INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vOL. 26, 2687-2706 (1988}

SSP ALGORITHM FOR LINEFAR AND NON-LINEAR
DYNAMIC RESPONSE SIMULATION

F. LOPEZ-ALMANSA

Technical University of Catalonia, School of Architecture (Dpt. ' Estructires), Avda Diagonal, 649, 08028 Barcelona,
Spain

A7 H. BARBAT AND J. RODELLAR

Technical University of Catalonia, School of Civil Engineering, C/ Jordi Girona Salgado, 31, 08034 Barcelona, Spain

SUMMARY

A direct integration algorithm to solve the spatially discretized equations of motion of a structure is
proposed. This algorithm formulates the equations of motion in state space and uses their analytical solution
to derive a recursive discrete-time equation. The proposed structural state procedure (SSP) can be considered
as a generalization for multi-degree-of-freedom systems of the Duhamel’s integral used for single-degree-of-
freedom systems. It can be noted that the proposed SSP algorithm does not need a previous modal
uncoupling of the equations of motion and consequently it does not require any hypothesis about' damping.
SSP is shown to: be stable-and to give accurate results with a reasonable computation time. Stability and
accuracy essentially depend on the computation of the system matrix. The SSP algorithm is combined with
an iterative scheme to obtain the response of structures with non-linear behaviour. Two examples of
application of SSP are included: seismic response of a building structure with linear behaviour and free
vibration of a non-linear system with:imposed-initial.conditions.

INTRODUCTION

The motion of a structure spatially discretized by a linear model with n degrees of freedom is
described by

Md (1) +Cd(t) + Kd(t)=£ (1) (1

where M, C and K are, respectively, the mass, damping and stifiness matrices, d is the displacement
vector and { the dynamic excitation vector,

The different methods usually applied for solving equation (1) can be included in a few families
according to the kind of damping which is considered, since a classical damping allows an
uncoupling of the equations of motion in modal co-ordinates, while a non-classical damping
produces a coupled system of equations. '

In the case of structures with non-classical damping, two direct integration solution schemes
have been traditionally used. One of them is the explicit integration scheme (e.g. central differences
method) and the other one'is the implicit intégration ‘'scheme {e.g. Mewmark, HotGbolt and 8-
Wilson method).! All these procedures consider the hypothesis of linear variation of the response
accelerationd on the termiporal discretization interval to solve (1) at each instant. These procedures
are very sensitive to the time increment used. Small time increments: are required in order to
compute stable and accurate responses. Other numerical procedures capable of dealing with non-
classical damping systems use a modal uncoupling in the complex domain.? The solution of (1) in
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the frequency domain? is a procedure also used which is efficient with harmonic loading. Both of
them need a considerable computation effort. In References 3 and 4 the equations of motion are
formulated in state space and solved analytically, the exponential matrices involved in the solution
being computed in Reference 3 by Padé approximations and in Reference 4 by Taylor series
expansion. ' :

If a classical damping is considered, the solution of the independent scalar equations can be
obtained by applying any of the previously mentioned algorithms, as well as by means of the
numerical solution of Duhamels integral.’

This paper concerns the procedure proposed in Reference 4 which is called SSP (structural state
procedure). This method does not make any hypothesis about the variation of the acceleration
response between two time increments. It does not discretize equation (1) but its analytical
solution in state space, leading to an accurate discrete-time model. SSP can be applied in modal
co-ordinates,® taking into account only the modes with a significant influence on the response.
Since active control problems are usually formulated in state space, SSP has been useful to
simulate the dynamic behaviour of controlled structures and to test control systems.”™®

The purpose of this paper is to present a general formulation of SSP, to optimize the
computational aspects and to perform an assessment of its potential to be used as a practical
algorithm to compute the dynamic response of structures. An exhaustive analysis of the stability
and the cost-accuracy ratio is performed and comparisons with other methods are included. An
extension of the algorithm for the computation of the dynamic response of structures with non-
linear behaviour is proposed. Numerical examples are presented to illustrate the application of
SSP.

