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Mexico, DF
3Centro de Estudios sobre Desastres y Riesgos (CEDERI), Universidad de Los

Andes, Bogotá DC, Colombia
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Understanding probable losses and reconstruction costs due to earthquakes creates powerful
incentives for countries to develop planning options and tools to cope with risk, including allocating
the sustained budgetary resources necessary to reduce those potential damages and safeguard
development. A specific catastrophic risk model has been developed to evaluate, building by
building, the probabilistic losses and pure premiums of different portfolios, taking into account the
seismic microzonation of cities. This model has been used to evaluate the fiscal contingency
liabilities of the government and to build an optimal structure for risk transfer and retention,
considering contingent credits, reserve funds, insurance/reinsurance, and cat bonds. Lastly, the
model allows the evaluation of an exceedance probability curve of benefit-cost ratio, providing an
innovative and ground-breaking tool for decision makers to analyze the net benefits of the risk
mitigation strategies, such as earthquake retrofitting and seismic code enforcement. This article
describes the model and the derived abovementioned tools, using the results of loss scenarios and the
strategies implemented in some earthquake prone urban centers.

Keywords Contingent Liabilities; Seismic Risk; Building Damage; Benefit-Cost Analysis

1. Probabilistic Earthquake Risk Model

The frequency of catastrophic seismic events is particularly low; this is one of the

reasons why very limited historical data are available. Considering the possibility of

future highly destructive events, risk estimation has to focus on probabilistic models

which can use the limited available information to best predict future scenarios and

consider the high uncertainty involved in the analysis. Therefore, risk assessments need

to be prospective, anticipating scientifically credible events that might happen in the

future. Seismological and engineering bases are used to develop earthquake prediction

models which permit to assess the risk of loss as a result of a catastrophic event. Since

large uncertainties are inherent in models with regard to event severity and frequency

characteristics, in addition to consequent losses caused by such events, the earthquake

Address correspondence to Omar D. Cardona, Instituto de Estudios Ambientales (IDEA), Universidad
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risk model is based on probabilistic formulations that incorporate this uncertainty into

the risk assessment.

The probabilistic risk model (PRM), built upon a sequence of modules, quantifies

potential losses arising from earthquake events as shown in the Fig. 1.

2. Seismic Hazard Module

The hazard module defines the frequency and severity of a peril, at a specific location.

This is completed by analyzing the historical event frequencies and reviewing scientific

studies performed on the severity and frequencies in the region of interest. Once the hazard

parameters are established, stochastic event sets are generated which define the frequency

and severity of thousands of stochastic events. This module can analyze the intensity at a

location once an event in the stochastic set has occurred, by modeling the attenuation of the

event from its location to the site under consideration, and evaluates the propensity of local

site conditions to either amplify or reduce the impact.

The seismic hazard is expressed in terms of the exceedance rates of given values of

seismic intensity (a). Its calculation includes the contribution of the effects of all seismic

sources located in a certain influence area. Once these seismic sources are identified, a

certain occurrence model is assigned to the earthquakes that take place there. In most

cases, all seismic sources are modeled to follow a Poisson process in which �(M) represents

the activity rates for each faulting system. Since the seismic sources are volumes and the

methodology considers a point source approach, the epicenters cannot only occur in the

centers of the sources, but can also occur, with equal probability, in any point inside

the corresponding volume. Therefore, for the simulation of event sets, sub-sources are defined

by subdividing the seismic sources, depending on hipocentral distance (R0), in diverse

geometric shapes. For each subdivision the seismicity of the source is considered to be

concentrated in its center of gravity.

In addition, the model considers the attenuation effects of the seismic waves by means of

probabilistic spectral attenuation laws that include different source types and the local ampli-

fication effects based on microzonation studies and other available complementary information.

Since the computed intensity is regarded as a random variable with lognormal distribution, its

corresponding uncertainty value (�Lna) is considered to include the associated variability.

