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Abstract. Guided waves are widely used as a non-destructive technique for the detection of defects
or damage in structures due to the their excellent propagation characteristics. Developing an efficient
calculation of guided waves is crucial in this context. In this work we present an approach named
semi-analytical isogeometric analysis (SAIGA) for computation of dispersion properties of fluid-coupled
waveguides in three-dimensional structures. The proposed approach is based on the use of Non-Uniform
Rational B-splines (NURBS) as the basis functions for the geometry representation and for solution’s
approximation. It is shown that the using NURBS basis functions has significant advantage over using
Lagrange basis functions for computing the dispersion of leaky waves in immersed waveguides due to
their higher smoothness feature.

1 INTRODUCTION

Guided Ultrasonic Wave (GUW) technologies are widely used in the last decades as an efficient tool
in the fields of Structural Health Monitoring and Nondestructive Evaluation, due to their capability of
propagating for long distances while allowing the inspection of the entire cross-section of the waveguide.
Due to the presence of boundaries and variation of material properties, the guided waves show a strong
dispersive behavior, i.e. the phase velocity and attenuation vary with frequency-content of wave package.
Therefore, the knowledge of the dispersion properties of GUWs is of fundamental importance in many
practical applications. However, one of major issues in this problem is how to calculate efficiently the
dispersion curves of all modes in the studied frequency range which will serve later to the inversion
task. The Semi-Finite Element Method (SAFE) is one of most popular techniques for computing the
dispersion of guided waves in structures thanks to its effectiveness in studying of functionally-graded or
arbitrary cross-section waveguides [1, 2, 3]. However, the computational cost when using SAFE rapidly
increases when we need to evaluate higher-modes and/or at higher frequencies. At high frequencies,
using conventional high-order Lagrangian interpolation function does not allow to improve the situation
because of numerical issues when solving eigenproblems.

The objective of this work is to study the effectiveness of using Non-Uniform Rational B-spline (NURBS)
basis functions in the context of SAFE method for analyzing the wave propagation in 3D waveguides
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coupled with fluid. The results were compared with the ones obtained by analytical methods and by con-
ventional SAFE method. Two cases of waveguides were investigated: (i) free loaded rail and (ii) fluid-
filled cylinder. For both of cases, the dispersion curves evaluated by using enriched-NURBS method
have a significant better precision than using conventional Lagrangian elements (for the same number of
degrees of freedom), especially for the higher modes.

2 Problem formulation

In the following, the SAFE formulation is derived for a three-dimensional anisotropic elastic waveguide
coupled with acoustic fluids. The section geometry and the mechanical properties of the structure are
assumed to be uniform along the longitudinal direction, which is co-linear to the x3 of the Cartesian
coordinate system (x1,x2,x3). The idea is to solve the wave dispersion equations derived by applying
the analytical method in the longitudinal direction and using finite element method in the cross-section
surface of the considered waveguide.

2.1 Governing equation

Geometry description The balance equations of linear momentum at a point xxx ∈ Ωs and the linear
elastic constitutive law read

ρüuus−∇ ·σσσ = 0 , (1)

σσσ = Cεεε , (2)

where the ρ is the mass density and C6×6 is the matrix containing the components of the anisotropic
elasticity tensor; σσσ and εεε are the stress and infinitesimal strain tensors, respectively.

In the fluid domain Ω f , the linearized wave equations are expressed as

ρ
f p̈ f −K f

∇
2 p f = 0 , (3)

where p f are the acoustic pressure fields in Ω f , K f and ρ f are the bulk modulus and the mass density
at rest of the Ω f , respectively; ∇2(?) is the Laplace operator. The wave celerity in Ω f can be defined as
c f =

√
K f /ρ f .

The boundary conditions of this system consist of the continuity condition of the normal displacement
and traction at the solid-fluid interfaces Γs f and the radiation condition at infinity, i.e.

uuus ·ns = uuu f ·ns

ttt =−p f n

}
∀xxx ∈ Γ

s f , (4)

p f → 0 when |xxx| → ∞ , (5)

where nnns is the outward unit vector at the interfaces. It is worth to note that the outward unit vector of
the solid domain is related to unit vector of the fluid domain by nnns=−nnn f , and ttt = σσσ ·nnns. We look for the
solution of harmonic waves propagating along the axial direction (e3) which may be expressed by the
following form

uuus(x1,x2,x3, t) = uuus(x1,x2)ei(k3x3−ωt) , (6)

p f (x1,x2,x3, t) = p f (x1,x2)ei(k3x3−ωt) , (7)
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where i2 = −1; ω ∈ R is the angular frequency; k is the wavenumber in the e3-direction; the vector
uuus(x1,x2) = (u1,u2,u3)

T and p f (x1,x2) = p f which represents are the amplitudes of the displacement
vector in the Ωs and of the pressures in Ω f , respectively.