FORMULATION OF SSP ALGORITHM

The proposed algorithm starts from a state space formulation of the equation of motion (1) in the
form

(O =Fx()+v(t) 2

where x is the 2n x 1 state vector, F is the 2n x 2n system matrix and v is the 2n x | excitation vector

defined as
L o I [
Xm‘{d(n} F—[—M”K —M“C] Vm_{M“f(t)} )

With the initial conditions x{f,)=X,, the analytical solution of (2} is

H
x(fy=expl{t—1,)F Ix,+ j expl(t—)Fv(r)dr 4)
to
By using this solution between two instants kAr and (k + 1)At, the following discrete-time equation
is obtained:
*{k + L)AL

x(kAt+At):exp(AtF)x(kAt)+J exp{[(k+1)At—1]F}v(r)dt )]

kAt

To solve the integral involved in (5} the continuous-time evolution of v(z) in the discretization
interval is required. If it is considered that the excitation vector is known only at discrete instants,
v(t) can be defined by interpolating the discrete values. For example, the use of a linear
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interpolation provides

| YkAC+80—v(kAD

v(t) =v(kAt)+(t — kAt Ar

kAr<t<(k+1)At (6)

By substituting (6) into (5), the following discrete-time equation is obtained:”

X(kAt + At = Ax (kA1) + P v(kAt + At + P, [v(kAt + Af)—v(kAt)] {7)

where A, P, and P, are 2n x 2n matrices given by
1
A =exp(AtF) P,=F'(aA-0 PZ:F”(EPl—A) (8)
The system matrix F is always non-singular, its inverse being
—-K™'C —-K™'M
Fl=
Y o)

The recursive application of (7), starting from the initial conditions, allows the computation of the
state vector x (which contains displacements and velocities) at each time instant. The accelerations
can be obtained by numerical derivation of the velocities.

The numerical evaluation of the exponential matrix A=exp(AtF) is the key point of the
proposed procedure. There are two main general ways to calculate the exponential matrix. One of
them consists of approximating the exponential by series expansion, while the second one uses the
Jordan decomposition of the matrix F.

The proposed procedure can be also applied when the equations of motion (1) are formulated in
modal co-ordinates; including the number of modes of vibration which have a significant influence
on the structural response.. By considering classical damping, the equations of motion are
uncoupled and SSP is applied to individual differential equations, being thus a procedure similar
to the use of Duhamel’sintegral: If the damping is non-classical, the effectiveness of the application
of the procedure can be increased by using the modal co-ordinates to reduce the order of the
system of equations.

COMPUTATION OF MATRIX A

(@) Computation by series expansion

The exponential matrix is defined by the power series

O (AR AtF  (ALF)? (AtFY
AtF)y=1 =i+ — ca 10
exp(AF)=lim § = = =T+ LT (o)
which can be approximated by a finite number p of terms as
AtF (AtF)? AtFyr
exp(A{F}:I+T+( 2,) C +( p'} = T (AtF) (1

The error in the approximation of the series can be bounded according to'®

lAEF P I
(p+ Dt 1-JlAtF|/(p+2

| 7,(AtF) —exp (AtF)|| < )<8 (12)

where || |l is the matrix Euclidean norm,
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In some cases, ||AtF| can take values high enough to make this equation inefficient due to the
excessive number of terms necessary to assure a reasonably small error. In such cases, the
following property of the exponential function is useful:

AtF\"

exp(AtF)=exp <T> (13)
m

Thus, At is replaced by At/m in (10) and (11), as well as in relation (12). Moreover it is advantageous

to select m as a power of two, m =29, to turn the computation of the exponential matrix in the right

side of (13) into the calculation of successive squares of a matrix in the form

q times

At Dliove: \ 2
exp(AtF):( . exp(FF) > (14)
Consequently, the discrete-time system matrix A is approximated by the following equation:
At m
A=exp(AtF)~| T, EF m=21 (15)

Choosing g in such a way that [|(At/2%)F|| <1, it is possible to get a small error in (12) for 7 ,(AtF/m)
by using a reasonable number of terms p. By squaring g times the matrix exp[(At/2%F)] the error ¢
provided by equation (13) increases; however, it can be reduced as much as required by
considering a number p of terms high enough.!®