Assuming that the intensity variable has a lognormal distribution given the magnitude

(M) and distance (R0), the probability of a given seismic intensity (a), Pr(A>a|M, Ri) is

calculated as follows:

Hazard Module Exposure Module

Risk Transfer and
Retention Module 

Damage and Loss
Module 

Vulnerability 

Cost-Benefit Analysis
(CBA) Module 

FIGURE 1 Probabilistic earthquake risk model (PRM).
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PrðA > ajM;R0Þ ¼ �
1

�ln a

ln
MEDðAjM;R0Þ

a

� �
; (1)

where F(�) is the standard normal distribution, MED(A|M, R0) is the median value of the

intensity variable (given by the corresponding attenuation law), and �Lna the standard

deviation of the natural logarithm of the intensity (a).

This methodology based on [Esteva, 1970; Ordaz, 2000], generates stochastic seismic

events at random locations within the modeled seismic sources, calculates the probability

density function (pdf) of the seismic intensity (a) for a specific location, and, if required,

adds up the contributions of all sources and magnitudes in order to compute intensity

exceedance rates, as those depicted in Fig. 2.

From these intensity exceedance rates, it is possible to determine uniform hazard

spectra (UHS) for a specific site, based on the calculated intensity value (i.e., spectral

acceleration) associated to a fixed return period. Therefore, UHS can be determined by

connecting the intensity points calculated from Fig. 2 for a given exceedance rate (inverse

of the return period) for different structural periods (T).

If the procedure described is followed for different locations within the city, and the

selected intensity variable is calculated for the 475-year period, it is possible to build city

maps for different seismic intensities at ground level.

3. Exposure Module

The exposure values of ‘‘assets at risk’’ are estimated either from available secondary

data sources such as existing databases or they are derived from simplified procedures

based on general macro economic and social information such as population density,

construction statistics or more specific information. This ‘‘proxy’’ approach is used when

the preferred specific site by site data are not available. Based on the information

available, a new input data base is constructed based on GIS, and specific required

information is completed. Table 1 summarizes the minimum information for analysis

required by the system. Additional more detailed parameters can be introduced to the

database in order to improve the results’ general reliability.

Special routines allow for the visualization of the database information and general inter-

pretation indices are calculated. Figure 3 presents example maps of Bogotá’s database used for

analyzing all building constructions in the city, building a model of up to 1 million items.
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FIGURE 2 Bedrock site exceedance rates for different structural periods in two cities of

Colombia. ERN-Colombia [2005a].
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In order to calculate the social impact, general information related to building

occupation is also estimated. Maximum occupancy and occupancy percentage at different

hours are also defined in order to allow for different time scenarios of the event’s

occurrence. When no specific occupation information is available, approximate density

occupation by construction class can be used in order to complete such information.

Table 2 presents some of the reference information used for general occupancy estimation

in medium-sized Colombian cities.

4. Vulnerability Module

The module quantifies the damage caused to each asset class by the intensity of a given

event at a site [Miranda, 1999]. The development of asset classification is based on a

combination of construction material, construction type (say, wall, and roof combination),

building usage, number of stories, and age. Estimation of damage is measured in terms of

the mean damage ratio (MDR). The MDR is defined as the ratio of the expected repair

cost to the replacement cost of the structure. A vulnerability curve is defined relating the

MDR to the earthquake intensity which can be expressed in terms of maximum accel-

eration (e.g., useful for 1–2 story buildings), spectral acceleration, velocity, drift, or

displacement (e.g., useful for multi-story buildings) at each location. Given a value of

seismic intensity for a certain building type, MDR can be calculated using Eq. (2)

[Miranda, 1999; Ordaz, 2000]:

Eð�j�iÞ ¼ 1� exp ln 0:5
�i

�0

� �"� �
: (2)

Specific vulnerability curves can be defined for building contents and for business

interruption (BI) costs. A total of 20 construction classes are included in the system as

detailed in Table 3 and Figs. 4 and 5. The system also allows for the use of customized

vulnerability models.