Noting that in the frequency-wavenumber (ω− k3) domain, the time derivative and the spatial derivative
with respect to x1 can be replaced by: (?̇)→−iω(?) and ∂1(?)→ ik3(?), respectively.

2.2 Weak formulation

Upon integrating Eq. (1) against a test function δuuu, applying the Gauss theorem and taking into account
the interface conditions (4), the weak formulation of the boundary value problem in the solid layer Ωs

may be derived as:∫
Ωs

δuuus ·ρüuusdΩ
s +

∫
Ω

∇δuuu ·σσσdΩ
s +

∫
Γs f

δuuus ·
(

p f nnns)dΓ
s f = 0 , ∀δuuus ∈ C ad . (8)

For the inner fluid domain Ω f , by introducing the test function δp f , the weak formulation of the wave
equation may be derived from (Eq. (3)):∫

Ω f
δp∗f ρ

f p̈ f dΩ
f +

∫
Ω f

∇δp f K f
∇p f dΩ

f +
∫

Γs f
δp∗f ρ

f K f üuus ·nnnsdΓ
s f = 0 , ∀δp f ∈ C ad . (9)

3 Solution approximation using NURBS basis functions

Let us consider the functions v̂h which is defined in the parametric domain Ω̂ as the approximate so-
lution v(x). According to the isogeometric concept we use the same basis functions as for geometric
representation in order to approximate the solution fields, i.e:

v(x)≈ v̂h =
n

∑
i=1

Ri,p(ξ)Vi , (10)

where the coefficients Vi ∈ C are the corresponding control variables (values at the control points). The
properties of the function v̂h follow those of the NURBS basis functions. A NURBS basis functions
of order p ∈ N is determined in a parameter domain Ω̂ ⊂ R using a sequence of non-decreasing set of
coordinates called knot vector defined as Ξ = {ξ1,ξ2,ξ3, ...,ξi+p+1}, where ξi ∈ R is the ith knot, i is the
knot index, i= 1,2, ...,n+ p+1, and n∈N is the number of basis functions used to construct the B-spline
curve. Given a knot vector, the B-spline basis functions are defined recursively starting for p = 0 as

Ni,0(ξ) =

{
1 if ξi < ξ < ξi+1,

0 otherwise,
(11a)

and for p = 1,2,3, ..., they are defined by the well-known Cox-de Boor recursion formula as

Ni,p(ξ) =
ξ−ξi

ξi+p−ξi
Ni,p−1(ξ)+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ). (11b)

Thus, non-uniform rational B-spline (NURBS) basis functions are built from the B-spline functions by
multiplying weighting functions wi for each basis

Ri,p(ξ) =
Ni,p(ξ)wi

∑
n
j=1 N j,p(ξ)w j

, (12)
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where wi denotes the weight value associated with control point vector Pi. The NURBS basis functions
have some advantage such as higher continuity across the element boundaries, partition of unity, variation
diminishing, linear independence and compact support. Using the inversion of geometrical mapping
x(ξ,η) the function v̂h over the physical domain Ω can be define such that vh = v̂h ◦ x−1.

In this study, the Galerkin finite element method is employed, in which the same approximations are
applied for both functions uuuh

s and δuuuh
s (as well as for ph

f and δph
f ) on each patch:

uuuh
s = RuUs, δuuuh = Ru

δUs, (13a)

ph
f = RpP f , δph

f = Rp
δP f , (13b)

where Ru, Rp are the interpolation matrix containing the NURBS basis functions (Eq. (12)); U and δU are
the vectors of control displacements; (P f ) and (δP f ) are the displacement vectors of control pressures.
In this paper we consider the same NURBS basis functions for approximation of the solution fields
in Eqs. (13a)-(13b). By substituting the approximations Eqs. (13a)-(13b) into the weak formulations
Eqs. (8)-(9), then assembling the elementary matrices, one obtains

(−ω
2M+K0 + ik3K1 + k2

3K2)V = 0 , (14)

where V = (Us,P f )
T containing the global eigenvectors of pressure (P f ) and of displacement (Us); the

global matrices M, K0, K1, K2 are defined by:

M =

[
Ms 0
M f s M f

]
, K0 =

[
Ks

0 Ks f

0 K f
0

]
,K1 =

[
Ks

1 0
0 0

]
, K2 =

[
Ks

2 0
0 K f

2

]
, (15a)

in which the sub-matrices are determined from the assembling of corresponding elementary matrices
in solid and fluid domains. The matrices M, K0, K1, K2 are computed by using two-dimensional
Gauss–Legendre quadrature formula with r = p+1 quadrature nodes per element along each parametric
direction which has been shown to be efficient [4].