With the aim of simplifying the computer programming and of avoiding roundoff errors, it is
convenient to transform the sum in (11) into the following product:

At At At F At F At F At F

This operation can be implemented by means of a loop in which a variable matrix Y is pre-
multiplied in each step by F. One can take advantage of the sparseness of the matrix F in (3) to
simplify the operations and reduce the computation time. Calling Y;; the four blocks of dimension
n x n which constitute the matrix Y, the following expression can be written:

|- T Y, Y,
~M"'K —-M"'C||Yy Y

B Y, Y,,
- -1 -1 -1 -1 (17)
~M"KY,,~M"!CY,, —M"KY,,—M"!CY,,

(b) Computation through the Jordan form of F

The discrete-time system matrix A can be also computed starting from the Jordan form of F, by
using the following properties:

F=TF,T™' A=exp(AtF)=Texp(AtF)T ! (18)

where F is the Jordan matrix in the basis defined by T. When the damping matrix is C=0, the 2n
eigenvalues of the system matrix F are +jw;, with i=1,2,...,n,j=(—1)"? and w; the natural
frequencies of the system expressed in rad/s. Consequently, for multi-degree-of-freedom systems
with low damping and with distinct natural frequencies ;, the eigenvalues of the matrix F are also
distinct and thus F, is diagonal. In this case the matrix exp(AtF) is also diagonal and its
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computation is particularly simple since it reduces to the calculation of the complex exponential of
the eigenvalues of the matrix ¥ multiplied by Ar.

STABILITY OF THE ALGORITHM

The SSP procedure results in the discrete-time model (7) which simulates the response of the
structure in the calculation instants. Consequently, the stability of SSP can be analysed by using
concepts of stability of dynamic systems applied to (7). Two general types of stability can be
considered: (a) external stability, conditioned by the excitation and (b) equilibrium stability related
to the free evolution of the system starting from some initial conditions, as with Lyapunov,
asymptotical and global stability. It is shown that all stability types are assured by conditions
related to the modulus of the eigenvalues of matrix A.

External stability

The SSP algorithm is externally stable if, for any ¢, x(t,) with [|x(¢,)]| < and v(t) with [[¥(0)]] <6
for any t > t,, there is a positive constant ¢ which depends only on ¢4, X(¢y) and J in such a way that
Ix(t)} <e for any t=t,. This stability condition is equivalent to that which states that to any
bounded excitation corresponds a bounded response. Therefore this type of stability is important
to guarantee the lack of artificial amplifications of the response. To analyse the conditions in
which SSP is externally stable, it is necessary to have an expression which relates the response at
an arbitrary instant k with the response at all the previous instants. A relation of this kind can be
written by recurrently applying equation (7) starting from the initial instant; it leads to

x(kAt)= A*x(t,) + i AP V(AL + i AP, [VIAL) — V(1AL — AD)] (19)
=1 1=1

If all the eigenvalues of matrix A are inside the unit circle, the following inequality can be
written:*!

At <cx (20)
where 118 a positive integer, and C and 1 are positive constant numbers, 1 being smaller than one.

By using {20) the following inequalities can be written from (19):

k k
Ix(kAD] < TA*] fIx(eo)l +l; FASZH P Iv0AD] + l; IA¥I T, | [Iv(AL) —~ v(iAt— An)|

Sé[Cl"%«Z(![PIH+HP2H)}(§C%’!]<S 2n
I=1
where

(22)

8:&5(1 NLAL nm)

1—-2

is independent of k.
Bxpressions {21} and (22} show that system (7) is éxternally stable if all the eigenvalues of matrix
A have their modulus smaller than one.

Equilibrium stability

If there is not excitation; three types of stability can be considered in ‘the SSP' algorithm:
Lyapunov, asymptotical and global.'! The Lyapunov stability is important to assure that the
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initial distortions and the round-off errors do not increase artificially in the computation process.
The asymptotical and global stabilities are important in order to assure that these perturbations
damp out in the computation process. If there is not excitation acting on the system, equation (19)
reduces to

x(kAt) = A¥x(t) L(23)

From {(23) it is concluded!! that the SSP algorithm is stable in the sense of Lyapunov if the moduli
of the eigenvalues of matrix A are <1 and only the eigenvalues belonging to a unit-sized Jordan
block have moduli=1, and the SSP algorithm is asymptotically and globally stable if all the
eigenvalues of A have moduli smaller than one.

