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On the strong discontinuity approach in finite
deformation settings. Part 1: Theoretical
aspects

Abstract

Taking the strong discontinuity approach as a framework for mod-
eling displacement discontinuities and strain localization phenomena,
this Part 1 extends previous results of the authors, for infinitesimal
strain settings, to finite deformation scenarios.

By means of the strong discontinuity analysis, and for both dam-
age and elastoplasticity continuum (stress-strain) constitutive models,
projected discrete (tractions-displacement jumps) constitutive models
are derived, together with the strong discontinuity conditions that re-
strict the stress states at the discontinuous regime. Also a variable
bandwidth model, to automatically induce those strong discontinu-
ity conditions, and a discontinuous bifurcation procedure, to deter-
mine the initiation and propagation of the discontinuity, are briefly
sketched. Numerical simulation issues are tackled in Part 2 of the
work.

keywords: Strong discontinuities, localization, fracture, damage,
elastoplasticity, finite strains.

1 INTRODUCTION

Modelling the onset and development of material discontinuities (fractures,
cracks, slip lines etc.) has been the object of intense research in solid mechan-
ics during the last decades. Besides the classical nonlinear fracture mechanics
approaches [24], one common way of modelling displacement discontinuities,
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from the continuum mechanics point of view, has been the simulation of
the strain localization phenomenon by using material models equipped with
strain-softening. This can be justified not only from the physical point of
view, since this mode of deformation can be observed either in ductile mate-
rials (see e.g. [32] and reference therein, [15]) or in quasibrittle materials (e.g.
[33]), but also from the kinematic point of view, since strain localization in-
duces relative displacements at both side of the localization band that can be
interpreted as the displacement jumps. However, it is nowadays well known
that classical continuum inviscid dissipative models featuring strain softening
lead to ill-posed boundary value problems. This becomes particularly evi-
dent in numerical simulation contexts since the obtained finite element results
exhibit strong mesh dependence and no convergence with mesh refinement.

Different remedies for this behavior have been presented in the litera-
ture. Basically, they are based on the modification of the classical inviscid
constitutive response, by adding, to the stress-strain constitutive equation,
higher-order deformation gradients, non-local dependence or rate dependence
(I5).

In recent years, a second group of procedures that resort to the strong
discontinuity concept have been developed. They advocate the introduction
of the strong discontinuity kinematics, i.e., the modification of the standard
continuum kinematical descriptions to take into account the appearance of
discontinuous displacement fields through material interfaces in the solid [29],
[17], [2], [12], [11], [25]. A common issue associated to these procedures is
the finite element technology, which should enable to capture jumps in the
displacement field. For such purposes, new families of elements with embedded
discontinuities have been developed ([8], [13], [18], [10], [3])

Considering the aforementioned strong discontinuity kinematics has some
interesting consequences. In fact, it turns out [20] that under such a kine-
matics the standard continuum (stress-strain) constitutive models induce
discrete (traction-displacement jump) constitutive models on the interface of
discontinuity!. Those discrete models can then be regarded as projections
of the original constitutive model on that discontinuity interface, and inherit
the basic features of the parent continuum model [22], [20]. However, they
can be only induced when a particular stress state has been reached at the

LA crucial condition for this to happen is that the strong discontinuity kinematics is
linked to the continuum constitutive model through a constitutive regularization of the
hardening /softening parameter. This allows the model to return bounded tractions for
input unbounded strains



interface, which is therefore restricted by the so called strong discontinuity
conditions [20].

Consequently, and regarding the way that the different models make use
of those induced discrete models, and the format in which they are introduced
into the analysis, they can be classified into:

1. Discrete approaches [8], [13], [34], [25]: They introduce a discrete con-
stitutive model at the interface that is completely independent from the
continuum one. Their connection with the strong discontinuity kine-
matics is limited to numerical aspects, essentially to the use of finite
elements with embedded discontinuities.

2. Discrete-continuum approaches [2], [9], [11], [1]:They make use of the
continuum induced discrete constitutive equation introducing it into
the problem in a discrete format: i.e. the discrete constitutive equa-
tion is analytically derived and then introduced, as a separation law,
at the discontinuous interface regardless the fulfillment of the strong
discontinuity conditions.

3. Continuum approaches:

A full use of the connections between the continuum and the induced
discrete constitutive models is made. As a matter of fact the latter
is never explicitly introduced at the discontinuous interface, but it is
implicitly imposed from the former as a consequence of the activation
of the strong discontinuity kinematics once the strong discontinuity
conditions are fulfilled. As a result, the whole analysis and simulation
is kept in the continuum format.

This paper focuses on this last continuum approach that, from now on,
will be termed the Strong Discontinuity Approach (SDA). Its analysis and
implications for infinitesimal strains settings have been presented by the au-
thors in the past [16], [17], [18], [21], [19], [22], [20], [23]. Here we extend those
results to the finite deformation setting for isotropic damage and elastoplastic
material models.

The remaining of this paper is organized as follows: section 2 introduces
the strong discontinuity kinematics in the large strain context. Then, in
section 3, a strong discontinuity analysis is done for two material constitutive
models: an isotropic continuum damage model and a classical .J; elastoplastic



model. For both, the induced discrete constitutive models and the strong
discontinuity conditions are derived. Finally the conclusions of this part of
the work are presented.

Some other topics, like those of finite elements with embedded disconti-
nuities or the numerical applications of the proposed methodology are post-
poned to the second part of this work.

Other issues, which are deemed of marginal interest, can be found in two
final Appendixes devoted to the constitutive tangent tensors, the bifurcation
conditions, and the determination of the normal to the discontinuity surface
as well as the incremental integration algorithms.

2 STRONG DISCONTINUITY KINEMAT-
ICS

Let © € R® be a body undergoing a mechanical process which displays a
displacement field that is discontinuous across material surface S C Q (see
figure 1a) with a jump in the velocity field given by [u] = u(Xs+) —a(Xs-).
The velocity field is described by :

: - . 0 VX € Q7
u<X7t> = u(th) + HS[[U]KXat) ) H8<X> = { 1 VX € Ot (1)
u(X) and [u] being two continuous (smooth) fields, H the step function
(Heaviside function) and Q~, Q% each one of the body’s disjunct parts of
obtained from its division by the surface S . .

This mode is characterized by a material velocity gradient F :

F=u®V=F+6s([i] ®N) 2)

where F is a bounded (regular) term, 65 the Dirac delta function on S, and
N a material (fixed) unit vector orthogonal to S. The deformation gradient
F(X,t), at time ¢, comes from the integration of equation (2) along time:

F(X,t) = [ Fdt + [} 6s([d] @ N)dt = F_ +5s(BeoN)

F
reqular

(3)
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Figure 1: (a) strong discontinuity kinematic; (b) regularized kinematic; (c)
multiplicative decomposition.

where ¢, stands for the onset time of the strong discontinuity mode and 3 is
the incremental displacement jump between the current time, ¢, and ¢

B=0; t <tsp (4&)
B=[u,—[d,,; =t (4b)

Notice that in equation (3), the regular term F remains bounded during all
the process.

2.1 Multiplicative decomposition of the deformation
gradient

For the subsequent analysis it is convenient to adopt, from equation (3),
the multiplicative decomposition of the deformation gradient (see figurelc)
proposed in [2]:

F=F - F=[1+6s(B2n) F;

=
I
&
N
Z
o



which introduces the concept of a regular intermediate configuration €, de-
scribed by a IR? mapping whose gradient of deformation is regular and given
by F. Notice that, in accordance with equation (5) fn, the normal vector to
the surface S convected by F # 1, is not a unit vector.

For the sake of simplicity in the subsequent mathematical analysis, we
shall regularize the Dirac’s delta function by defining a slice of the body S},
(see figure 1b), of finite thickness h, which contains the surface S (S C Sp,).
Then we consider the h-sequence of regular functions:

h_:uS, . OVX%S}L
0s =7 S—{1 VX € S, (6)

In the limit, as h — 0, then 65, — 6s.
Using this regularization, and after some algebraic manipulation, the fol-
lowing identities are obtained:

F:F+%S(B®N) (7)

%
PR @) —F (1S pen) O
J = det(F) = det(F) (1 + "SﬁTn) = JJ" (10)
J=det(F);  J"=det(F") = (1 + ”Sg : “) (11)

We also define n as the normal vector N convected by the total motion,

n=F7T.N=F'"".n= (12)

=



2.2 Rate of deformation tensors

Using the multiplicative decomposition (5) and equations (7) and (9), the
regularized velocity gradient is obtained as follows?:

1=F - F'=1+1 (13)
where
. - L,8®n
I=F - F': 1 = po—t— 14
) lush-'-,@fl ( )

and L3 = 3 — 18 is the convected rate of 3 (the Lie derivative Ly(+) asso-
ciated to the regular motion F) .
Then, the rate of deformation and spin tensors result :

d=sym(l) =d+ /,L‘g% (15)
w = skew(l) w (16)

Ry P

where d and @ are, respectively, the symmetric and skew-symmetric parts
of 1.

3 STRONG DISCONTINUITY ANALYSIS

In addition to the kinematics described in previous sections, the SDA lies
on several assumptions and ingredients, some of them trying to match the
physical aspects associated to the formation of a displacement discontinuity
and some others of more mathematical nature. Those assumptions and their
implications will be described in the following sections.

2From now on the superindex (-)" to indicate the h-regularized version of entity (-) will
be omitted.



3.1 Traction continuity: stress boundedness

The momentum balance principle for the quasistatic case, set in the classical
weak form for the continuum domain /S in terms of the nominal Piola-
Kirchhoff stress tensor P(X, t), reads:

/ P:(ﬁ@VX)dV—/B-ﬁ dQ—/ TN qdl =0; VReV, (17)
Q\S Q -

where B are the body forces, 7 **are the external prescribed tractions on the
boundary I', and Vg is the smooth (continuous across S ) space of admissible
(material) displacement variations. After some algebraic manipulations it is
readily obtained from equation (17):

/ﬁ-(PQ+—PQ)-NdF5:O ; V’f]E VO. (18)
S

whose strong form sets the continuity of the nominal traction 7 =P - N at
both sides of S in the domain 2/5S:

T = PQ+|XeS ‘N = PQ_|XeS N (19)

In the context of the SDA and the regularized kinematics of section 2.1 we
extend, as an ”"ad hoc” hypothesis, this traction continuity to the interior of
the discontinuity interface Sy, of figure 1b:

T =Py« -N=Py -N=Pg-N (20)

where Pg stands for the first Piola-Kirchhoff stress tensor at S. This hypoth-
esis, sustained on the physical perception that if there are material points
in between Q* and O~ the traction continuity (equilibrium) should be also
extended to those points, can be retrieved in a more rigorous manner by
applying the momentum balance principle (17) to the whole domain €2 and
extending the admissible displacements space to V := {n =n +Hgsvy} ac-
cording to the kinematics adopted in equation (1)(see reference [29]).