The system of characteristic equations (14) is an eigenvalue problem which is used to determine the
relationship between the pulsation ω and the wavenumber k3. For each value of the angular frequency ω,
solving Eq. (14) allows us to determine the eigenvalues k3 and their associated eigenvectors (also called
by wave structures), V(ω,k3) of guided modes. The frequency-dependent phase velocity (Cph) and the
attenuation (att) of a guided mode are given by:

Cph =
ω

Re(k3)
[m.s−1], att = Im(k3) [Np.m−1] , (16)

where Re() and Im() denote the real and imaginary parts of a complex function.

4 Numerical examples

4.1 Waveguide with arbitrary cross-sections: railroad track

The purpose of this section is to demonstrate the robustness of the SAIGA to analyze the wave propaga-
tion in waveguides of arbitrary cross-sections such as rail. The case considered is a typical railroad track
115-lb A.R.E.M.A shown in Fig. 1. The analysis of dispersion behavior and mode shapes are usually
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employed for studies of non-destructive defect detection and of the deduced-vibration noise in the rails.
For this example, the rail’s material is assumed as an isotropic material with the density ρ = 7932kg/m3,
the longitudinal bulk wave velocity cL = 5960m/s, the shear bulk wave velocity cT = 3260m/s.

Due to the geometrical complexity of the rail cross section, the analytical solution to the wave propa-
gation in the rail is not feasible. Here, we present and compare the numerical solutions obtained by the
conventional SAFE and SAIGA methods, of the meshes are shown in Fig. 1. Due the the irregular form
of the rail’s section, the conventional SAFE method need to use a very fine mesh to correctly represent
the corners.

(a) (b)

Figure 1: Rail section meshing: (a) Mesh with 883 tringular elements (total of 5868 degree of freedom) using
conventional SAFE, (b) NURBS-based mesh with 210 elements (total of 1220 degree of freedom) using 5 order
NURBS basis functions.

The results are shown first for a frequency range up to 50 kHz. Phase velocity dispersion curves are
plotted in Fig. 2 reveal the accuracy and advantage of IGA method for the simulation of wave propagation
in rail. The IGA allows us to increase the degree of basis functions and obtain the good agreement of the
results compare with conventional SAFE method.

Figure 2: Dispersion curves of 115-lb A.R.E.M.A. rail using IGA-based SAFE (red marker), and conventional
SAFE implemented in Comsol Multiphysics (blue marker) for 5 order NURBS basis functions.
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We examine the mode shape of the rail by choosing different value of frequency for the low and high
frequency domain. The Fig. 3 shows the mode shapes at several frequencies which correspond to points
marked by black stars shown in Fig. 2). These modes excite preferably a certain portion of the rail. This
information can be used in practical NDE tests to target defects at various locations in the rail section.
Similarly, knowledge of the mode shapes is necessary to design the appropriate wave excitation/detection
approach. It can be observed SAIGA results of the considered mode shape, which are computed by using
p = 5 and Ndo f =1220 have good agreements with the SAFE computed using Ndo f =5868. These results
show that NURBS allows to obtain the modes at high frequencies using less degree of freedom compared
to the conventional method.

(a) SAFE (2 kHz) (b) SAFE (26 kHz) (c) SAFE (46 kHz)

(d) SAIGA (2 kHz) (e) SAIGA (26 kHz) (f) SAIGA (46 kHz)

Figure 3: Mode shapes of rail obtained by SAFE and SAIGA at different frequencies

4.2 Dispersion of guided-waves in fluid-filled cylinder

Guided-wave propagation in a steel cylinder filled by water, as shown in Fig. 4(a), is considered in this
example. The steel cylinder has the same geometry and material properties as the one studied in the
previous section. The acoustic properties of water are given by the density ρ f = 998 kg.m−3 and the
sound speed c f = 1478 m.s−1. The outer surface of the cylinder is assumed to to be free.

In Fig. 4(b), we compare the numerical solutions of Cph obtained by SAIGA method to the analytical
ones over the frequency range from 0 to 1 MHz. The discretization is performed by using cubic NURBS
basis functions. The total number of degrees of freedom for SAIGA model equals to Ndof=1041. A
filtering procedure as the presented in the previous section was applied to extract the modes of interest
according to their symmetries. It is shown that the dispersion curves computed by SAIGA method agree
well with the analytical dispersion ones.
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(a) SAIGA (Ndof=1041)
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Figure 4: Dispersion curves of a fluid-filled steel cylinder: comparison between the analytical solution (grey line)
and SAIGA solution (red marker)

5 Conclusion

Due to the strong frequency dependency of dispersion properties, determination of guided waves at high
frequency range often requires high computational cost. The dispersion curves based on the SAIGA
showed the better accuracy results compared to the conventional SAFE method. The number of degrees
of freedom using SAIGA can be significantly reduced in comparing with the ones required by using
SAFE method to achieve a same precision. In addition, it was observed that the proposed approach
produces more accuracy results for studying fluid coupled waveguides. We believe the current work can
be extended to other problems such as studying guided waves in poroelastic materials [5].
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