Verification of the stability condition

Since when the moduli of A are inside the unit circle the system is externally and globally stable,
it is useful to know the values of the parameters At, p and ¢ which generate a matrix A in (15) with
the moduli of its eigenvalues smaller than 1 to guarantee the stability of the numerical process.
This study will be initially performed for a system without damping.

The equations of motion of a system in which C=0 can be always uncoupled by using its modal
co-ordinates, resulting in the following n independent equations:

=FFz,+vf) i=1,...,n (24)

where z;, FF and v§ are given by

z,:{'?‘} F;k:[ 021] v,.*:{ O} i=1,....n (25)
i —oi 0 fH

In expressions (25) #; is the modal co-ordinate, w; is the frequency and f7 is the force
corresponding to the mode i. The eigenvalues of the matrix AF =exp(AtKF ) are +exp(Arw;) whose
modulusis | and, consequently, if A¥ is calculated exactly, the stability in the sense of Lyapunov is
intrinsically guaranteed.

If matrix. AF is calculated closely by applying the expression (15) taking p as an odd number
(p=2s+1), the following equations are obtained:

' 1 AtF* 1 [AFF\? 1 (AtFF\P?*
%o EY ¢ e ! '
Aj —exp(AtFi)_{I—{—“ 54 +2!< 1 > + ..+ !< i )}

I 1/wAt 2+1 m At "'+ 1y U oA\ I
21\ 29 41\ 24 =D (s 24
1 w,At 1 [wAr\? 1 w AT 21
SR Y el B e R - bl *
“Lw,[( 21 > 3!( 20 > LR )‘(Zs—i—l)!( 2 > }F} (26)

This equation shows that on the moduli of the eigenvalues of the approximated matrix Af two
parameters prevail upon the others: the number of terms p and the values w,At/2% It has to be
emphasized that the exponent ¢ modifies the eigenvalues of AF, but not the position of their
moduli respecting the unit. Figure 1 gives curves which relate the modulus p of the eigenvalues of
A¥ (without damping) with At/T,2¢ for different values of p, where T;=2n/w; is the period of the
mode i. Figure 1 shows that, when there is not damping, for each value of the number of terms p,
values of the period of discretization At and the exponent g can be found in such a way thatthe
moduli of the eigenvalues of matrix A} are equal to 1.
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Figure 1. Maximum modulus of the eigenvalues of matrix A}

If in the mode i a damping coefficient v; exists which is not equal to 0, the matrix F} is now

equal to
0 1
Fi= 27
! [—w? —2\’,-0),.:} 27)

£

The eigenvalues of matrix Af =exp(AtF ) are now

expl— (v i/ T 7] (28)

their modulus being |exp( — w;v;)| < 1. Consequently, damping contributes to increase the stability,
and if a undamped mode is stable in the sense of Lyapunov a damped mode having the same mass
and stiffness is externally and globally stable. Extending this property to the case in which maftrix
A¥ is calculated by the approximation (15) and a general damping exists, Figure 1 allows one to
analyse the stability conditions of SSP in ail the applications.

In each application of the SSP algorithm, the values of At, p and g have to be chosen in such a
way that, in the curve corresponding to p, the value At/29T,,, where n defines the higher mode of
vibration, belongs to the horizontal part of the curve. If the computation process is stable for the
mode n, the stability is also assured for all-the modes 1, 2,. .., (n—1) according to the curves of
Figure 1.

Conditional-unconditional stability

It is interesting to analyse if SSP, being a conditionally stable algorithm, behaves as an
unconditionally stable algorithm'? in-the following sense: for any time increment At, there is a
number p of terms for which the stability is guaranteed. With this aim, consider the maximum
difference between the moduli of the eigenvalues of the matrix A} (computed approximately by
using (26)) and their exact value 1. This difference is'?