The nominal traction continuity condition (20) has relevant consequences,
on the bounded character of the Cauchy stress tensor at the interior of the
strong discontinuity band, o g,which emerge from the following reasonings:



1. Since the deformation at Q\S is determined by F (that is bounded by
definition, according to equation (3)) and the continuum constitutive
equation is supposed to return bounded stresses for bounded strains,
then the Piola-Kirchhoff stresses Pq+ and Pgq- are bounded at any
time of the analysis.

2. If Pg+ and Pq- are bounded, so is the nominal traction vector 7 in
equation (20) since N is bounded (|[N| =1).

3. Rewriting the last equation (20) in terms of the Cauchy stresses one
gets:

T:PS'N:TS'I’I:JO'S'I’l:jds-I_l:j|I_1|O'S'en (21)

where equations (10) and (12) have been used. In equation (21) e, is
the unit (and therefore bounded, ||e,|| = 1) vector parallel to n.

Since in equation (21) 7, J, and [n|are bounded entities, so is the vector
T =0g5-e, and, since o g is a symmetric tensor all its components are
bounded®. Consequently we can state that the physical stresses at
the discontinuous interface, og, are bounded even if the corresponding
strains are not. This fact becomes crucial for the analysis developed
in subsequent sections. Observe that the same statement can not, in
general, be made for the Kirchhoff stress tensor 7.

4. Similar arguments, now on rate entities, lead to the bounded character
of &s. In fact, if Po+ and Pgo- are assumed to be bounded on the
same above arguments, time derivation of equation (20), considering
the material character of S (N = 0), leads to the bounded character

of 7. Hence, time derivation of equation (21) read

T = J os-n + Jogn + Jogn (22)
bounded bounded bounded bounded

3This statement comes readily out by expressing the components of equation T =0g-e,
in the orthonormal base constituted by the eigenvalues of o g i.e.: ’j] =0o1n ; ’]Aé =0o9ny ;
T3 = o3ng (where {1,090, 03} are the principal values of og and {7, g, fig} the
corresponding components of e,,) and realizing that, since ’fl, ’jé,j},,ﬁl,ﬁg,ﬁg are bounded,
those principal values o1, 02, o3 are also bounded and, therefore, so are the components
of tensor o g in any base.



where use is made of the bounded character of 7, .J, J, 0, nn (from time
derivation of the last equation (5)) and . Finally, from equation (22)
it turns out that &g- n= ||n||6s -e, is bounded and so is &5 -e,,. From
this, and following the same reasoning as above, the bounded character
of &g emerges.

3.2 Development of a strong discontinuity. Weak -
strong discontinuities

The regularized kinematics proposed in section 2.1, allows to introduce the
weak discontinuity concept by considering the same kinematics of equations
(7) to (12) but now with a non null bandwidth! h # 0. Bearing these
concepts in mind we shall consider the mechanism of formation of a strong
discontinuity as follows:

a) At time t = tp (the bifurcation time) a local discontinuous bifurcation
of the strain field (see section 3.3) originates a localization of the strains
in the shape of a weak discontinuity (with bandwidth h = hg), see figure
2a.

b) A subsequent evolution of the bandwidth h(t), decreasing monoto-
nously along the time, makes that weak discontinuity collapse into a
strong one (when the bandwidth reaches a very small regularization
value h = k — 0) at time tgp (see figure 2b-c). The bandwidth law is
assumed such that the deformation gradient at ¢t = ¢, verifies:

h—0 |t:tSD h—0

lim hF|,_, = lim h/”SD (F+isqaen)d-o0 (23

For the strong discontinuity regime (t > t,,) the bandwidth is kept
constant, h = k — 0, (see figure 2d).

3.3 Bifurcation condition at t = t5

The classical bifurcation analysis [26], [35] determines the conditions for the
bifurcation of an initially smooth deformation field to a weak discontinuity

1A weak discontinuity can be then characterized by continuous displacements fields
and discontinuous (but bounded) strain fields [23].
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t=1tp o P tp < t<tsp o P

(a) (b)

—fe— k=0

h o] N Weak discontinuity

é Strong discontinuity

'SD

~Y

B SD

(c) (d)

Figure 2: From (a) to (c) mechanism of formation of a strong discontinuity
by collapse of a weak discontinuit; (d) variable bandwidth law.

compatible, in turn, with the equilibrium of the body. Therefore, we assume
that at time t = t5 a non-smooth deformation rate, described by the rate of
the deformation gradient (7), begins developing. The equilibrium condition
across the discontinuity surface S requires the jump of the nominal traction
vector to be zero:

[7] = |P(Xs) - P(Xq+)| -N =0 (24)

Assuming loading conditions in S and neutral loading in /8%, and after
some algebraic manipulations, it is possible to derive from (24) the following
equation [4]:

A preliminary analysis shows that this scenario determines the first (and, therefore,
the most unfavorable) possible bifurcation.
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S

where c™"¢ is the tangent constitutive tensor, which relates the Kirchhoff

stress convective rate with the rate of deformation (L,7 = c'""¢ : d, see
Appendixes T and II for applications to particular models). The criterion
to determine bifurcation is based on the detection of the singularity of the
localization tensor Qq,, this allowing a non-trivial solution for the velocity

jump ([4] # 0) in equation (25):
det [Qu(en, HT™)] =0 fort=tp (26)

The first time that equation (26) is fulfilled, for a given material point, de-
termines the bifurcation time tp for that point, and allows to obtain both
the normal e,,, which in turn determines the direction of propagation of the
discontinuity interface S, and the initial value of the bandwidth hq (see figure
2d) in terms of the critical softening parameter H“*. For further details on
this particular procedure the reader is referred to references [35], [22] and
[23].

3.4 The continuum and discrete free energies

There is a broad set of continuum constitutive models founded on thermo-
dynamic basis that can be used in finite strain settings. A key point in
those models is the definition of the continuum free energy density func-
tion Y(F,T), in terms of the gradient of deformation tensor F, that acts
as the free (thermodynamically independent) variable, and a set of internal
variables I" (including the inelastic strain measures) characterized by specific
evolution laws [14]. The nominal stress field P can be then directly obtained,
on thermodynamical reasonings, from that continuum free energy as:

oY(F,T)

P(X.1) = ==

= 9y (F,T) (27)

which qualifies the continuum free energy 1 as a potential for the nominal
stress field P.

12



In this context, let us consider the discontinuous interface S and the free
energy per unit of such a surface 7, from now on termed the discrete free
energy, which, in the context of the regularization procedure sketched in
section 3.3, can be written as:

3 = feceneny _ free energy _ unit volume — lim Aol
unit surface unit volume unit surface h=k—0 S (28)
——— —_—
P h

_ Now, by considering the strong discontinuity kinematics (8), F(F,3) =
F+ ££(8 ® N), in equation (27) one gets:

0

W0 = oy = fimgh ey
P

MSH
eS|
U
v\‘l
g}
<

(29)

?5(

=P -N=T

Equation (29) hints at a crucial consequence of the consideration of strong
discontinuous kinematics in continuum (stress-strain) models: projection of
those continuum models into discrete (traction-displacement jump) ones. In
fact, the discrete free energy 1, obtained as the discontinuous surface coun-
terpart of the continuum free energy density ¢, turns into a potential of
the nominal traction 7 =P - N, with respect to the incremental jump 3,
as shown in equation (29). This suggests that a discrete model can be de-
rived from that discrete free energy and, therefore, from the inclusion of a
strong discontinuity kinematics in the original continuum model. Indeed, this
is what is shown, for certain representative families of constitutive models
(continuum damage and elastoplasticity), in next sections.

3.5 A representative continuum damage model

Let us now consider the extension to the finite deformation range of the
isotropic continuum damage model presented in [20]:

13



P(b,r) = (1 —d)y°(b)
Freee energy: W(b)= IXN(J2—1)—(3+pu) logJ (a)
—1—%# [tr(b) — 3]
P =0
Constitutive ﬁFQP (b)
tion:
equation - — 9% 6‘b¢:§[A(J;1)1+M(b—1)]
Damage d=1-2": 1+ ¢€[0,00) (c
variable: r (30)
Evolution . r € [0,00) (@)
law: T=T g =10 >0
Damage ‘ 1
criterion: #o ) =T —q ; To =4\/0C O (e)
Load.-unl.
> =
conditions: 720 ¢=<0 ve (f)
ng. ) . e |0,
Soft tenmg Gg=Hr ; H<0 { 1 no[t rol (2)
rule: Q|t—o 2 g0 =10

where b(F) = F - F” is the left Cauchy-Green deformation tensor, r is a
scalar strain-like internal variable which determines the damage (or degra-
dation) level of the material and ¢(r) is a stress-like internal variable that
sets the evolution of the elastic domain E, := {o ; ¢(o,q) < 0} through the
damage function ¢(o,¢q). In addition, in equation (30-(c)), d(r) =1 — @
is the classical damage variable ranging from 0 (undamaged state) to 1 (full
damage). Also in equation (30-(e)) 7, is a norm of the stresses in the metric
of the tensor c;l (see Appendix I for the explicit expression of such a tensor
and additional characteristics of the model).

3.5.1 Strong discontinuity analysis

Let us now find out what conditions make the unbounded strains at the strong
discontinuity regime, for ¢ > tsp (and thus h = k — 0), compatible with
the stress boundedness requirement of section 3.1. Using the multiplicative
decomposition (5) and expressions (8) and (10), one can rewrite the Kirchhoff
stress (30-b) in the discontinuous interface S as:

14



(31)

where b = F-F". The corresponding Cauchy stresses can be then written,
taking into account equations (10) and (11), as:

1 1
USZjTSZ%(GO—i_EUl) (32)
where:
A k i k _
=——)14+=(————|(b-1 33
70 2J<k+ﬁ-%> +J(k+ﬁ-ﬁ)< ) (33)
and

A _ p( BB 2u koo~
— ZJ(k a1+ 2 (2 T (b sym
2 (k+8-n) +J<k+ﬁm>+(J%+ﬂqJ nep)
(34)
Now from equations (32) and (34) one can write:
limkr og =qlim (k o9 +01) = g limo
F—0 E—0 C S~ ~— =0 1
bounded bounded bounde (35)
for k—0 for k—0 for k—0

where the bounded character of o g (from section 3.1), oo (from observation
of equation (33) and ¢ € [0, ry] have been considered. In view of equation
(35) we now consider the following two scenarios:

I) }i_r)rg)krzO (for t > tgp):

Then, from equations (34) and (35):

OZE%UF%qun1+7é%5m®ﬁy:0 — B=0 (36)

15



II)

which states that the incremental displacement jump 3 is null and there
is no evolution of the jump at the strong discontinuity regime. There-
fore, this scenario would not model the strong discontinuity evolution
and has to be discarded. The alternative scenario is then:

%ir% kr #0| (for t > tgp):

Such condition is trivially fulfilled if we provide the following structure
for the evolution of r:

def
= Tsp (37)
= rsp+i (Gy—asp)
I na

where @ and @ are imposed to be bounded and different from zero for
t > tsp. In fact, from equation (37) it follows that:

]{irr(l) kr = }iH(l)kT’SD +(a — agp)
—s| —
-0 (38)

= (a4 — asp) “I Aa #0 Vt>tsp

Therefore the point is now to guarantee the bounded character
of q. Looking at equation (30-(g)) in connection with equation (37):

s =H 7.“.5 =H % a =
bounded % bounded

(39)

Hi =H (bounded) = |gs = H &

Thus, equation (39) is fulfilled from the following softening regulariza-

16



tion condition®:
H=hH Vt>tp (40)
where H < 0 (from now on termed the discrete softening parameter)

is a material parameter”.

