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Abstract. In this paper, we investigate the application of Smoothed Particle Hydrodynamics 

(SPH) method to the computation of flows in microchannels with sudden expansion. 

Numerical modeling with SPH involves the treatment of flowing matter as distinct mass 

points, leading to discretization of the Navier-Stokes equations (or other appropriate PDEs) 

and providing great flexibility to handle large deformations. The computational methodology 

exhibits similarities with other particle methods, such as Molecular Dynamics (MD), 

Dissipative Particle Dynamics (DPD), and Smooth Dissipative Particle Dynamics (SDPD). 

These similarities lead relatively easily to the development of a weakly compressible SPH 

within the framework of Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS). The LAMMPS environment, albeit mostly intended to MD simulations near the 

atomic scale, provides a fully parallelized framework for particle simulations, such as SPH. 

In this work we studied microchannel flows of variable cross section. Sudden expansions 

generate strong discontinuities in the flow field. Flow models based on various inlet/outlet 

boundary conditions for example, Periodic/Fixed BCs, and their implementations are 

presented in the context of 3-D simulations. Minor artifacts may be observed near the wall 

corner discontinuities, but, overall, the SPH captures the main flow characteristics and 

achieves very good accuracy. 

1 INTRODUCTION 

Fluid flow numerical simulation has gained wide acceptance in various branches of 

industry over the last decades. Conventional methods have faced insurmountable difficulties 

in some cases where the fluid flow involves geometrical complexities, chemical reactions, and 

scale problems, to mention a few [1,2]. Therefore, the use of novel numerical tools, which 

have been validated and proven reliable, may provide satisfying solutions in many industrial 

problems, such as chemical analysis, biomedicine, microscopic interactions, and phenomena 

which are usually neglected at the macroscopic scale [3]. 

Numerical methods are broadly classified into Lagrangian, Eulerian and mixed type 

Langragian-Eulerian methods. In the non-adaptive Eulerian approach, a fixed Cartesian mesh 

covers the computational domain; no remeshing is performed and large deformations of the 

continuum are resolved possibly without mesh adaptation. In adaptive Eulerian methods the 



Chatzoglou E., Sofos F. and Liakopoulos A. 

 2 

mesh adapts to the solution and allows the computation of rather challenging flow fields. 

However, adaptive Eulerian methods may have limitations in terms of cost and convergence 

to the correct solution. In the Lagrangian approach, the mesh (when used) moves naturally 

and follows the boundaries, leading to a simplified numerical handling of free surfaces and 

interfaces, since no grid points are needed outside the continuum. Yet, large deformation of 

the continuum may negatively affect the numerical accuracy [4]. To remedy this issue, 

various adaptive Lagragian methods have been proposed. 

Smoothed Particle Hydrodynamics (SPH) is a mesh-free method, based on the concept of 

describing the flow by following the motion of fluid particles (point masses). All the 

information associated with the fluid particles is associated with each point mass, which 

interacts with other neighboring particles under common physical laws, based on a built-in 

approximation utilizing a kernel function [5,6]. A number of SPH formulations have been 

proposed covering the whole spectrum between the original Lagrangian formulation and 

recent Eulerian variants [7,8]. The SPH computational methodology exhibits similarities with 

other particle methods, such as Molecular Dynamics (MD), Dissipative Particle Dynamics 

(DPD), and Smooth Dissipative Particle Dynamics (SDPD). A brief discussion on the scales, 

where these methods are appropriate, is given in [9]. It should be noticed that SPH is a 

numerical approximation of the partial differencial equations of continum mechanics in 

contradistiction with MD, DPD, SDPD which are valid in flows where the continum theory 

may or may not break down [10-11]. 

 The mesh-less nature of SPH and the kernel truncation close to boundaries can cause 

difficulties in enforcing solid boundary conditions [12]. Moreover, there is still considerable 

ambiguity in the simulation of highly turbulent flows without the demand of vast 

computational time, especially when the fluid passes through confined channels that demand 

special boundary treatment for accuracy very close to the solid walls. 

