be = el 1 selP) indeterminate (79)
sv =60 4+ 6P 0 (80)

Taking into account Eqgs. 43, 44, 57 and 58, it immediately result sel®) = o
and 5€£,e) = 0. Consequently, the conditions in Eqs. 79 and 80 are satisfied
if, and only if,

e indeterminate
6L‘(p) 0
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that is, for Eqs. 52 and 53, if, and only if,

6 indeterminate
oG — 0
op

Since, in correspondence of §o = o, §) is indeterminate only for A = 0,
Eq. 29, the conditions in Eq. 78 are equivalent to

A = 0
G _ i
op
In a NCS we have, by definition,
v= vmax(p7 q, 0) (82)
Moreover, item 3 in Section 9 and item 1 in Section 8,
T(pv q7075y) =0 (83)
oF dp, OG
= Pp)—-7 x— 4
A vaﬁy 20 Bp (84)

From Eqs. 83 and 84 we recognize that in a NCS the conditions in Eq. 81
are equivalent to

7(1% Q>0,py) =0

oG

op
This system, because of the assumption in item 4 Section 6, admits a unique
solution, which satisfies the CSS equation

= 0

q = qc(p,9) (85)

Hence, in a NCS the critical conditions occur only on the CSL, given by the
equations in Eqgs. 82 and 85.
Instead, in a OCS we have, item 3 in Section 9,

F(p,q,8,p,) <0 (86)
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1. The yielding surface, Fig. 4b, has equation
T_T 2 ¢
F=F(pgp)=r -yt (87)

where M is a positive experimental constant and the hardening pa-
rameter p, is a negative scalar value, function of v(?) only:

(»)
_ v -y
Py—PAeXP[ =% } (88)

and

o (vx,p)) is any point belonging to the NCL, with px < 0.

e ) and x are the slope of the NCL and of the swelling line, SWL,
in a plane v vs. In|p|, Fig. 4a. Moreover:

A>x

2. The potential surface G coincides with the yielding surface:

2

= o - q

G =F(p,q,p,) =P’ — PPy + <5
.- M

3. The stiffness elastic matrix C(¢) has the isotropic form in Eq. 42, with

3(1-2

E = ——(—V)vp (89)
X

v = constant experimental parameter

According to the classical incremental theory of plasticity, the Plastic Mod-
ulus A is defined-as

= _ﬂa—z—,y Py = _va_p;dv(P)a_p B v/\—x

1 0F _ oF dp, 0G P _
L= 5 (2p—py)

Moreover, it can be proved, (see for example De Crescenzo & Fusco, 1993),
that:

e The plastic strain is related to the stress (or strain) increment by
relationships identical to those in item 9, Section 5.

o For stress states lying on the yielding surface F the type of mechanical
response is established according to the same criteria in item 10 of
Section 5.



12 THE CAM CLAY MODEL AS A PARTICULAR CASE OF SUOLO31

... CsL

NCL

SWL

Injp] Py Py Pyr2 ol

Figure 4: a) The NCL and the SWL. b) Mapping of F in the ¢ vs. p plane
for the Cam-Clay model.

12.2 A new formulation of Cam Clay

Let consider the following particular case of SUOLO:

1. The bounding surface F, Fig. 4b, has the same equation of the yield
surface in Eq. 87. Then, according to item 1 in Section 5, if (p,q,7,)
represents the current material state, the only admissible alternative
conditions are

— 2 -
F(p,q,p,) = p* — pp, + f}—; =0; ie. o lieson F.

— 2 .
F(p,q,p,) = P* — pp, + f}—; < 0; 1i.e o lies inside F’

while
2

— . g
F(p,q,py)zpz—ppywtm >0

is not admaissible.
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2. The hardening parameter p, is function of v only, and is given by
Eq. 88. Moreover, it results

oy _ _ Py
o) X=X

>0

3. The new yield surface F, Fig. 4b, has equation
2

g
M?

F = F(p,q,5,,py) =0* — PP, + —5 — P) + PP, = 0

where py is a negative scalar respecting the inequalities

oS

Py <py <
4. The functional relationships for the hardening parameter p, are given
by:

(a) There exists a scalar function for py, derived from the above yield
function condition,

(b) If plasticity occurs, the dependence of p, from »(?) and the in-
ternal variables h; is arbitrary; nevertheless it must respects the

limitations

opy, _ dp,

av® g

3]

aihj — 0 forallj=1,2,...,m
for py = p,-

5. The requirements in item 5 in Section 5 are trivially verified.
6. The elastic surface coincides with the bounding surface, F=T.

7. The requirements in item 7 in Section 5 have not to be satisfied, being
F=F.
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8. The potential surface coincides with the yielding surface, G = F.

9. The elastic and plastic deformations are calculated in accordance with
the rules in item 9 of Section 5. The stiffness matrix C(®) is of the
type in Eq. 42 and the Young modulus F is given in Eq. 89.

According to the remark 1 in Section 7, the plastic modulus for a stress
state lying on F, NCS, is given by

OF dp, 0G _  pp, —
05, 0 = "3 —x (P P)

A=

which coincides with the expression of A in Cam Clay.

10. According to item 10 in Section 5, taking into account that

-~

F=F
it results:
o If
F(p,q,p,) < 0
the material response is purely elastic.
o If
F(p,q,p,) =0

the material skeleton is established on the basis of the stress and
strain criteria in item 10 in Section 5.

It is easy to verify that
e Stress points with p > 0, or with p = 0 and ¢ # 0, are not admissible.

e The stress point (p = 0,¢ = 0) is a particular point in which the Young
modulus F is zero, so that the elastic strain is unbounded.

e For p < 0 this formulation respects all the mathematical requirements
listed in Sections 6 and 7.

e The mechanical behavior of the above presented model is identical to
that of the classical Cam Clay model.
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13 Conclusions

The most significant aspect of the class of models presented in this paper is
to be based on simple and clear physical hypotheses, Section 5. In particular,
the current effective stress state and the specific volume, (o, v), are the state
variables of soils. This allows a possible experimental refutation of all the
models belonging to this class. ‘

In Section 13 we have proved that Cam Clay belongs to SUOLO. It is
widely accepted that it well describes the behavior of NCS under monotonic
loading. On the contrary, it fails in describing the behavior of OCS under
cyclic loading.

The mathematical framework presented in Sections 6 and 7 gives a recipe
to extend Cam Clay type models to a better description of the behavior of
OCS under cyclic loading.

The identification of all the functional relationships and of the internal
variables h; of the model require experimental investigations, which will be
the object of successive research works.

NOTATION

A a gradient vector of F

A plastic modulus

b gradient vector of G
B elastic bulk modulus
cl) elastic stiffness matrix
CSL critical state line
€SS critical state surface

e deviatoric strain

E Young modulus

F yielding surface

F bounding surface

F elastic surface

G potential surface
Gie) elastic shear modulus
LSS limit state boundary surface

NCL normal consolidation line
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P mean effective pressure
P reference pressure on the NCL
Dy hardening parameter for F
Py hardening parameter for F
Dy hardening parameter for F

q equivalent shear stress

s deviatoric stress

v specific volume

vy value of v on the NCL, at p = p)
SWL swelling line '
X slope of a SWL in a semi-log graph

oA plastic multiplier
‘€ .- total strain
e® elastic strain
e plastic strain
€s equivalent shear strain
€ volumeteric strain
A slope of the NCL in a semi-log graph
v Poisson modulus
o effective stress
0 angular invariant
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