Notice that the enforcement of equation (40) implies fulfillment of equa-
tions (39) and (38). Therefore, substitution of equation (38) into equa-
tion (35) leads finally (in view of equation (34)) to:

limg_g (kros) = Aaog =qo =

| o 1 (41)
o5(8) = F5limyo 01 = 5 [3T(B- 1) 1+ p7h=B8® G

Equation (41) provides a set of six (due to symmetry) equations
that allow to solve for the incremental jump 3 (three equations) and
supplies three constrains on the stress field og. In fact by multiplying
such equation times n one obtains:

7T=(1-w)Q- -8; w=1-x,; we[-o0,1] (43)

that can clearly be interpreted as a discrete damage law for the cohesive
interface. It describes the relation between the traction 7 and the dis-
placement jump 3 in terms of a discrete damage variable w € [—o0, 1]®
and an acoustic-like stiffness tensor Q . In turn, equation (43) can

6In strict sense the softening regularization condition is only required at the strong
discontinuity regime (H = kH V¢ > tsp) but, in the context of the variable bandwidth
model, it is also extended to the weak discontinuity regime (tg <t < tsp) (see references
[22] and [23]).

"In fact the discrete softening parameter H can be readly related to the fracture energy
concept in fracture mechanics[20].

8The initial w = —oc value states that the induced discrete model is a rigid dam-
age model. This extends to finite deformation settings this feature already proved for
infinitesimal strains settings [20].

17



Figure 3: Orthogonal basis attached to the discontinuity surface.

be solved for B ( B = %Qfl -T) and, once substituted into equa-
tion (41), provides a set of three equations in terms of o, which are
termed the strong discontinuity conditions [20], that have to be fulfilled
at the strong discontinuity regime (f > tgp). In a local orthogonal basis
(e1, €9, €3), see figure 3, with unit vectors e, and es laying on the tan-
gent plane to the discontinuity surface, S, and e; = n/||n|| = n/||n|,
they can be written as:

)

029 = ﬁall + %)‘(0%2/011)
_ A ptA 2
033 = =011 + = ~(013/011
e o (/) Vi > tep (44)
023 = %(012013/011)
% 79 (1 (12
(A= 572 [al’) )

which states an explicit non-linear functional dependence of the stress
092, 033 and o3 on the traction vector components [7] = (011, 012, 013].
Therefore the strong discontinuity conditions impose a particular stress
state at the discontinuous interface S that make it directly dependent
on the traction 7 i.e.:

g = O'S(T) Vi Z tSD (45)

Now recalling the expression of the discrete free energy (28) for the
particular case of equations (30a) one obtains, after some algebraic
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manipulation:

lim k(b ) = (8, 5.Aa) (46)
oB.8.00) = L0508 5y = 213 8+ u(B-8) (47

and, from the expression of the discrete free energy (47), the constitu-
tive equation (42) is immediately recovered by derivation (7" = Qjﬁ), as
suggested in section 3.4. From that, the following discrete constitutive
model can be finally obtained:

3.6 A representative elastoplastic model

Freee energy: - Vo Af}) —(- wW}U (a)
P B =3B ) 1 uB- B
Constitutive T=0,y=(1-w)Q B (b)

equation: Q(Jn) =3J°(n@n)+p 1

Damage _ 4 q(hd) _

variable: w=1-"% we(-ool] (c)

Evolution o Aa € [0,00)

law: =75 { Aal, =0 (d)  (48)

Damage (b(Ta Q> =T71 — (s (e)

criterion: T = \/Gs(T) . c;l co5(7T)

Load.-unl. _ = o

conditions: 720 ¢<0 7¢= (£)

Softening. . I qs € [0, gsp]
=Ha; H <0; no

rule: as { . asl.. (g)

As a second family of constitutive equations let us consider those isotropic
elastoplastic models based on the multiplicative decomposition of the defor-
mation gradient in the elastic and a plastic counterparts [14]:

F—F° . FF

(49)

such that the spatial velocity gradient (1) the rate of deformation (d) and
the spin (w) tensors are evaluated as :

1=1°+1;

d=1""=d + d ;
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with

e =Fe.F !, 1P =F¢.FP.Fr L. pel —Fe. P .Fe! (51)

dr = [Fe . (Lp) . Fefl]syrn : wP = [Fe CLP Fefl]skw (52)

A particular model belonging to such a family is the J, plasticity model with
isotropic hardening described through the following ingredients ([30], [27]):

O(F, FP, a) = ¢°(b°) + H(a)
Y(b%) = 1N tr¥(Ln Vbe)
Freee energy: +u Ln Vb : Lnvbe (a)
HP (o) = %HQQ
(be — Fe. FeT)
P =0,y =0.¢ <=
Constitutive T =2b° - Opet” (b)
equation: = Xtr(Ln \/g) 1 +2u(Ln \/g)
S Lit=c:d°=c°: (d—dP)
Plastic . ) _ _ /3 _dev(r) 53
flow rule: & =ym ; om=06= iy | (© 63
FEvolution . a € [0,00)
law: “=7 { al,_o=0 (d)
Yield ¢(1,q9) = o(1) = (1y +q) ©
criterion: &5(7-) = % |dev(T)||
Load.-unl.
conditions: 720 9<0 7¢ =0 (®)
Softening. q = 0,HP () q € [0,7,] (2)
rule: G = OaaHP(a) & = Ha ql,—o not Qo =T, &

where 1°(b¢) and HP(«) are, respectively, the elastic and plastic counter-
parts of the free energy and « is the scalar strain-like internal variable, LS(+)
is the Lie derivative associated to the motion represented by F¢, 7 stands
for the Kirchhoff stress (dev(7) being its deviatoric counterpart) and c° is
the elastic constitutive tensor relating the stress rate L¢(7) with the elas-
tic deformation rate d°. In equation (53e) ¢(7) is the uniaxial equivalent
Kirchhoff stress and, therefore, the plastic flow tensor m = (‘9,.&5, in equation
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(53c), is non-dimensional and bounded. Moreover q is the scalar stress-like
internal hardening variable, H < 0 is the continuum softening parameter and
T, and 7y are, respectively, the yield stress and the plastic multiplier.

In addition to the equations (53) the evolution of the term w” can be
written as:

wl=yW(r) = P=d’+wP=v (m+Ww) =~l
o (54)

not g
1

For this family of isotropic models with scalar internal variable, this evolution
law does not play any role in the constitutive model, resulting 7 independent
from w? and, therefore, from w (by assuming w = 0, the above model results
the same one as that presented in ([30], [27])). For convenience, here we adopt
an arbitrary, but bounded, not null value for w. Additional details on this
model can be found in Appendix II, where the integration algorithm for the
constitutive equation is also shown.

3.6.1 Strong discontinuity analysis

Like in the damage model case, let us investigate what conditions make the
elastoplastic model of equation (53) compatible with the strong discontinuity
kinematics and the stress boundedness conditions stated in section 3.1. The
analysis is based on the following algebraic identities:

- From the identities L,7 =+ —1-7 — 71" and 7 =Jo ([31]) some
trivial operations lead to:

L,7=L,(Jo)=J[tr))oc+6—-1-0—0c-1"] (55)
- From the identity L, T =L¢T — 1" .7 — 7 -1’7 the constitutive equa-

tion (53-b) (L¢T = c® : d® = c°: (d — dP)) the plastic flow rule (53c)
(d”? = ym ) and equation(54) one gets:

Lyt = Lt —(Pr+7-1°)
. . (56)
= c°:d—7 ce:m+Jl-0'+J0'-lT]
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Let us now consider the following particular times for the strong discon-
tinuity regime (¢ > tgp):

a) (the strong discontinuity time) characterized, therefore, by a
null value of the incremental displacement jump (8 = 0, see equation
(4b)). In consequence the following identities fulfill from the equations
in section 2.1:

J = J (bounded) = lim kJ =0

h=k—0
h=k—0 (57)
lim kd = lim k17" = pg (LsB @ n)™™

k—0

]{ir% ktr(l) = ]{11% g tr(LyB @ i) =pg(LyB3 - i)

Bearing these results in mind, by equating expressions (55) and (56)
for a given point on S, multiplying both sides of the equality times n,
and taking the limit for the strong discontinuity regime (h = k — 0)
one gets, in view of equation (57):

0-c-n+J (i -os-0) -Lﬁﬂ:Qe-L@ﬁ:(/{n% kvy) r

~ /
v~
Qe

where the bounded character of og and &g (and, thus, },ir% kog =

(58)

lim k&5 = 0) has been considered. For the most common case, tensor
k—0

Q¢ is positive definite’ (detQ® > 0) and the following two options can
be considered in equation (58):

1) }LI% ky = 0 (v bounded).Thus, since r is bounded, equation (58)

reads Q¢ - L33 = 0 and thus L33 = 0 precluding any evolution
of the jump at the strong discontinuity time tsp (and the corre-
sponding bifurcation stated in Section 3.3). In consequence this
possibility should be discarded and the only feasible option is:

YUnder the reasonable assumption, for normal materials, that the stress magnitudes
(characterized by the yield stress value 7,) are smaller in comparison with the elastic
parameters A and p it can be shown that the tensor Q° = n - c® - ﬁ+j(ﬁ-as-ﬁ) 1is
positive definite.
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2) }ir% ky =% #0 (y = O(1) = unbounded). Although, according
to the previous reasoning, this condition is only required at the
strong discontinuity time (¢ = tgp), we shall extend it to the whole

strong discontinuity regime, i.e.:

lim ky =5 #0 Vit > tsp (59)

b) |tSD <t < 0. | For any time in this range, and with regard to the nor-
mal component of the incremental jump (3,, = 8- n), two possibilities
appear:

Case b-1 . Now the following identities fulfill from the
equations in section 2.1:

J=J(1+ 'BTﬁ) (unbounded) = ]likmo kJ=JB- i

1=1+2L5 (L;B®n) (bounded) = ’likmo (k1) =0

Fpn
(60)
lim kd= lim kI’ =0
h=k—0 h=k—0
lim ktr(l)=0
h=k—0

By equating expressions (55) and (56), multiplying both sides
times k2 and taking the limit for the strong discontinuity regime
(h =k — 0), in view of equations (59) and (60), one obtains:

i ) . T
%1_{1(1)]422[/1,7'5 = }71_{1(1) kJ k[tr(l)ag+as—l-as—as -l]

JB-n =0

_ . 2 e.3 e .
= 0—]{%(k c’:d— kv [kc®:m+

JB-n
(61)
N —
£0 (62)

i-O'S—l-O'S'iTIO
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and, taking into account equation (54), equation (62) reads:

l-o +o 17 = m(o +w|- o
s+os m(og)+W] os ] (63)
+os-m(og)+W| =0 VYW

where the fact that og is independent of w?, described by W, is
emphasized. Consequently, the arbitrary value of W in equation
(62) makes o = 0 the only possible solution for such equation
and, therefore, we conclude that the trial condition 3-1n # 0 must
be discarded and the only feasible option is:

Case b-2 . Now again equations (57) hold from substitu-
tion of condition B - = 0 in the ones in section 2.1. In addition,
since 3-n=0 Vt>tgp then:

0=4(8 n)=LB-n+B  Ln

F-N=0 (64)

=|L;3-n=0Vt>tgp

that precludes the development of the normal component of the
jump 3 - . Therefore only mode 11 type discontinuities (tangential
displacement jumps) can be modelled using the plasticity model
in equation (53). This restriction is also found for infinitesimal
deformation settings for J2-type plasticity models'® [20].