In this work, we have investigated the SPH performance in simulating the flow inside 3D 

closed channels with the presence of an abrupt change in cross-section area. Emphasis has 

been given to the comparison of inlet/outlet boundary conditions. Simulations were run with 

the SPH method as implemented in LAMMPS [13,14]. The results show good accuracy in 

terms of comparison with the analytical solutions. However, further study is necessary in 

order to resolve convergence issues close to the fluid-wall interface and to improve the 

accurate imposition of boundary conditions.  

2 MATHEMATICAL RELATIONS 

SPH is a method in which the fluid is divided into a set of discrete moving particles. The 

governing equations describe the co-moving evolutions of ρ (density), r (position), u 

(velocity), e (energy per unit mass), and Q (heat flux-vector) [13] 

                                               
𝑑𝜌

𝑑𝑡
= −𝜌𝛻 ∙ 𝑢                                                                      (1) 

  
𝑑𝑢

𝑑𝑡
= −

1

𝜌
𝛻 ∙ 𝑃 + 𝛻 ∙ [𝜈(𝛻𝑢 + 𝛻𝑢𝑇)] + 𝑔                                             (2) 

𝑑𝑒

𝑑𝑡
= −𝜌𝑃: 𝛻𝑣 −

1

𝜌
𝛻𝑄                                                             (3) 
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where P  is the pressure, v the kinematic viscosity and g the external force (per unit mass). 

SPH interpolates the set of the above field variables by means of kernel interpolation. For a 

representative function f(r), we write 

𝑓(𝒓𝒊) = ∑ 𝑚𝑗𝑗
𝑓𝑗

𝜌𝑗
𝑊(𝒓𝑖 − 𝒓𝑗)                                                 (4)                                                                         

where W is the kernel function. The sum in Eq. 4 theoretically extends over all the fluid 

particles, yet only particles for which 𝑟𝑖 − 𝑟𝑗 < ℎ need to be considered for appropriately 

selected kernel function of compact support. This saves computational cost but can lead to 

inaccuracies close to boundaries (especially wall-fluid interface).  

2.1 Local Density approximation 

Local density which is calculated for each particle, is a smoothed quantity obtained from 

the contribution of neighbor particles within the range of kernel smoothing length (h). 

𝜌𝑖 = ∑ 𝑚𝑗𝑗
𝜌𝑗

𝜌𝑗
𝑊𝑖𝑗                                                         (5) 

Here W is the kernel function and i, j two different particles. 

2.2 SPH formulation of the Navier-Stokes equations 

In the SPH models of our simulation we employ a weakly compressible form of governing 

equations which are written in a general form as 
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Here, jiij  −= , ( )
2

3x x
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V ,   +−= p  and   are 

the components of the stress deviator, ijW the kernel (weight) function, jm (mass), i

(density), ip (pressure),  ( )1 2 3, ,   velocity, and μi the dynamic viscosity coefficient of the ith 

particle. 

The pressure field is computed through the Tait’s equation of state  

0

1P B







  
 = − 
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
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2.3 SPH treatment of viscosity  

The equation of motion is derived after the evaluation of the gradient of the pressure 

tensor, suitable for implementation in particle methods, such as MD and SPH. Considering 

only inertia and pressure forces the interactions between neighboring particles are   

2 2

d

dt

ji
i i i j j ij

j i j

PP
m m m W

 

 
= = − +  

 
 

iv
f                                         (10) 

The calculation is embedded in the SPH code, without any special consideration by the 

user. To incorporate viscosity, an additional viscous term Πij is introduced and the above 

expression for the pair-wise forces takes the form 

2 2

ji
i i j ij j ij

j i j

PP
m m W

 

 
= − + +  

 
 

f                                              (11) 

with 

𝛱𝑖𝑗 = −𝑎ℎ
𝑐𝑖+𝑐𝑗

𝜌𝑖+𝜌𝑗

𝑣𝑖𝑗 ∙ 𝑟𝑖𝑗

𝑟𝑖𝑗
2+𝜀ℎ2                                                   (12) 

Here i, j are particle indices, c is the speed of sound, α is an auxiliary factor for control of 

dissipation, and ε an auxiliary factor used to avoid singularities when ij 0→x . As a rule of 

thumb ε 0.01 . Artificial viscosity can be expressed in terms of an effective kinematic 

viscosity ν as: 𝜈 = 𝑎ℎ𝑐/8  [13]. 