5. Damage and Loss Module

To calculate losses, the damage ratio derived in the vulnerability module is translated into

economic loss by multiplying the damage ratio by the value at risk. This is done for each

asset class at each location. Losses are then aggregated as required [Ordaz et al., 1998,

2000]. The loss module estimates the net losses taking into account the insurance

information (e.g., deductible, sum insured). Risk measures produced by the model

provide risk managers and decision makers with essential information required to manage

future risks. One measure is the Average Annual Loss and the other is the Loss

TABLE 1 Minimum information required for analysis

Hazard Exposure Vulnerability Retention/Transfer

Department Value at risk Number of stories Retention percentage

Municipality Exposure limit Construction class Deductible

Address Building Construction year Coinsurance

GPS coordinates Contents

Earthquake Loss Assessment for Integrated Disaster Risk Management 51
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CONSTRUCTION CLASS 

w-o building 
Adobe/Tapial earth walls 

      Bahareque 
      Non reinforced masonry 
      Confined masonry 
      Reinforce masonry 
      RC frame + masonry infill 
      RC frame + light partitions 
      RC frame and walls 
      Waffle slab 
      RC walls 
      Warehouse 
      Church 
     Semi confined masonr

Use
Residential 
Commercial 
Industrial 
Institutional 
Public 
w-o building 

FIGURE 3 Index maps of number of stories and structural class distribution for Bogotá.
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Exceedance Curve. Other measures, such as the Pure Risk Premium and the Probable

Maximum Loss, can be computed based on the former.

� Average Annual Loss (AAL). AAL is the expected loss per year. Computationally,

AAL is the sum of products of event expected losses and event annual occurrence

probabilities for all stochastic events considered in the loss model. In probabilistic

terms, AAL is the mathematical expectation of the annual loss.

� Pure Risk Premium (PRP). PRP equals the AAL divided by the replacement value

of the asset, usually expressed as a rate per mill of monetary value.

TABLE 3 Standard vulnerability models used in Colombia

Code Description

Damage calculation based on acceleration

1 Adobe / tapial earth walls

2 Bahareque

3 Non-reinforced masonry – without diaphragm (1 story)

4 Non-reinforced masonry – rigid diaphragm (1 story)

5 Non-reinforced masonry (>2 stories)

6 1st floor non-reinf masonry and 2nd floor non-reinf masonry

7 Light roof warehouse and non-reinforced masonry walls

8 Light wood structure

9 Church

Damage calculation based on interstory drift

10 Semi-confined masonry

11 Confined masonry

12 Reinforced masonry

13 Waffle/Flat slab

14 Weak reinforced concrete frames with masonry infill

15 Strong reinforced concrete frames with masonry infill

16 Reinforced concrete frames with concrete shear walls

17 Reinforced concrete shear walls

18 Light roof warehouse, steel columns and masonry walls

19 Light roof warehouse, concrete columns and masonry walls

20 Steel frames

TABLE 2 Population distribution according to building use

Total persons Persons inside building

Building use Day Night Day Night

[%] [%] [%] [%]

Residential 20 80 90 100

Commercial, Industrial, other 80 20 90 100

Health 15 m2/person 100 100

Earthquake Loss Assessment for Integrated Disaster Risk Management 53
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� Loss Exceedance Curve (LEC). LEC represents the annual frequency with which a

loss of any specified monetary amount will be exceeded. This is the most impor-

tant catastrophe risk metric for risk managers, since it estimates the amount of

funds required to meet risk management objectives. The LEC can be calculated for

the largest event in one year or for all (cumulative) events in one year. For risk

management purposes, the latter estimate is preferred, since it includes the possi-

bility of one or more severe events resulting from earthquakes. Figure 6 presents

some LEC results for cities en Colombia [CEDERI, 2005; ERN, 2005a,b].
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FIGURE 5 Vulnerability models used for different construction classes in Colombia.
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FIGURE 4 Vulnerability models used for different construction classes in Colombia.

Damage calculation based on acceleration.
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� Probable Maximum Loss (PML). PML represents the loss amount for a given

annual exceedance frequency, or its inverse, the return period. Depending on a

stakeholder’s risk tolerance, the risk manager may decide to manage for losses up

to a certain return period (e.g., 1 in 300 years). For that stakeholder (e.g., a public

or private agency), the PML is the 300-year loss. For others, it may be 150 years,

or for others 500 years. It is noteworthy that it is frequent to set program

insolvency at the one in 150-year period to one in 200-year level, which roughly

corresponds to the level of solvency required for BBB+ companies rated by S&P.