As we have seen above the obtention of the results in equation
(64) lies crucially on the fulfillment of the plastic multiplier regu-
larization condition (59), that, in view of equation (53d), can be
rewritten as:

limkéa=5#0 V> tsp (65)

In an manner analogous to equations (37) to (40), for the dam-
age model, such condition is fulfilled if the following structure is

10Here in fact, and according to the preceeding reasonings, this result is unaffected by
the chosen flow rule (and it holds for any definition of the flow tensor m). Therefore,
unlike the infinitesimal strain case, in large strain settings this result is not only restricted
to Jo plasticity models.
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provided to the evolution of the continuum internal variable « :

== dmfpa==a =
tsp =
o t & _ 1/~ - (66)
o= —dt + Ldt = aesp + 7 (G — @sp
/0 B ftspk k:< t )
def _ difA,
= Qsp = (6%

@ and & being bounded and different from zero for ¢t > tgp. Look-

ing now at the evolution equation (53g) for the softening variable
11.

q
gs =H_&_ =Hi _a_ = Hi=H (bounded)
bounded % bounded (67)

gs = H &

where H stands for the intrinsic or discrete softening parameter,
we arrive again to the softening regularization condition:

H = hH (68)

as a sufficient condition to make consistent the preceeding analy-

sis. In view of equations (53d) and (66) this softening regulariza-

tion condition translates into the following regularization of the
plastic multiplier:

=& =—a=—7 69

Y=b=g 0=y (69)

On the other hand, by equating expressions (55) and (56), mul-

tiplying both sides times k and taking the limit for the strong
discontinuity regime (h = k — 0), in view of equations (57) and

The bounded character of qg comes from the condition ¢ € [0,7,]. The bounded
character of gs lies on the bounded character of 05 and &g (and therefore of 76 = J 0g
and 7g) and the consistency condition: ¢(7¢) =0 = §g¢ = m(7g) : T4 = (bounded)
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(64) the result reads:

limkL,7s = J(LB-1)og
=0
— J(LoBon-og+as 0@ L:0)
AL f T (70)

= Ce . (L{]ﬁ ® ﬁ)sym
— ky Ceims+j(i'05+05'iT)]
N
=7
and, reordering terms, one gets:

(LoB ®0)™" = Jms — ¢ 2[(LoBRT)™—7J(1- 075)™™)]

(71)
and substitution of equation (69) yields:
(LyB@0)"" =amg—c“':r (72)

For the frequent case in which the elastic parameters are (u, A) >

o, we can consider negligible the term ¢! : r in equations (71)
and (72), which finally reads:

(LB © 0)"™ =G mg (73)

In addition, from equations (73) and (64) the following properties
follow for the kinematic entities at the interface of discontinuity

S:

1) By equating expressions for the tensor d given in equations (15) (d =
sym(l) = d + 3 (L;8 ®n)¥™) and (50) for ¢ > tsp(and, thus, h =k —

d=d+d=d+i(L,8®0n) ™™
i(LsB@n) ) S
d=d°+d? =d°+ ;ymg = d° + +(L;8 @ n)»™
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d® =d (bounded)

- (75)
dr = d =1(L,8 @ n)™™

which states that the plastic flow dP translates entirely into displace-
ment jump. This constitutes an extension to the finite deformation
setting of a similar results already found for infinitesimal strains [20].

2) Condition B-fi = 0 and, from equation (10) J = JJ = J leads to
75 = Jog = Jog, stating (since J and og are bounded entities) the
bounded character of the Kirchhoff stresses 75 (and also 7g) at the
strong discontinuity regime. This result, combined with the identity:

[éTe = 4o —1¢ - To—T .leT =c®:d¢ = 1¢ = bounded
v S S S S N——

(76)
bounded bounded

states the bounded character of 1°. Now, from equations (50) (1 = 1°+17)
and (14) ) 1=1+ +(L;B®@n)):

— 1¢ p_— ] Bs(T_ T p_ 17 i

1=1° +P=_1 +5(L;8®n) =1 =(L;8®n) (77)

bounded bounded

This result, combined with equations (54) (w? = yW) and (69) (y =
27) yields:

wP = skw(lF) = 1(L;8 @ n)™ Y = 4% =13%W =
- (79)
W :ﬁ(LT)/B ® I_I)Skw

providing a given structure to the (initially undetermined) spin w? at
the discontinuity interface .S, in terms of the incremental jump B and
the normal n.

3) Equation (73) is a set of six (due to the symmetry) algebraic equations.
Again, in the local orthonormal basis (e, es, e3), as depicted in figure
3, the components of equation (73) read (after considering equation

(64) (LsB), = Ly -1 = 0):

(LsB), =0 5 (LeB), 3 (LeB), o [ mi maz

1 7

5({’5[3)2 0 0 —H Mmi2 Moy M3

%(L{,,B)g 0 0 mq3 Mo3 133 g
(79)
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from which the following evolution of the incremental jump can be
obtained:

({’5'6)1 =0
(LT),B)Q = ’_VH—;IHQTTHQ (80)
(Lﬁﬁ)g = ’_Ym?mw

together with the strong discontinuity conditions on the Kirchhoft’s
stress field:

m11(Ts) = Mmaa(Ts) = ma3(Ts) =ma3(1s5) =0  Vt>tsp (81)

The definition of the flow tensor (m = 0,¢) in equation (53-(c)) to-
gether with the strong discontinuity conditions (81) yield:

mgg(Ts) = Orm 0
Mmas(Ts) = %qi(;) =0 Vi>tsp =
mas (1) = F = 0

(1) =F (111, 119718) =F (- T) = F(++T) = (82)

where equations (11), (12) and (21) have been considered. Combining
equations (80) and (82) one finally obtains:

L:B=ym ; m=0rF(+T) (83)

which constitutes a discrete constitutive equation for the jump @3 in
terms of the nominal traction 7.
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Finally, the discrete free energy concept can be also recovered here from
equations (28) and (53-a):

v(B,a) = lim kyY(F,F?P «)

h=k—0
1 _
= lim ky(b%) +lim koHo® = 5Ha’ (84)
B e ——
Y'=0  HP(a) =3Ha?

where the bounded character of 1°(b¢)!? and equations (67) and (68)
have been considered. By collecting the previous results, the following
discrete elastoplastic constitutive model is obtained:

_ 1 —
y &) = ‘ + —H@2

Freee energy: v ) \QP/ 2 (a)

=0 HP ()
Plastic - PN
flow rule: LyB=ym ; m —87]-"(@7) (b)
Evolution G 7 ©
l}(izyci}d (85)

1 - T (1
criterion: 7 (WT’ gs) = F (W7> —ds (d)
Load.-unl. R B
conditions: 720 F=0 7F =0 (e)
. = @Hp O

Softening. q(iS: aaal:'p((of)) qs € [0, q:oltj] (0
rule: a=H & qs|t:tSD = 4sp

It is readily observed that the constitutive model (85) is a rigid-plastic model,
since the elastic counterpart, 1)°, of the resulting discrete free energy is null.
This fact can be also observed from equation (85-(b)) since unloading, charac-
terized by 4 = 0, results in L33 = 0, and no evolution of the total displace-
ment jump takes place as corresponds to an infinite (rigid) instantaneous

12The bounded character of b® can be stated from the constitutive equation (53-b)
(Ts = Mr(Lnvbe I+ 2u(Ln v/be)) and the fact that 75 is a bounded entity. From that,
the bounded character of the elastic free energy (53-(a)) (¥°(b°) = X tr?(Lnvbe) +

w Ln/be: Lnvbe) for t > tgp follows trivially.
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elastic stiffness. This extends to the finite strain settings the same property
observed for the induced discrete plasticity models at infinitesimal strains
[20].

4 CONCLUSIONS

Throughout the previous sections the strong discontinuity approach (SDA)
for different constitutive models in finite strain settings has been explored.
Although the topic had already been tackled in slightly different contexts [2],
[12] here we have extended the results found by the authors in infinitesimal
strain settings [22], [20],][23] to the large strain case. As the main result we
have shown that the strong discontinuity analysis procedures used there can
be extended to the large strain case, by only changing the considered strong
discontinuity kinematics (7), and the same set of conclusions are achieved.
That is to say: a) the regularization of the softening parameter (40) in the
continuum (stress-strain) constitutive model induces, via de traction continu-
ity condition (20) and the softening regularization condition (40), projected
discrete (traction-displacement jump) constitutive models, (48) and (85), at
the discontinuity interface (see figure 4) b) this fact requires a particular
stress structure to be reached at the discontinuous interface, that is deter-
mined by the strong discontinuity conditions, (44) or (81) and c¢) the variable
bandwidth model of section 3.2 provides a tool to automatically induce those
strong discontinuity conditions and to relate them to the fracture process
zone concept, classically considered in fracture mechanics [23].

In addition, those induced discrete constitutive models keep the fam-
ily character of the original continuum constitutive ones (damage or elasto-
plasticity) and share the common feature of being rigid models (the initial
stiffness is infinite). Indeed, they are analytically different from the ones ob-
tained in infinitesimal settings [20] since the continuum-discrete projection,
determined by the kinematics, is different.