For laminar flow, an expression for derivatives is proposed [15] which seems to reproduce 

laminar flows correctly 

        𝑓𝑖 = − ∑ 𝑚𝑖𝑚𝑗(
𝑃𝑖

𝜌𝑖
2𝑗 +

𝑃𝑗

𝜌𝑗
2) ∇𝑗 𝑊𝑖𝑗 + ∑

𝑚𝑗(𝜇𝑖+𝜇𝑗)𝑣𝑖𝑗

𝜌𝑖𝜌𝑗
𝑗 (

1

𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖
)             (13) 

Both expressions (Eqs. 10 and 11) can be easily adopted in the LAMMPS code. Eq.(11) 

performs better in high Reynolds numbers [13] while Eq. (13) is well-suited for laminar flows 

[13]. Equation 13 is utilized in the present work.  

3 THE SIMULATION MODEL 

3.1 Three-dimensional flows in LAMMPS 

Three-dimensional channels with constant cross-section and sudden expansion are 

investigated. In all cases fluid density is considered ρ=1000 kg/m3 and constant, even if some 

small variations occurred. Simulation time step is set to Δt=0.5μs, in compliance with the 

CFL criterion for SPH simulations. The simulation time consists of 5×106 steps until 

equilibration, followed by another run of 5×106 steps in which particles attain random 

velocities, and, finally, a production run where an external force drives the flow until it 

becomes fully developed and reaches steady state. The driving force is Fext=0.001 N/particle. 
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In order to compare the solution with analytical results, Fext is utilized in order to compute 

pressure difference 
extN F p A    , where A is the cross-section area.  

Dynamic viscosity is set to μ=0.001 Pas, which corresponds to a kinematic viscosity of 

ν=10-6 m2/s. More information on the model parameters and boundary conditions can be 

found on Table 1. 

 

 

Figure 1. The 3D channel models a) constant cross-section, b) with sudden expansion 

 

Table 1. Numerical parameters of 3D channel flows. L is the computational length in each direction (x, y, or z), 

BCs is the method of boundary conditions treatment at each direction, and Np the number of particles. 

 

Channel 

type 

Lx(m) (×10-4) Ly(m) (×10-4) Lz(m) (×10-4) h(m) (×10-4) er (%) BCs (xyz) Np 

Constant 

Cross 

section 

36.88 11.04 11.04 9.85 0 FFF 37178 

Constant 

Cross 

section 

36.88 11.04 11.04 9.85 0 PFF 37178 

Sudden 

Expansion 

18.44 11.04 11.04 4.925 100 FFF 10328 

Sudden 

Expansion 

18.44 11.04 11.04 4.925 100 PFF 10328 
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4 RESULTS AND DISCUSSION 

4.1 Straight channel with square cross-section of constant area  

A 3D channel with constant H1=0.985 mm (see figure 1) is investigated with two different 

BCs in the flow direction. At first, we consider a full channel in which the fluid transports 

from one side to the other (one moment of the flow) using FBCs. In order to evaluate the 

results, the same problem is also simulated under PBCs. Each particle being located outside 

the computational domain (downstream) is automatically inserted to the other side, having the 

same properties (upstream). Velocity profiles (Figure 2 (a), 3(a)) are extracted in various x-

points along the channel (x1=0.25mm, x2=0.55mm, x3=2.25mm, x4=2.85mm, x5=3.05mm), as 

well as in the xy-plane for z= 4.75×10-4 m (Figure 2 (b),3(b)). In all 3-D results the definition 

of the Reynolds number is based on hydraulic diameter 4 4h HD R A P= = , where A is the 

cross-sectional area and P the wetted perimeter.  

Both channels have identical parameters, though the inlet-outlet BCs treatment are 

different. We observe that in both cases velocity profiles are symmetrical and the maximum 

velocity is observed at the midplane as expected. There is a small difference in the mean 

velocity values. 

The numerical solutions are in good agreement with the analytical solution in the framework 

of laminar creeping flow [16]. 