However, other stakeholders (e.g., governments or regulation agencies) involved

have chosen much longer return periods, such as the Mexican Insurance Commis-

sion, which uses a return period of 1,500 years to fix solvency margins of

insurance companies in Mexico.

On the other hand, in addition to the probabilistic economic figures it is also relevant

for disaster management and vulnerability reduction to have the earthquake loss scenarios

from a deterministic perspective, considering some historical earthquakes or future

events. This is particularly useful for the city emergency response plan and to identify

the buildings and blocks with potential damage concentration. Figure 7 shows the graphic

results of damage building by building in one of the city districts of Barcelona in Spain,

using the damage and loss module.
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FIGURE 6 LEC results for several return periods for buildings in two cities of Colombia.

FIGURE 7 Damage of buildings in the example district of Barcelona, Spain.
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6. Risk Transfer and Retention Module

Catastrophic risks such as earthquake risk impose a dreadful threat not only for private

insurers and reinsures, but also for governments whom in turn are risk-takers for most of

the uninsured and uninsurable risk. Therefore seismic risk models become powerful tools

for government officials in economical and financial planning institutions. The retention

and transfer of risk should be a planned and somewhat controlled process, given that the

magnitude of the catastrophic problem will very likely exceed the governmental response

and financial capacities, especially for third world countries. In that respect, Colombia,

after a history of positive efforts towards risk management at national and local level, has

recently developed an earthquake vulnerability reduction program, with the financial

assistance of the World Bank. In addition, a Disaster Deficit Index has been obtained

for the country with the financial support of the Inter-American Development Bank (see

Cardona et al. in this publication). Two of the components of the former program focus

on seismic risk estimation and subsequent risk transfer and risk retention strategies for the

cities of Bogotá and Manizale. [CEDERI, 2005; ERN 2005a,b].

7. Cost-Benefit Analysis (CBA) Module

Cost-benefit analysis (CBA) applied to seismic risk analysis is a systematic procedure for

evaluating decisions related to strategic risk management. A CBA is conducted depend-

ing on available information. A simplified five-step procedure adapted to seismic risk

analysis from Smyth et al. [2004] is described below.

� Step 1. Specify the nature of the problem.

� Step 2. Determine the direct costs of mitigation measures.

� Step 3. Determine the benefits of mitigation alternatives.

� Step 4. Calculate attractiveness of mitigation alternatives.

� Step 5. Choose the best mitigation alternative.

Since the exact sequence of earthquakes, defined by their occurrence times and

intensities, is unknown, the B/C ratio must be regarded as a random variable. Hence,

its pdf must be calculated in order to evaluate the Net Present Value (NPV) of the lump

sum of probable future losses and its variability, considering random occurrence of

seismic events. Equations (3) and (4) give the mean and the variance, respectively, of

the NPV of the losses due to all future earthquakes, L, in terms of the two first moments

of the loss during a randomly chosen earthquake:

EðLÞ ¼ Eð�AÞ
�

(3)

VARðLÞ ¼ VARð�AÞ
2�

; (4)

where �A is the annual loss, that is, the sum of all losses accumulated during one year,

and E(�A) is the pure premium; a value usually reported in risk analyses. It is

interesting to note that, according to Eq. (3), the expected present value of the losses

is the expected loss in one year divided by the discount rate. In principle, one could

think that L is normally distributed, since it is computed as the sum of a potentially

56 O. D. Cardona et al.
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large number of random variables. However, for usual values of g (2–5 per year, the

number of terms that really contribute to L is small. We have verified, through Monte

Carlo simulations, that normality is usually a poor approximation [Cardona et al,

2006]. Indeed, every term in L is, approximately, the product of two Beta-distributed,

independent random variables and the product of such two variables can also be

approximated with a Beta distribution. We would have in this case that L is formed

with the sum of random variables that are approximately Beta distributed and at limit

we recognize a Gamma distribution for L, i.e., when the expected value of L is much

smaller than the maximum possible value of L.