As in the infinitesimal strains case, the initiation and propagation of the
displacement discontinuity can be here determined via standard procedures
supplied by the discontinuous bifurcation analysis for finite strain cases. Fi-
nally, and as the most distinguishing feature of the SDA, for practical pur-
poses the complete analysis and simulation can be done in a continuum for-
mat, both for the continuous and discontinuous regimes, since the discrete
constitutive models are automatically induced from the traction continuity
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a)
Continuum model Discrete model

unloading unloading

€ B

i) F=[1 +%(B an)] -F Strong discontinuity conditions
i) P-N=R'N R(c)=0
i) H=hH

b) F A C)

F F(o)
4—{ > —
u, (e
1'D o L * (o) 2-D ‘é B

Figure 4: a) Original (continuum) versus induced (discrete) constitutive re-
sponse, b) and c¢) induced discontinuous interfaces.

and the softening regularization. Part 2 of this work is devoted to these
issues.
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APPENDIX I: Damage model, constitutive tangent tensor,
localization condition, incremental integration

In this appendix additional details related to the damage constitutive
model of section 3.5 are presented. First we particularize the damage function
(30-e) by adopting :

1 Ao
dlog) =+Jo-c;' - o—q; c;'= I-— 121 (Al-1
(.4) ¢ P 2uy 20(2p + 3)y) (A1)

I being the fourth order identity tensor. The surface ¢(o,q) = 0 defines
an ellipsoid of revolution in the stress space, where parameters p, and Ay
governs the ratio among its major and minor axis.

The constitutive tangent tensor associated to this damage function is
given by:

Ly =c™8:d =c"™®8: (V,) (AL-2)
ctang  — %Ce + (TQ,;;Q) [9723;1"(?)7—_ QT + (Ct‘l}(;) . 7“2) Fo1
+Zre7 ;i >0 (AL-3)
cwns = Gcf;if <0
where 7 = -7 =(1 — d)7 is the effective Kirchhoff stress, and c® is the

hyperelastic constitutive tensor:

c=XN(1®1)+2uT;
(AL-4)
N=A25 o =+ 51— 07

where A, p are the Lame’s parameters of the hyperelastic law (equation 30-a);
and the scalar factors ¢, 6 are :
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(= Nw— 38\ —2u*k ; 0 =2u*w

(AI-5)
— 1 . — Ao
w= 2pg h= 2pg(2p5+3rg)
We write the localization tensor Q,, of Section 3.3 as follows :
no e r 1
Q, "2 Q'=1q (1 + [q—’ - —2} £ p) (AL-6)
r rq T

Q°=e,-c°-e,+ (e, T-e,) 1 being the acoustic elastic tensor satisfying
det(Q°) > 0, and vectors &, p being given by:

§=(Q) "' Tey
; ) (AI-7)
p= _2'33(7)7- e, + (Ctgf) —qr)e, + %—“57‘2 e

Recalling the term g, = H, the critical softening modulus H“* which
makes singular the localization tensor Q¢ (det(Q?) = 0), is then determined
through the following expression :

Hcrit —

S IR

(1 N 670-20) (A1)
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Damage integration algorithm

The following box describes the integration algorithm.

Box 1: Damage integration algorithm

Assume that incremental displacement are given at time ¢ + At.
Then: evaluate the following terms

Z) Ft+At ; bt+At ; Jt+At

.. _ (J2, A1)

i) Tiar = A—5—1+p (bt+At -1)

‘. trial qt — .

i) Ol = _Jt AL T \/ Ti+At C¢ “Tirat — G
if ¢"%, <0 then

there was unloading and the result of the integration step is:
TirAt = z_z"_-t-i-At ; TiyAt = Tt Qi+t = Gt

else if ¢;7%, > then

there was loading and from the equation ¢,, , = 0 it is obtained

__1 = 1=
Tt+at = 74, \/Tt+At "Cp " TirAt
which finally determines:

_ ) _ Quiar =
Qine = @ + H(reear — 1) TirAr = ot

T
Tt At t+At

endif

This algorithm is slightly modified in the weak discontinuity regime to

take into account the bandwidth variation, and hence the softening modulus

dependence with q.

APPENDIX II: Additional topics on the elasto-plastic model
and the integration algorithm

The following hypotheses of the elastoplastic model have been considered:
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- The elastic response is isotropic: the elastic left Cauchy-Green deforma-
tion tensor b® = F¢.F¢” is colinear with 7. Let g; and (\$)? (i = 1,2, 3)
be the eigenvectors and principal values of b¢ (b® = (\{)?g;®g;). Then,
7 has the same eigenvectors ( 7 = 7;8; ®g;, with 7, the principal values
of the Kirchhoff stress).

- Plastic isotropy: the yield function ¢(7,q) is an isotropic function of 7
and 0, ¢ is colinear with 7. The internal variable ¢ and its dual variable
a, related to the isotropic hardening mechanism, are scalars.

By using the principal values of 7 and b®, equation (53-b) can be rewritten
as :

Ti = M + &5 +€5) + 2uef (AIL-1)
where € = In A{. The elastic constitutive tensor c® results (see [6], page 90):
¢’ =i (8 ® g ®gr ®g) (AII-2)
with components ¢, given by:
Cfijj = A +2(p— Ti)6ij
(AII-3)

e2 . e2 .
/\j Ti—A{ T

g i = Gy = ez (1#7)

Cj = C
These expressions are meaningful if the principal stretches are unequal (A #
Aj). Otherwise the reader is referred to reference [6].

Next, we sketch the integration algorithm used in the numerical applica-
tions. We follow the work of Simo ([30], [28]). This author considered the
assumption w” = 0 (which is not strictly verified by the integration scheme
proposed in that work). Nevertheless, from the fact that the plastic spin in
the relaxed configuration (LP)*<" is arbitrary (it does not need to be con-
stitutively defined in an isotropic elasto-plastic model with scalar internal
variables'® ([7])), it relieves the inconsistency of this assumption respect to
the considerations adopted in this paper.

13 Alternatively, this statement can also be rephrased in terms of the intermediate plas-
tic configuration associated to the multiplicative decomposition (49). As a mater of fact,
for isotropic elastoplastic models with scalar internal variables, that intermediate con-
figuration is defined by the constitutive model (53) except for a rotation which remains
undetermined.
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Using the flow law (53-c), one can write :
F°. L7 - F ! =ym (AII-4)

From the polar decomposition F¢ = V¢ . R? recalling the colinearity of
tensors m and V¢, we obtain from (AIl-4) :

L =9R*" -m-R® (AIL-5)

We use an exponential approximation to integrate F? = L?.F? from time
t to time t 4+ At, resulting :

Fpt+At = exp(Ath+At) . Fpt (AII—G)

Taking into account that Fiyn; = Fiar - FPiiae, equation(All-6) can be
rearranged to give :

Féine = (FO)" - exp(— ALY, A,) (AIL-7)

where we call (F¢)"™ = F,, o, - (F?,)"!. Equation (AII-7) can be put alter-
natively as:

Viiar = (Ve)trial -exp(—Aymy, ) (AIL-8)

where Ay = yAt and R¢, o, = (R)™2; or by using the principal values of
each tensor

( f-s—At)i = ()‘e);rial exp(—Ay Mgy ar) 1=1,2,3 (AII-9)

which results :

(e)erar = (0 AL, a) = (MAT™); — At My A

= (66)1}ria1 - A’Y Mit+ At » 1= ]-7 27 3

(2

(AII-10)

Finally, given Fy 5, and (F¢)"™ equations (AII-10), (53-g) in incremen-
tal form:

Grat = G+ HAY (AII-11)
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and (AII-1):
Titrar = METtrar + €5erar + €5erat) + 20(5 11 At) (AII-12)

plus the loading-unloading conditions (53-f) which we rewrite in incremental
form :

A’V >0 ¢(Tt+Ata C]t+At) <0 A’Y ¢(Tt+Ata C]t+At) =0 (AH-13)

determine all unknowns (714 a¢, Grrat, Ay, FPiiar and F¢  a; ) in the loading
step. This equation set can be solved in the same way as it is done in the
infinitesimal model, i.e. by using a return mapping algorithm.

The algorithmic tangent tensor for this integration procedure, Cj;, is
defined through:

l}, TiAL = Ctafgi : dt+m = C?fgi : (Viflwm) (AH‘14)

Further details on the structure of C;'%, for this particular model can be

found in the work of Simo [30].
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On the strong discontinuity approach in finite
deformation settings. Part 2: Numerical
simulation.

Abstract

This second part of the work is devoted to developing the large
strain counterpart of the nonsymmetric finite element with embed-
ded discontinuity, frequently considered in the Strong Discontinuity
Approach, and to performing numerical experiments to display the
theoretical aspects tackled in Part 1 of this work, as well as to empha-
sizing the role of the large strain kinematics in the obtained results.

keywords: Strong discontinuity approach, damage models,
elastoplastic models

1 INTRODUCTION

In Part I of this work [15] the theoretical aspects of the strong discontinuity
approach (SDA) at large strains have been presented. The main result in
there is that, on the basis of any standard (stress-strain) continuum consti-
tutive model ! and introducing the following ingredients:

- large-strain strong discontinuity kinematics

- regularization of the softening law

1 As a matter of example, in Part 1 isotropic elasto-plastic and continuum damage mod-
els have been considered as target models, but the obtained conclusions are not restricted
to those particular constitutive models.
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- nominal traction continuity across the discontinuous interface,

a discrete (traction-displacement jump) constitutive model is naturally
induced at the discontinuity interface, as a 2D projection of the original
3D constitutive law. The directionality of such projection is provided by
the normal to the interface which, in turn, is obtained from the classical
discontinuous bifurcation analysis [21],[16].

Consequently, the main feature of the SDA is that both the bulk of the
body and the discontinuity interface can be treated in a continuum format
using the same continuum constitutive model. Therefore, unlike the classi-
cal discrete approaches, the SDA does not require the explicit introduction
of ad hoc discrete decohesive constitutive equations at the interface of dis-
continuity, since it is automatically induced by the kinematics which, in
turn, is consistent with the phenomenological motivations of the continuum
model. In addition, some typical numerical difficulties found in the discrete
approaches’ are naturally overcome in the SDA.

This Part2 of the work is devoted to the numerical aspects of the SDA, es-
sentially to: 1) describe the ingredients required for the numerical simulation
of solid mechanics problems involving strong discontinuities and 2) perform
numerical experiments in order to confirm and highlight the theoretical re-
sults obtained in Part 1. For the sake of simplicity only 2D problems shall
be considered here, leaving the 3D case for future works.

For numerical simulation purposes, the SDA requires its particular kine-
matics to be captured by the selected numerical procedure. In the context
of the finite element method, this suggests the use of the so called finite
elements with embedded discontinuities [6],[10],[18],[12],[2]. In reference [§]
one can find a review of the different approaches proposed in the technical
literature on the subject. The topic is not closed at all and intensive research
is currently undertaken aiming at developing more robust and reliable finite
elements to capture strong discontinuities. [5],[4], [7],[17],[20].

The remaining of this paper is structured as follows: in section 2 a de-
scription of the finite element technology, for the large strain kinematics case,
is provided. Section 3 is devoted to present a set of numerical simulations in

’For instance, the numerical difficulties found to match the rigid behaviour re-
quired to provide physical meaning to the discrete constitutive equation. This is com-
monly approached by means of elastic-plastic, or elastic-damage, decompositions of the
displacement-jump field, combined with a numerical penalization of the elastic counterpart
that is a source of ill-conditioning problems.
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Figure 1: Finite element with embedded discontinuity

the context of the SDA, for both of the families of constitutive models tack-
led in Part 1 i.e.: continuum damage models and plasticity models. Finally
some concluding remarks are presented.