2s+2 25+ 3 2s+272 2s+3772
(w,AD) (e, AL) +[(a),-At) } +[(w,~£\t) } 29)

sy T ASmeATH (25 +2)! (25 +3)!

2 cos(w;At)
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When p and consequently s increase indefinitely, this expression tends to vanish, taking values as
small as desired, independently of the values of Ar.

ACCURACY OF THE ALGORITHM

A numerical algorithm is accurate if the computed numerical response approaches as much as
desired to the exact response.

The operations required to calculate the dynamic response of a system by using SSP
concentrate the numerical errors inherent to the algorithm in only two points: the interpolation of
the excitation and the computation of matrix A as the exponential of AtF. All the other operations
are algebraic and consequently theoretically exact. In Figures 2(a) and 2(b} the accuracy is
compared with that of other algorithms, such as central differences, Newmark and Wilson, by
considering both aforementioned error-generating points. The considered error criterion e; is
defined as the root mean square of the difference between the numerical and analytical solution for
an undamped mode of vibration i for 25 sec.

1.6+

Central dif ferences

Newmark 6 = 0.5 o = 0.95
Wilson 8 = 1.4

17o8 B — e 2SPP=9m=1(g=0)
o0 004 008 012 016 020 02

At/Ti

Figure 2(a). Comparison of the accuracy of different methods for free vibration

07
06 Central dif ferences
05 Newmark § = 0.5 o = 0.25
i Wilson 6 = 1.4
€ a4
031 S55Pp=9m=1(¢g=10)
0.24
03
0.0 x E—— 7 R S ni T T T T T T J
fete o) Qo8 0.% 0.24 0.32 040 048

At/T,

Figure 2(b). Comparison of the accuracy of different methods for sinusoidal excitation
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In Figure 2(a), the free evolution of the system, starting from an unit initial displacement, has
been considered. The error e; is given as a function of the relation between the time increment At
and the period T, corresponding to the mode of vibration i. The matrix A¥ is computed by using
equation {26) with p=9 and m=1 (¢g=0). Within the considered range of values, the error
corresponding to the SSP algorithm is practically null. In Figure 2(b), the undamped mode of
vibration with natural frequency ;= 1 rad/sec is subjected to a sinusoidal vibration of period 7,
and amplitude g. The variation of the error ¢; with the coefficient At/T is given, the accuracy of
SSP depending in this case on the interpolation of the excitation performed in equation (6). The
error of SSP is appreciably smaller than the error corresponding to the other algorithms. Figure
2(b) gives a measure of the error introduced in the response by the approximations due to the
interpolation of the excitation within each time increment. This error does not depend on the
parameters p and m, and it can be seen from Figure 2(a) that, for the considered values p=9 and
m=1, the contribution to the error of the approximations.in the computation of matrix A¥ is
negligible. Consequently, the total error of the SSP algorithm given in Figure 2(b) corresponds to
the linear interpolation of the excitation.

To evaluate the approximations introduced in the response by the errors in the computation of
matrix A, a vibration mode corresponding to a free undamped vibration due to a unit initial
displacement is studied. The percentage of the difference between the response predicted by SSP at
the end of a complete period and its exact value 1 is represented in Figures 3(a) and 3(b) as a
function of the relation between At and T; for different values of p and m.

NUMBER OF OPERATIONS OF SS5P ALGORITHM

The number of operations involved in the implementation of an SSP algorithm in a digital
computer can be evaluated by using an unity called flop which is defined as the time required for a
particular computer system to execute the FORTRAN statement

AL )= A(, J)+ T A(I, K)

that involves one floating point multiplication, one floating point addition, a few subscript and
index calculations and a few storage references.®

In each application of the SSP algorithm to compute the dynamic response of a structure, it is
necessary to obtain the value of matrices A, P, and P, in (8) and compute the expression (7) at each
discrete-time instant. The numbers of flops involved in these operations are called, respectively,
N, and:N, and, if matrix A is computed by Taylor series expansion in {15}, their values are!?