 

    
(a) (b) 

 

Figure 2. (a) Velocity profile for  z= 4.75×10-4 m and 5 different x positions for a constant H1, PBCs, (b) 

Velocity plane and mean velocity for 4 different x position and the same channel with a constant cross-section 

H1 and PBCS, Re= 0.29 
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(a) (b) 

Figure 3. As in Figure 2, but with constant FBCs, Re= 0.29 

4.2 Sudden expansion 

Given that both PBCs and FBCs result in almost the same output in the case of a closed 

3D channel with constant cross-section, a second case in which a sudden expansion occurs is 

investigated. A sudden 100% channel expansion with an initial H1=0.4925 mm is investigated 

with both FBCs and PBCs (Figures 4,5). As in previous cases mean velocity (Figure 6) and 

max velocity values are slightly larger at the case of FBCs.  

It should be noticed that in the case of periodic boundary conditions in the flow direction, 

our model corresponds to a long channel with regularly repeated changes in cross-section. 

The simulation focuses on a single module of the channel. Furthermore the simulations 

become unstable and the results could be significantly diverging in case of larger Reynolds 

numbers [17,18,19].   

 

 

 
(a) (b) 

Figure 4. (a) velocity profile for z= z= 4.75×10-4 m and 5 different x positions for a sudden expansion 100% of a 

cross-section H1=0.4925 mm, FBCs, (b) Velocity plane and mean velocity for 4 different x position and the 

same channel for a sudden expansion 100% of a cross-section H1=0.4925 mm, FBCs, Res= 0.064, Rel=0.036 
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(a) (b) 

Figure 5. (a) velocity profile for z= z= 4.75×10-4 m and 5 different x positions for a sudden expansion 100% of 

a cross-section H1=0.4925 mm, PBCs, (b) Velocity plane and mean velocity for 4 different x position and the 

same channel for a sudden expansion 100% of a cross-section H1=0.4925 mm, PBCs, Res= 0.059, Rel= 0.033. 

Table 1. Comparison between Fixed and Periodic Boundary Conditions expansion 100% H1=0.4925mm, in 

various channel positions. 

 

 
 

 

Figure 6. Mean velocity values for PBCs and FBCs. 

xi Vi FBC (×10-4) Vi PBC (×10-4) Δvi (×10-4) Relative Difference

x1 1.34 1.24 0.10 0.07

x2 1.34 1.22 0.13 0.09

x3 0.37 0.34 0.03 0.09

x4 0.37 0.34 0.03 0.09

100% Exp. Fext=1e-3
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5. NON-CREEPING LAMINAR FLOWS 

In an effort to increase the Reynolds number of the flow we intend to use the 

DualSPHysics code. DualSPHysics solver has been initially developed for coastal engineering 

problems. It originates from the open-source SPHysics software and is a popular choice for 

carrying out simulations with millions of particles, opening the field for large real-life 

simulations at manageable computational time [20]. A promising modification of the 

Dynamic Boundary Conditions (mDBCs) has been proposed in [12], in which the “gap” 

between the solid wall and the fluid is reduced while the efficiency is maintened even for 

complex geometries.  

6. CONCLUSION AND FUTURE WORK 

Smoothed Particle Hydrodynamics (SPH) simulations of three dimensional flow in closed 

channels were carried out using the LAMMPS code with two different Boundary Conditions 

in the main flow direction (Periodic and Fixed). The simulation Reynolds number is very 

small corresponding to creeping flow regime. SPH simulations captured the main flow 

characteristics and the detected minor inaccuracies were observed only in the neighborhood of 

geometric discontinuities (corners) at the solid boundaries.  

Our findings suggest that even Fixed Boundary Conditions, which means that the fluid 

enters the channel and leaves, has a good agreement with the Periodic Boundary simulation. 

In the case of constant cross-section channel, velocity profiles were almost identical. In the 

case of an abrupt expansion (100%) there are small or negligible differences.   

Boundary conditions treatment is one of the grand challenges of SPH community. We aim 

to optimize boundary conditions and test more cases in different algorithmic environments 

applying them in micro-channels and macro-channels. 
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