2 FINITE ELEMENT APPROACH

Conceptually there are not substantial differences between the finite element
technology for the infinitesimal strain case, reported elsewhere [12], and the
one used here for the numerical simulations in large strain settings. There-
fore, in this section only a brief sketch of the considered finite element with
embedded discontinuity will we provided, emphasizing the specific features
introduced by the large deformation kinematics.
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2.1 Discretized displacement field

Let us consider the material domain  discretized in a triangular® finite
element mesh with n., elements and n,,4. nodes crossed by the disconti-
nuity interface S(see figure 1a). Let us then consider the subset J of the
n 7 elements that are crossed by S at the considered time ¢ :

TJ={e|QQnNS#0}={ei....em....p ...} (1)

This subset is determined by means of an specific algorithm devoted to track
the discontinuity [12]. For every element of 7, the tracking algorithm also
provides the position of the elemental discontinuity interface S, (see figure
1b) of length I, which defines the domains € and 2, and leaves one node
at one side of the element (the solitary node j*°) and two nodes (jland j2)
at the other side. The sense of the normal N inside the element is chosen
to point toward the solitary node side 2.

Based on this, and motivated by the kinematics presented in Part 1 of this
work, we consider the following interpolation of the (rate of) displacement
field u(®inside a given element e [12]:

- (e ;(e) j— e K e .
aOX, 1= a7 +i = NI NOX)AE + MO (X)), ()
— \ ~ c(2)
- (e) (e)
u

where ﬁ(e) is the standard CYdisplacement field, interpolated by the shape
functions {Nl(e), NQ(e), Née)} of the linear isoparametric triangle [22], in terms

of the nodal displacements d;(t) at node i. The term ﬁe), in equation
(2), captures the singular (discontinuous) part of the displacement field in
terms of the elemental displacement jump[[d]], and the unit jump function
MG (X) defined as follows:

0 Ve ¢ J
H(X) = N

sol

ME(X) = { (3)

3From now on the three noded (constant stress) triangle will be considered as the basic
element for explanation purposes. Generalization to other families of finite elements can
also be done but it is out of the scope of this work.

(X) Ve e J
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where Hf;) is the step function (Hf;) (X) =1 VX eQlr and Hée)(X) =
0 VX €9, ) and the index “sol” refers to the solitary node. Figure 1c shows
the Mf;) function and emphasizes its elemental support.

The term MS) (X) [[@]].(¢) in equation (2) can be regarded as an enhance-
ment of the basic displacement field $i=3 N (X)d;(t), provided by the un-
derlying isoparametric finite element, which due to the particular structure of
the unit jump function M$ in equation (3) makes the resulting displacement
field discontinuous.

The kinematics of equation (2) can be also expressed in compact form as:

(X, t) = N(X) - d(t) + M(x) - (t)
d={dda, ) o A= {0, L

From equations (2) and (3), the discrete (rate of) deformation gradient
reads:

(4)

0 40 0 vy = D (A © VxN) - (fill, ® Vx )

/

f‘(e) (b;unded) (5)
+6s ([[a]] ©N)

where 65 stands for Dirac’s delta function emerging from the spatial deriva-
tion of the Heaviside function Hf;) in equation (3) (VxHée)(X) = OsN).
Notice that equation (5) exactly matches the strong discontinuity kinematics
discussed in Part 1.

As pointed out there, in order to overcome the numerical difficulties of
treating with the Dirac’s delta function, and also to model the transition from
the weak to the strong discontinuity regimes, s is replaced by a regularized
function 65 defined within the element e as:

e e 1
05 = n§ 5 (6)

where h, is the elemental bandwidth, defined according the variable band-
width model outlined in Part 1, and ,LLS;) is a collocation function whose
support is the domain S* in figure 1b defined in terms of the regularization
parameter k :

45



p9X)=1 vXedst

pg(X)=0 VX ¢Sk v

By considering equations (6) and (7) the regularized form of the rate of
deformation gradient (5) reads:

PO = B2 (@ @ V) = (il © V) + ([l o)
e € ~ - (8)
_(e)

F  (bounded) unbounded for h, — 0

In order to integrate the discontinuous terms emerging from the second
term of the right-hand-side of equation (8), in addition to the regular sam-
pling point of the constant strain triangle (PG1 in figure le), the element is
equipped with a second integration point (PG2 in figure 1e) whose associated
area is:

meas (S¥) = ki, (9)

The regularization parameter k has an arbitrary small value (as small
as permitted by the machine precision). Therefore, integration of regular
(bounded) terms in S* results in arbitrary small values, which makes the
approach consistent. Also notice that neither k£ nor h, are associated to any
length of the finite element or mesh.

2.2 Body equilibrium and discrete equilibrium equa-
tions

Let us consider the material configuration of the solid, €2, with boundary
0 =T, UTl,, where I, is the part of that boundary where displacements
are prescribed and T', the one were tractions are given(see figure 2), crossed
by the discontinuity interface S that splits 2 into the domains Q" and Q.
The local equilibrium of the body is described by the following equations:
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Iy

Figure 2: Strong discontinuity in a body

P-Vx +p,B=0 for (X;t)eQ\Sx|[0,T]
" DIV (P)

P-N=7 for (X,t) €Ty x[0,T]

Poi -N=Pqo N for (X,t)eSx]0,T]

(10)

where P(X,t) is the nominal (first Piola-Kirchhoff) stress tensor (Pqo+ and
Pg- being its values at the domains QF and Q7 respectively), p,(X) is the
density B(X,t) are the body forces, 7 ®*(X,t) stands for the external forces
applied at the boundary T', and [0, 7] is the time interval of interest.

As stated in Part 1, in the SDA an additional traction continuity condition
should be imposed in S to induce at this interface the discrete (traction vs.
displacement jump) constitutive equation. This reads:

Ps N=Pg. N (=P, -N)=T for (X,t)eSx|[0,7] (11)

Let us consider now the following variational form at the domain 2/S:

5HQ\5(u;ﬁ) = fQ/SP : (ﬁ@VX) ds)



where Vg is a (material) linear space of the smooth C° functions that take
null values at the prescribed displacement boundary I', (admissible virtual
displacements 7). After some algebraic manipulation it can be readily shown
that equations (10) are the Euler-Lagrange equations of (12). Therefore
equation (12) (in fact the virtual work principle for the domain 2\ S) enforces,
in weak form, fulfillment of the set of equations (10).

After introducing the spatial discretization of equation (4) the discrete
counterpart of equation (12) reads®:

Sy (ubm™) = [P (7" ® Vx) dQ—

/B-ﬁth— T .7"dl =0
Q I_‘O'

-~
Gemt

vit e Ve Y (F(X)=N-6d; &d|, =0)

On the other hand, the nominal traction continuity condition (11) can be
weakly enforced in terms of the averages of 7 = P - N inside every element
e € J as follows:

1

— | P-NdQ = i/P-NdQ; Veec J =
\kle Sk . Qe Qe (14)
mean value of T on Sk mean value of 7" on €2,
o 1 0 -
P (ngs N dQ2=0 ; VeeJ (15)
Q. kle Q.

where the discontinuous character of the function ufse) inside the element (see

equation (7)) can be captured by the integration rule sketched in figure le.
Finally, some algebraic manipulation of equations (13) and (15) leads to:

fQi P (VX NZ) dQ) — fiext =0 \4) € {1, ..... ,nnode}

Gt P N Z0  vees

Qe

4Observe that, due to the zero measure of the interface S and the bounded character
of the integral kernels, the integration domain can be extended from Q\S to Q.
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f;X*:/ Ninv+/ N; T 4T (17)
Q; 00,y

where (); stands for the support of the shape function NN;. The discrete sys-
tem of equations (16) provides a set of 7,04 + 717 nonlinear equations to solve

for the nnoge + ny unknowns d ={d; ....d,_, }; v = {[[u]]l, [[u]]nj}

of the discrete problem as pointed out in equation (4).

For computational purposes, and since the constitutive equations in Part
1 are given in terms of the symmetric Kirchhoff stresses 7 = P - FT where
F :g—)’z is the deformation gradient tensor and x(X, t) are the spatial coordi-
nates, equation (16) can be appropriately rewritten, taking into account the

identity Vx (o) = V(o) - F as:

le T - (Vi N;)dQ —f>x =0 ; Vi€ {1, ..cc.; Npode }
(18)
er(,u‘(;)%—l—i)‘r-ndQ =0 : Veec J

where n = F~7 . N is the convected normal at the spatial configuration,
as described in Part 1, and (e)” stands for the transpose of (e). For the
considered 2D case in a cartesian (z,y) coordinate system, equation (18) can
then be cast into the classical B-matriz format [22] as:

€=MNelem

¥ [ / BO" . {7} dQ—Fem“@}:o (19)

e=1 e

where | stands for the assembling operator and the elemental B-matrix,
B(®), the 2D Kirchhoff stress vector {7}, and nodal forces vector, F**(®) are
given by:

Bo=[ B BY BY G<e)] (20)
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Bz('e) =10 ayNi(e) ; G = (N‘(se)% - l_ee) 0 ny
8,N §,N ny Mo
fcxt(e) (21)
1
Txx ext(e)
nl‘ ext(e f
{rh=| w = [ g ] ; Bt = f%xt(e)
Ty 3 0

The structure of equations (20) and (21) suggests the introduction of an
internal additional fourth node for each element e, that is activated only for
the elements crossed by the discontinuity interface (e € J) and whose corre-
sponding degrees of freedom and associated shape function are, respectively,
the displacement jumps [[u]], and Mfse) in equations (2) and (3). Since the
support of Mfse) is only €2, those internal degrees of freedom can be eventu-
ally condensed at the elemental level and removed from the global system of
equations.