N, =n*(Z2 4+ dp+8q)+n*(8+4p)—n3 (30a)
N,=(8n" +2n)K, (30b)

where n is the number of degrees of freedom of the system, p and ¢ are introduced in the
computation of matrix A in (11) and (15) and K, is the number of sampling instants.

The number of flops in (30a) represents the operations which must be done once for every
structure, while in (30b) it represents the operations which have to be repeated for every dynamic
excitation acting on that structure. Expressions (30) show that the most important computational
effort is spent in (30a), that being especially true for systems with a great number of degrees of
freedom.
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Comparison with other procedures

In this section SSP is compared with Newmark’s procedure, which is considered as represen-
tative of direct integration methods. The operations involved in Newmark’s procedure can be
classified in two groups N, and N,, as in the case of the SSP algorithm, whose values are!

N,=n*l4+n?2—nt -~ (31a)

‘N, =(8n2 +6n)K, (31b)

The comparison between (30) and (31) shows that N, is greater in the SSP algorithm than in
Newmark’s method and N, has similar values in the two cases. Nevertheless, a real comparison
must be done in the case that both procedures provide results of a similar level of accuracy and, in
that case, Newmark’s method usually needs a smaller time increment Ar and, consequently, a
greater number of computation instants K. Since the more important source of error in an SSP
algorithm is due to the approximate computation of matrix A in (15), Figure 2(a) shows that,
taking p=9 and ¢=0, a ratio At/T equal to 0-20 provides in the SSP algorithm the same level of
accuracy that 0-02 does in Newmark’s procedure. In that case, considering for instance K, = 100 in
(30) and K,=1000 in (31), the addition of N, and N, is smaller for the SSP algorithm than for
Newmark’s method if the number n of degrees of freedom of the system is < 120. In other cases,
similar results are obtained and, if different excitations act on the same structure or a long-time
analysis is developed, the range of n in which SSP is an advantageous procedure becomes greater.

APPLICATION OF SSP TO NON-LINEAR COMPUTATION

The equations of motion of a structure which is spatially discretized by a non-linear model with n
degrees of freedom are

Md(1)+ Cd(r)+ P[d()] =1 () (32)
where Pld(t)] contains the internal restoring forces which are equal to
PLd(0)]=K[d(1)]d(c) (33)

K[d()] being a variable stifiness matrix.
Equation (32) can be written between the two consecutive instants kAt and (k+ DAt

Md(t)+ Cd(r) + P[d(1)] =1(r) kAtr<t<(k+ DAt (34)
The vector Pld(r)] can be linearized in the interval [kAL kAt +AtT:
PUTd(r)] = Pld(kAD] + K[d(kAD] [d(r) —d(kAD)] (35

By substituting (35) into (34) one obtains the following linear equations of motion:

Md(t)+ Cd(1) + K[d(kANTd() =T°(t) kAr<t<(k+ 1)At (36)

where vector ?O(I) contains the effective excitation forces given by
£9(c) = £ (1) — P[d(kAr)] + K[d(kAr]d(kA) (37

Equations {36} can be solved by means of the SSP algorithm to find the response in the instant
kAL + At, the initial conditions being the known response at instant kAt. In order to do this, the
linearized motion equations (36) can be written in the state space form:

*(v) = F[A(kA)Ix(x) +3°0) kAt <t <(k+ DAt (38)
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where
_)d@@) - 0 I sorn_J 0
X(T)_{d(r)} F[d(kAt)]_[—M“K[d(kAt)] —M“C] VO(T)_{M-II‘O(T)} (39)

x(t) is the state vector at the instant t and F[d(kAt)] is the system matrix at the instant kAt. v°(t) is
the effective excitation vector at the instant 7. '
The discrete-time solution of (38) is

X (kAt + At)= Ax(kAt) + P, °(kAt + At) + P,[VO(kAt + At) — VO(kAD)] (40)

where A, P, and P, are matrices defined in (), the system matrix F being now equal to F[d(kAr)].
Upper index 0 refers to instant kAt and upper index 1 refers to instant kAt +At.
The solution shown in (40) contains the displacement and velocity for instant kAt + At:

d‘(kAt+At)}

d!(kAt + At) )

x!(kAt+Ar)= {
which verify the linearized equation (36). However, they do not verify the non-linear equations (34)
atinstant t=(k+ 1)At. By substituting in (34) the linear solution given in (40), it is necessary to add
to the second member of equation (34) a residual force vector @'(kAt + At) to verify this equation,
its value being