The simulation analyses for each specific problem were developed based on the

following eight-step procedure:

� Step 1. Calculate a dense LEC for the portfolio of interest considering two

scenarios: the current structural condition and a scenario considering retrofitted

buildings. This is required in order to estimate benefits of retrofitting (loss reduc-

tion) by calculating loss values for random occurrence of seismic events.

� Step 2. Determine an exceedance rate value n0. That is to choose the frequency of

exceedance of loss equal 0.

� Step 3. Calculate the cumulative distribution function (cdf) of the losses during the

next random earthquake.

� Step 4. Simulate random occurrence of seismic events over time following a

Poisson process.

� Step 5. Calculate the probable losses in both scenarios (current condition and

retrofitted) for the event time- history calculated in Step 4.

� Step 6. Calculate NPV of the benefits (loss reduction due to retrofitting). Select a

proper discount rate (g) for the cash flow.

� Step 7. Repeat Step 6 to generate enough statistics for the frequency analysis

(5,000 simulations were calculated in our examples).

� Step 8. Carry out frequency analysis for the statistics calculated using adequate

counting ranges and build the cdf of the benefits.

An example of application of this method is presented for the case study of Bogotá’s

public building sectors, based on the project developed by CEDERI for the city of Bogotá

and the World Bank in 2005. Table 4 presents the information related to each public

building sector analyzed and the probabilistic B/C ratio results for different exceedance

probabilities.

Figure 8 presents the results of the probabilistic CBA based on the simulations

carried out for different portfolios of public assets property of the municipality of Bogotá.

This methodological approach allows a probabilistic comparison of the expected

benefits of a seismic risk mitigation plan based on building retrofitting; therefore this

approach is very useful in planning an optimum benefit-cost risk mitigation strategy. In

Fig. 8, as the probability for benefit-cost ratio grater then one (dotted line) increases, the

retrofitting strategy yields beneficial for risk reduction purposes.

8. Conclusion

A catastrophic risk model has been developed to evaluate, building by building, risk

metrics such as the Probabilistic Maximum Loss and the expected Average Annual Loss

of different building portfolios, taking into account the seismic hazard and geotechnical

site effects and the structural vulnerability of the different construction classes in urban
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centers. These metrics have been used to evaluate the fiscal sustainability and vulner-

ability of governments and it is useful to develop a financial optimal structure for risk

retention and transfer taking into account contingent credits, reserve funds, insurance and

reinsurance and cat bonds. An exceedance probability curve of benefit-cost ratio has been

designed to analyze the net benefits of the risk mitigation strategies, such as earthquake

retrofitting and seismic code enforcement, providing an innovative and ground-breaking

tool for decision makers. These metrics and analyses have been applied in cities like

Bogota and Manizales, Colombia, and Barcelona, Spain, and they are being used by the

cities governments to implement their risk retention and transfer structures to cover both

public buildings and low-income housing of poor people throughout a cross-subsidizing

strategy using estate-tax payments.
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FIGURE 8 Probabilistic benefit cost ratio for public buildings in Bogotá.

TABLE 4 General information and probabilistic CBA results for public building sectors

in Bogotá

Sector

Building

Number

Building

value

(USD

millions)

Retrofit

costs

(USD

millions)

Probabilistic

B/C ratio

Probabilistic

B/C ratio

Probabilistic

B/C ratio

Exc.

Prob. 75%

Exc.

Prob. 50%

Exc.

Prob. 25%

Security 36 60.7 10.8 1.18 1.77 2.40

Health 63 124.1 14.3 0.77 1.05 1.43

Education 14 3.0 0.2 0.54 0.95 1.58

Water Company 77 48.6 37.9 0.11 0.14 0.18

Electric Company 55 44.1 0.6 0.01 0.02 0.03

Gas Company 2 6.5 1.2 0.15 0.29 0.52

Phone Company 64 773.9 4.6 0.83 1.13 1.50

Transportation 35 4.6 0.4 4.05 5.08 6.25

Administration 61 86.8 12.1 0.54 0.75 1.04
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