2.3 Time integration and linearization

In the context of a time advancing process, the rate equation (8), within
the element (e), is integrated at time ¢ + At, in terms of the corresponding
values at time ¢ and the incremental values of the nodal unknowns Ad; and
Al[u]],, as follows:

% As a technical detail in equation (22) notice that the elemental bandwidth is updated
with one time step delay (he,, 5, = he(t)). In the context of the variable bandwidth method
at the weak discontinuity regime, this explicit updating makes linear that equation, with
a considerable simplification of the whole procedure while keeping the consistency of the
integration method.
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F(X,t+At) ZLFn=
=F, + %= |Ad; @ VXN}@)]

— (Al[ull, @ VNG, + 5§ 725 (Al[u]] @N) (22)

{ Ad; = d;(t + At) — dy(t)
Alu]], = [[u]l (t + At) — [[u]].(t)

On the other hand, the algorithm of the continuum constitutive
model updates the stresses 7;.a; in terms of the updated gradient of de-
formation tensor F;,o; and the previous values of the stresses 7; and the

internal variables ¢;, and also provides the algorithmic constitutive operator
Cff; (see Partl, Appendices I and II, for details [15]):

Tiat =F (Froae, T q) ; I@TH—At CQfZ@ (Ve ® flt+At)S (23)

Using standard procedures [19], linearization, in the direction ;4 a¢, of the
equilibrium equations (13) and (15) at time ¢ + At and yields:

Jo, @@V (W ar®Vs) - Ty ny + Lo(Terar) dQ - Crest —

Jo, (183 = &) [(0s ai® V) - Terae - ntLo(Tiia) -] d2 =0 (24)

x|

Vﬁhefig; Vee J

which, after substitution of equation (23) ( LyT t1a¢r = C;lf’glt (Vi ®@ygar)®)
and some algebraic manipulation, reads:

Ja, (ﬁh@’v ) [(1@Tar) + ]+ (V@i ar) dQ— G =0
fQ Ms km - glfe) n (T ®1) + C;let] H(Vx®yiar) d2 =0 (25)
v € \78 ; Vee J
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_ de .
were (1®Tt+m)ijkl e OikT i and (Tiat ® 1)Z.j,€l = 740, From equations (2),
(3) and (13), the terms V,®1;,; and (7"®Vy) in equation (24) can be
expressed in discrete form as:

Vx@ilt+At - Ezi? VXNZ(S) ® dit+At + //L‘(se) hel(t)n ® Hl:l]]

~VNG [,

'RV = £i=36d ® Vi N©

After insertion of equation (26) and some algebraic manipulations equa-
tion (25) can be rewritten, in discrete form and for the 2D problem in a
cartesian (z,y) coordinate system, in the following B-matriz format:

E=MNelem
U7 (] B ] Bifan + [ BTl B )

-~ -~

ngo Kmat (27)

d(e) 1 Sext(e)
. X =F
|: Hu]]e t+AL A

where F¢** € is given in equation (21) and K., and K,,q can be recognized,
respectively, as the classical geometrical and material tangent stiffness [22].
The remaining terms of equation (27) can be described as:
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B — |: Bge), Bée)’ Bge)’ G(e)]

x(e) _ e e e «(e)
B()_[Bg)’ Bé), Bg), Gt+Ati|

8N 0 ny 0
B = | 0 N | i GO =t -&) |0 n
ay Nz'(e) am Ni(e) ny Ny
Ny 0 am]\]i‘eo)l O
GL(:)At :/k(se)%(t) 0 ny [ = |0 ayNgeo)l
ny M Ny DN

B~ B, B, B, GU |

geo

*(e e e e x(e
ng"): [ Bée)ou Bée)oev BEJG)OS” G : }

geot At
8NP 0 n 0
N 0 n{? 0
B _ | %l GO (01 Ly | ™
geo; 0 o, Ni(e) geo=(s % Qe) 0 n;e)
0 a,N® 0 ny
ngf) 0 O, N 5(2 0
GO 0 1 ny) 0 _ o,N% 0
el N el v
0 n?(f) 0 ayNs(jl)
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0 0 Tay Tyy
_ (Z;TJT)M . a“:‘m
{LT’T} - (éﬁT)yy i AVx®@Wiat = | Oty (30)
5T )z Ug + ) o U
LT )y Oyly + Onylly, n
L-T — algor . (V ® i )S
VT oppAL t+At x LAt

) 0

{LT’T t+At} = C;:ligAt ) {VX ® ﬁt+At}

Observe that, due to the differences B© # B*© and B'%, # B (emerg-
ing from the different matrices G¢ # G*© and G # G{2,) in equations
(28) and (29), the tangent stiffness K = Ke, + Kiat, in equation (27), is not
symmetric. This should be expected from the continuum formulation of the
problem since the traction continuity equation (11) has not been imposed
from the variational principle (12), but enforced in an average or weighting
procedure through equation (14). This fact confers to the presented finite
element procedure the character of a Petrov-Galerkin finite element approxi-
mation in front of the classical Galerkin-based finite element approaches. The
resulting procedure has been sometimes termed, in infinitesimal strain set-
tings, the Statically and Kinematically Optimal Nonsymmetric formulation
[8], emphasizing its improved behavior in front of other symmetric alternative
finite elements with embedded discontinuities.

3 NUMERICAL SIMULATIONS

In this section the numerical method described above are applied to the
simulation of different problems where strong discontinuities develop. The
main goal is to show that these numerical simulations behave as predicted
by the theoretical analyzes in Part I, as well as to highlight the role of large
strain kinematics in the obtained results in comparison with those obtained
in infinitesimal strain settings.
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The constitutive models considered in the simulations are the ones de-
scribed and studied in Part I of this work [15] i.e. an isotropic continuum
damage model and an elastoplastic model both considering large strains.

3.1 Damage models
3.1.1 Specimen under biaxial stress state

This example highlights the role of the variable bandwidth model described in
Part1 in the SDA. A square specimen is subjected to a biaxial stress state by
imposing a constant displacement u,, and a gradually increasing displacement
u, on the upper and right edges of the plate respectively, see figure 3a. As
the total change in the specimen’s geometry during the experiment is small®,
it can be considered that the stress o, remains constant.

The material is characterized by the following parameters: elastic Lame’s
parameters A = 0.[M Pa] , u = E/2 = 1.10*| M Pa], continuum softening pa-
rameter H = —0.125[M Pa, discrete softening parameter H = —0.125[M Pa-
Cm_1]7

The damage criterion is that defined in Appendix I of Part 1, with u, =
@ and Ay = A . Under these circumstances the elastic threshold results
ro = qo = 0u/VE = 0.00707[M Pa]*/? (where o, = 1.[M Pa] stands for the
uniaxial strength and E =2.10*[M Pa] for the Young modulus).

The bifurcation analysis determines the normal to the discontinuity in-
terface as e, = (1,0)7 and the only nontrivial strong discontinuity condition
IS O0ga0yy — O'?Ey = 0. Since, due to the geometrical symmetries and loading
conditions, 0., = 0, the strong discontinuity condition reads oy, = 0 which
clearly is not trivially fulfilled at the bifurcation time ¢g. Therefore bifurca-
tion takes place under the form of a weak discontinuity, and a weak-strong
discontinuity transition regime has to be introduced. This is governed by a
variable bandwidth law h(q), given by (see figure 3b):

6Even though the changes in the specimen geometry are small and, therefore, the be-
haviour at the bulk of the specimen is supposed to be the same than in infinitesimal strain
settings, the large strain kinematics applied to the discontinuous interface will provide
different results than in the small strains case.
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h=hy=1: t<tp (¢ > qB)
h=Fk+ 2ok o tp<t<tsp (gsp < q<qp) (31)

4B —4SD

h=k; t>1sp (¢ <aqsp)

where ¢ and with gsp stand for the values of the internal variable q at the
bifurcation time, tg, and at the strong discontinuity time, tsp, respectively.
The value ggp is defined as qgsp = (1 — v)gs (v € [0,1]). Therefore, the
transition factor + determines the size of the weak discontinuity interval
[gsp,qn] so that for v = 0 there is no weak discontinuity regime (¢sp = qp)
and the bifurcation is imposed under a form of a strong discontinuity. On
the other hand, if v = 1 then gsp = 0 and all the post-bifurcation stage will
be traced as a weak discontinuity.

As a matter of example, results, obtained with several values of ~, are
presented in figurer 3¢ and 3d.

- For a very short transition regime’, determined by a small transition
factor v = 0.05, it appears an unexpected reloading (in terms of P, —u,
response) immediately after bifurcation (see point A in figure 3c) fol-
lowed by the regular expected unloading response. This can be ex-
plained as follows: since after bifurcation an incrementally elastic be-
havior is algorithmically imposed at 2\S, as expected from the the-
oretical bifurcation analysis in Part 1, violation of the strong discon-
tinuity conditions make the stresses at that point infringe the damage
criterion as the process evolution proceeds (see figure 3e). This results
in an artificial elastic loading at that part of the body® responsible,
in turn, for the behavior observed in figure 3c up to point A, where
the strong discontinuity condition o, = 0 is fulfilled at S (see figure
3d). Beyond that point the strong discontinuity regime takes place and
regular elastic unloading occurs at Q\S (see figure 3e) resulting in the
P, — u, unloading branch in figure 3c

- For longer (slower) transitions, determined for instance by v = 0.2 or
~v = 0.5, this artificial reloading is no longer observed and the tran-
sition from bifurcation to the strong discontinuity regime takes place

"For practical purposes this is equivalent to enforce bifurcation into a strong
discontinuity.

8 As a matter of fact if this elastic reloading takes place a ”two material” constitutive
equation (elastic at Q\\S and elasto plastic at S) is artificially imposed by the algorithm.
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Figure 3: Square specimen: a) geometry and boundary conditions; b) band-
width variation law h vs. ¢; ¢) total load P, vs. lateral displacement w,;
d) equilibrium path in the principal stress plane for a point in S (singular
Gauss point PG2 in Figure le; e) idem for a point in /S (regular Gauss
point PG1 in Figure le)

smoothly as shown in figure 3c and keeping the theoretical elastic un-
loading at Q\S .

These results confirm that, as predicted by the theoretical analyzes in
Part1, the strong discontinuity kinematics can not be imposed immediately
(or very shortly) after bifurcation, but a certain transition regime (weak
discontinuity) is necessary to smoothly induce the strong discontinuity con-
ditions.

In addition, it can be observed in figure 3c that the final slopes of the P, —
u, curves are the same in all cases. This could have been expected from the
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fact that this part of the structural response is ruled by the induced discrete
(traction-displacement jump) constitutive equation which, as it comes out
from Part1, is independent of the size of the transition regime.

3.1.2 Debounding problem: Crack propagation in Mode I

This example is devoted to get some insight on the influence, on the structural
response provided by the SDA, of the chosen kinematics (large or infinitesimal
strain kinematics) when the regular bulk deformation (at ©2\\S ) is not small.
In other words, to determine if consideration of large strains at Q2\S makes
any difference regardless the induced separation law at the discontinuous
interface S.

For that purposes use is made of the damage model described in Part 1
[15] and its particularization to the infinitesimal strains settings given in [13].

Since the induced discrete constitutive models for both cases (infinitesimal
and large strains) are different, they are made equivalent in terms of the
fracture energy as a material property. The fracture energy G, defined as the
external mechanical energy required per unit of surface of the discontinuity
interface S to produce the total decohesion of the material [3], can be then
computed as:

6= [ TX0)- (X 0t (32)

where it is assumed that complete decohesion (7 = 0) is achieved at time
too.