@ (kAL + At)=f(kAt + At)— {Md*(kAt + At)+ Cd'(kAt + At) + P[d* (kAt + At)]} (42)

The state vector at instant (k+ 1)Ar which verifies (34) for T=kAt + At is obtained by an iterative
process'® which starts from the linearized solution shown in (41). At each iteration i the
SSP algorithm is applied to find a value x‘(kAt + At) of the state vector starting from the value
x'~1(kAt + At) found in the (i — 1)th iteration. The residual forces @'(kAt + At) are used only to test
the convergence of the process.

The convergence criterion depends on the ratios

L(kAt+ At
o, = QikALFAD L (43)
7 Pi[d'(kAt+At)]
for the n degrees of freedom. The iterative process is stopped when the modulus of ¢, is smaller
than a pre-defined value e. If a small value of ¢ is selected, a very accurate result is obtained.

EXAMPLES

Example 1. Seismic response of a building structure

SSP is applied to compute the seismic response of a 23-storey building modelled as a linear
system with 23 degrees of freedom. The building has a prismatical form, with a 24 m square base
and a height of 81 m, without underground floors. The structure is composed of five identical steel
frames, with rigid nodes, spaced at 6 m and constructed with a steel having an elastic limit of
3600 kg/cm?. Each frame has five 81 m columns and 23 continuous beams of 24 m, constituting
thus a perfectly orthogonal structure. The height of each storey is of 3-5 m, excepting the first one
which is 4 m. A horizontal and a vertical cross section of the building are given in Figure 4. In
Table I the different cross sections of the elements used in the structural frames are defined
according to the Spanish code.** Columns corresponding to the lower floors are reinforced with
steel strips, as indicated in Figure 5.
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Figure 4. Structure of the building

It is considered that the ground acceleration excites the structure in the plane of the frames and
consequently the mathematical model used corresponds to this assumption. A 23-degree-of-
freedom linear building model has been used, according to the hypotheses which have been made.
In the mass matrix M of the model, an uniform overload of 150 kg/m? has been considered on all
the floors. The total mass of each floor is 374,000 kg. The stiffness matrix K of the model is
obtained by inverting the flexibility matrix S. The damping matrix C is defined in modal co-
ordinates by means of a damping ratio of 2-5. In Table II the periods of the first five modeés of
vibration and that of mode 23 are given.

To apply SSP, equation (1) is written in the form

Md + Cd + Kd = — Me,a(t) (44)
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Table I. A52 steel rolled shapes used in the columns and beams

of the building structure

Floor Column Beam
{ and 2 HEB600 + 21350 x 30(*) IPNS550
Jand 4 HEB600 -+ 20350 x 24( *) IPNS550
5and 6 HEBG600 + 20350 x 20( *) IPNS550

7 HEBG60O + 21350 x 15(*) IPNS550
8 HEB600 -+ 20350 x 10(*) IPN550
9 and 10 HEB600 IPN550
11 HEBS550 IPN550
12 HEBS00 IPN550
13 HEB450 IPN550
14 HEB400 IPN550
15 HEB360 IPN550
16 HEB340 IPNS50
17 HEB320 IPN550
18 HEB300 IPNS50
19 HEB280 IPNS50
20 HEB260 IPNS550
21 HEB240 IPN550
22 HEB220 IPNS50
23 HEB200 IPN550

( *)Steel rolled section reinforced with two strips (dimensions in mm)

Figure 5. Cross section of the columns in the lower floors

Table II. Periods of the modes of
vibration of the building model

Mode Period (s)
1 2:833
2 1117
3 0666
4 0472
5 0-368
23 0029

2701
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where e, is a column matrix having dimensions n x 1 composed of unit elements, a(t) is the
acceleration and d, dandd are, respectively, the horizontal displacement, velocity and acceleration
according to the degrees of freedom of the model.