Considering the same reference problem (uniaxial stress process) Gy can
be computed and equated for both cases leading to:

Small strains Gy = —o2/(2E H¥al)
Large strains G; = —o?2/(E H"™#°)

= |'Fllarge — Qﬂsmall (33)

where o, stands for the uniaxial peak stress and E for the Young modulus.
The relationship between the discrete softening parameters H, obtained in
equation (33), is then extended to more general stress states as an approx-
imate way to keep the fracture energy as a common material property for
large and small strain kinematics.
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With these considerations in mind, in figure 4 the simulation of a de-
bounding process in a composite panel is presented.

Two plates, initially bound together, are enforced to separate by pulling
the upper notch, as depicted in figure 4a. Both the plates and the binding
material are assumed to have the same material properties, and, as a result
of the loading process, a crack propagates vertically beneath the notch and
along the binding.

Two different fictitious materials, both having the same G; (H'®® = 0.4
and H*™al = 0.2) , and different elastic properties (see figures 4c and 4d)
have been then considered. The rigid material has elastic properties 1000
times larger than the soft one. This precludes large elastic strains and dis-
placements to develop at the bulk for this material, unlike the soft material
case . As it can be checked in figure 4c, the results obtained assuming finite
strain or infinitesimal strain kinematics are quite different for the soft ma-
terial (which allows the plates to undergo large strains and displacements).
However for the rigid material case, figure 4d shows very similar responses
for both types of kinematics since large strains do not develop at the bulk
and the separation law is made equivalent for both cases through equation
(33). These analyzes confirm that, regardless the induced discrete constitu-
tive equation, the considered kinematics does make a difference in the results
if large strains can develop at bulk.

In figure 4c, invariance of the results with respect to the regularization
parameter k is also shown through comparison of the results obtained with
two different values (k=10 %and k = 1077).

3.2 Elastoplastic models

In next examples the J2 plasticity model for large strains, presented in Part
1 [15], is considered in the context of the SDA.

In both cases, and following the reference works, the analysis begins by
adopting a (almost) perfect elastoplastic material. After achieving a given
level of deformation, a significant amount of softening is enforced in order to
induce localization.

As for the bandwidth model, the same linear bandwidth variation law
h(q) of the damage model, (equation 31 and figure 3b) has been used here.
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3.2.1 Localization in a homogeneous problem

This example is taken from references [1] and [5] where the analysis is made
by introducing explicitly a discrete elastoplastic constitutive model at the
interface, regardless the strong discontinuity conditions. A rectangular plate,
shown in Figure 5a, is stretched by imposing a uniform displacement d at
one side of the plate keeping the other side fixed.

The elastic material parameters, which correspond to the model of Appen-
dix II in Part 1 and the plain strain case, are: A= 110.7GPa, p = 80.2GPa
and 7, = 450.[M Pa]. The considered hardening/softening law is given in 5c;
the uniaxial peak stress is 7, = 450.[M Pa| and the initial slope of the curve
T, — a is given by a very small hardening modulus; H =0.1[{Gpa]®. At a cer-
tain (imposed) value ays , of the internal variable a, the hardening/softening
modulus is modified to the negative value H = — 12.[Gpa] in order to induce
an immediate bifurcation and the corresponding localization at the band of
elements crossed by a (straight) discontinuity interface S'°. Therefore, vary-
ing the value ay;r one can induce an early bifurcation (for small values of
apis ) or a late bifurcation (for large values of ap;iy ).

Once again, the purpose of this simulation is to highlight the role of the
strong discontinuity conditions and to show that, even though the numerical
results can, sometimes, hide its role they can not be, in general, neglected.

In figure 5d the Cauchy stress (at the bulk) oq/s vs. the displacement d
are plotted for two different values of oy i.e.:

1) A small value ay;y = 0.0025. This corresponds, for practical purposes,
to not considering any perfect plasticity branch before the bifurcation,
which is induced immediately after yielding.

2) A large value ay;; = 0.025. This corresponds to considering a relatively
large perfect plasticity branch as made in reference [1].

As for the variable bandwidth model two different values of the transition
factor ~ are considered:

9For practical purposes this can be considered a perfect plasticity branch.

10Gince the geometry and the material properties make the problem, and the pre-
localization stress field, homogeneous, the position of the discontinuity interface is enforced
to pass through a given point (point A in figure 5b).
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a) A very small transition factor v = 0.001. For practical purposes this
corresponds to an immediate imposition of a strong discontinuity kine-
matics after the bifurcation. In the plots the corresponding results are
labelled strong discontinuity solution and are equivalent to impose the
induced discrete constitutive equation immediately after the bifurca-
tion as it is done in reference [1].

b) A non negligible transition factor v = 0.1. This corresponds to intro-
ducing a weak discontinuity regime immediately after the bifurcation,
for approximately the first 10% of the softening response, to gradually
induce the strong discontinuity. In the plots the corresponding results
are labelled variable bandwidth model.

Amplified plots of this curves around the bifurcation are also shown in
the same figure 5-(d). It is remarkable the unphysical response obtained
for the strong discontinuity case (y = 0.001), since unexpected reloading
takes place immediately after bifurcation, translating into sharp peaks in the
curves. Although the amount of this reloading is smaller for the large perfect
plasticity branch (ap;; = 0.025) and it is somehow hidden in the global plot,
the amplification shows clearly that the problem is still there an so are the
same type of inconsistencies than for the short perfect plasticity branch. On
the contrary, this problem does not show up in the results obtained with the
variable bandwidth model (y = 0.1) which are smooth with no reloading
effect as can be checked in the figure.

The explanation for such phenomena can be found in the strong disconti-
nuity conditions as in the example in section 3.1.1. The strong discontinuity
conditions for the plain strain case can be written, according to the strong
discontinuity analysis made in Part 1, in terms of the deviatoric components
of the Kirchoff stresses 79as:

dev __ _dev __ _dev __
Ti1 = Toy =Tg3 =0 (34)

where a cartesian system of coordinates with the third direction orthog-
onal to the plane of analysis has been considered. To evaluate the de-
gree of fulfillment of equations (34) in a scalar variable, the value SDC =
V(T8)2 + (7957)2 4 (7457)2 has been computed along the deformation process
and plotted in figure 5e. It can be observed there that, for the perfect plastic-
ity case (ap;y = 00), the value SDC' tends asymptotically to zero, so that the
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strong discontinuity conditions are never fulfilled in perfect plasticity regard-
less the length of the horizontal branch. This explains the reloading peaks
observed in 5d as a consequence of the lack of fulfillment of the strong discon-
tinuity conditions at the bifurcation combined with the immediate imposition
of a strong discontinuity kinematics. However, if the variable bandwidth
model is considered after bifurcation, the strong discontinuity conditions are
quickly, but smoothly, fulfilled at the end of the transition regime, as it can
be checked in figure 5e for the transition factor v = 0.1 , this explaining the
absence of the unphysical reloading peaks in be.

Finally, in figure 5-(f) the normal ([[u,]]) and tangential ([[u;]]) compo-
nents of the displacement jump at point A in figure 5b are plotted. It can be
checked as the displacement jump is null all along the deformation process
as it was predicted by the strong discontinuity analysis of Part 1 for plastic-
ity models in finite deformation settings. Notice that condition [[u,]] = 0 is
not explicitly imposed by the continuum format of the constitutive model,
and its fulfillment in the numerical simulation constitutes a proof that the
discrete constitutive equation predicted in the theoretical analysis is actually
induced during the simulation.

3.2.2 Localized shearing in a plane strain specimen with substan-
tial necking

This problem has been taken from reference [9] here considering a different
localization mode. The goal of this simulation is to apply the SDA to a
problem were considerable concentration of the strains, producing substantial
necking and the corresponding large regular strains, takes place before a real
bifurcation an the subsequent strong discontinuity occur.

In figure 6a the geometrical characteristics of the problem are presented.
The specimen, in plain strain, is stretched by applying a uniform vertical
displacement at the top edge. Due to the symmetry of the problem, only
1/4 of the structure is modelled using two different finite element meshes
(Meshes A and B in figure 6¢). Mesh A is not structured while Mesh B is a
structured one with a particular pattern of triangles to alleviate the possible
numerical locking due to the incompressibility of plastic flow, as it has been
reported in the classical literature [11].

The continuum constitutive model is the J2 plasticity one described in
Part 1. The elastic material parameters are: A = 80.[GPa] and y = 80.|G Pa]
and the hardening/softening law is given in figure 6b. The uniaxial peak
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stress is 7, = 220.[M Pa| and the discrete softening parameter is H =
—2515[M Pa). The transition factor is y = 0.4

Figure 6d, shows the load vs. displacement curves obtained with meshes
A and B. It is observed that in the first part of the curves, before the sharp
softening, both of them give very similar results. The slight difference which
arise before the onset of bifurcation, can be caused by locking effects in mesh
A. However, in the post bifurcation regime, both meshes exhibit a similar
response showing that the possible pre-bifurcation locking does not crucially
affect the development of the strong discontinuity regime.

In figure 6e the final deformed meshes are presented showing a consid-
erable amount of necking. Unlike what happens when the pre-bifurcation
strains are small, the concentration of the strains in a non-zero bandwidth
zone smears the displacements contours out of the band of elements crossed
by the discontinuous interface S (see figure 6f). Anyway, the classically re-
ported orientation of the localization in a band forming about 45° with the
horizontal can be clearly noticed.

4 CONCLUDING REMARKS

In this second part of the work a numerical methodology for the applica-
tion of the Strong Discontinuity Approach in large strains and finite element
contexts has been presented.

As for the considered family of finite elements with embedded disconti-
nuity, it does not conceptually differ much from the one used in infinitesimal
strain settings. Through the numerical simulations performed in this work, it
has been proved its ability to capture strong discontinuities also when large
strain kinematics are considered. The main drawback of this type of finite el-
ement, the necessity of a global'! algorithm to track the discontinuity across
the finite element mesh, remains in the large strains context. The global
character of this algorithm makes its implementation in typical finite ele-
ment codes cumbersome, and difficult to deal with multiple crack problems,
branching phenomena etc.

The numerical simulations carried out, also corroborate the predictions
of the strong discontinuity analyzes made in Part 1 i.e.:

U The global character means that the algorithm can not be implemented only affecting
the one element level (local level) of a finite element code, but at higher levels of the
algorithmic structure of the code.
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- The relevance of the strong discontinuity conditions and the role of
the transition (weak discontinuity) regime, and the proposed variable
bandwidth model, to make the simulations physically consistent[14].

- The role of the type of kinematics (large or small strains) in the simu-
lations results. As general conclusions it can be said that:

1. The induced discrete constitutive equations depend, in general,
on the considered kinematics. For instance using the considered
damage model, as it has been shown in section 3.1.2, for uniaxial
stress cases results in a factor of 2, in the value of the resulting
discrete softening parameter H for large/small strains, if the same
value of the fracture energy G/ is considered .

2. Even if the same large strain setting is considered, whether large
or small strains are actually developed at the regular part of the
body causes substantial differences in the obtained results. In the
context of the SDA this fact would eventually justify the use of
its large strains counterpart that has been presented in this work.
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