The accelerogram is artificially generated starting from the following data:

(1) discretization interval Ar;=0-05s;
(1) expected maximum acceleration O-1g;
(iti) predominant frequency 1-667 Hz, corresponding to a period of 0-6s.

The following values of the parameters have been selected: At =00125s and ¢=0-01. Starting
from these data, the following values have been obtained for p and ¢ p=3 and g=10
(m=219=1024).

Previous to the application of SSP it is necessary to verify that the values of A, p and g
guarantee a stable and accurate computation of the structural response. Figure 1 shows that the
value of At/2T,, =0-0004 belongs to the horizontal part of the curve corresponding to p=3 and
therefore the numerical process is stable for the higher mode and for all the other modes of
vibration. Taking 7 as two times the predominant period in the excitation accelerogram, it can be
seen from Figure 2(b) that for the value A¢/T, =0-042 the error introduced in the response by the
linear interpolation of the excitation is practically negligible. The error introduced in the response
by the inexact calculation of the matrix A in (15) is evaluated for the fifth mode assuming it is the
highest mode whose influence on the response i$ appreciable. Taking the value of the fifth mode
period T5 from Table II, the value of the ratio At/T’s =0-034 shows in Figure 3(a) (curve for p=3
and m=2'°) that the error in the amplitude percentage is negligible.

In Figures 6(a) and 6(b), the displacement and acceleration responses of the upper floor are
given.

The response of the building has been also obtained by applying the SSP in modal co-ordinates
taking into account only the five first modes: The results are very similar to those given in Figures
6, but the time of calculation has decreased ten times.
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Figure 6(a). Horizontal displacement of the upper floor
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Figure 6(b). Horizontal acceleration of the upper floor

Example 2: Free evolution of a non-linear system

In this section a single-degree-of-freedom system is considered in which the relationship
between the restoring forces P and the displacement d is elastic and non-linear:

P(d)= J_r%u ool (45)

where the + sign corresponds to positive values of d and the — sign to negative. K, is the initial
stiffness of the system and f is a coefficient. If f =0, curves contained in (45) tend to the following
linear equation:

P(d)=K.d (46)

If >0 the constitutive law (45) belongs to a more flexible material that the one whose law is
shown in (46). Nevertheless, if f<0 the law (45) corresponds to a stiffer material.

The values of mass and damping of the system are such that, for the initial sttiffness K, its
natural frequency is 6 rad/s and its damping is 2 per cent of the critical damping.

In the application of the SSP algorithm the following values of the general parameters are
considered: At=001s, p=9 and ¢=0. They are enough to generate a stable and accurate
calculation.

In Figure 7(a) the free evolution of the linear system (8 =0) starting from the initial conditions
d(0)=1 and d(0)=0 is shown. In Figures 7(b) and 7(c) values of f=4 and —4 are considered,
respectively. The comparison between Figures 7(a), 7(b) and 7(c) shows that, for great displace-
ments near from 1, the frequency of the most flexible material in Figure 7(b) decreases, while the
frequency of the stiffest material in Figure 7(c) increases.

CONCLUSIONS

A structural state procedure SSP has been formulated as a discrete-time algorithm to compute the
dynamic response of structures based on the analytical solution of the equations of motion in state
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space. The exponential system matrix is computed by Taylor series expansion, this operation
being the key point to get stability and accuracy. It has been shown that, for a given value of the
time increment, the exponential matrix can be always computed in such a way that the stability
condition is verified. Moreover, in this case the accuracy of SSP has been shown to be greater than
that of other direct integration numerical algorithms requiring a reasonable number of operations.
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Figure 7(a). Free response of a linear system
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Figure 7(c). Free response of a stiff non-linear system

SSP does not need any hypothesis about damping and it appears as an extension for multi-
degree-of-freedom systems of the Duhamel’s integral commonly used for linear single-degree-of-
freedom systems.

The combination of SSP with an iterative scheme has shown the potential of the procedure in
computing the response of structures with non-linear behaviour.
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