On the importance of fibre direction mesh alignment for artificial lightning strike simulations

B. Nagavel*, S.L.J. Millen and A. Murphy

* School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby Building, Belfast, Northern Ireland, U.K., BT9 5AH
e-mail: bnagavel01@qub.ac.uk, web page: pure.qub.ac.uk/en/persons/baskaran-nagavel

ABSTRACT

Composite materials, used in primary aircraft structures, produce weight reduction and improved fuel efficiency over legacy metal airframes but are more susceptible to lightning strike damage. Therefore, research into lightning strike damage and protection systems, through experiments and simulations, is an important research topic. For any FE simulation appropriate representation of the material behaviour, the loading and boundary conditions are key to accurate predictions. In addition, an aspect which has been under reported in many studies is the meshing strategy.

Fibre direction mesh alignment has been reported to yield more accurate results in the modelling of mechanical damage (intralaminar damage initiation and propagation) in unidirectional fibre reinforced composite structures. However, this model meshing strategy has not found wide application and has not been used for the modelling of thermal damage events, e.g. lightning strike direct effect simulation. Instead, authors have typically refined the mesh around the arc attachment area.

This paper, for the first time, examines the influence of fibre direction mesh alignment for artificial lightning strike simulations and the prediction of thermal damage. Initially, the mesh alignment is introduced partially in the central region of the specimen. The paper uses a mature modelling approach with a transient, fully coupled, thermal-electric step in ABAQUS with a lightning test Waveform A (40 kA, 4/20 µs) applied to the specimen. Specimen boundary conditions match those typically used in experiments and a mesh convergence study is undertaken to ensure no element size influence on the results.

The use of this meshing strategy has been shown to significantly improve the prediction of both moderate and severe thermal damage profiles, when compared with the standard meshes used in previous research. The predicted moderate (2659 mm² vs 2833 mm²) and severe (1059 mm² vs 1061 mm²) damage areas were improved to within 4% and 1% of experimental results, respectively, using this meshing strategy.

INTRODUCTION

Composite materials, used in primary aircraft structures, produce weight reduction and improved fuel efficiency over legacy metal airframes but are more susceptible to lightning strike damage. Therefore, research into lightning strike damage and protection systems, through experiments and simulations, is an important research topic. Lightning strikes have been standardised into four discrete waveforms, A-D, presented in SAE-ARP5412B with unique time periods and peak current profiles, used for both simulation and experimental research [1]. The vast majority of simulation studies in the literature have considered Waveform A, which is a 200kA peak current and represents the first return stroke.

Finite element (FE) simulation is the primary approach used to simulate lightning damage of composite material. FE is often used along with more costly experimental analyses as it enables greater insight on the internal damage behaviour and the effective study and control on test and material parameters. For any FE simulation appropriate representation of the material behaviour, the loading and boundary conditions are key to accurate predictions. In addition, an aspect which has been under reported in many
studies is the meshing strategy. Generally, FE meshes are oriented with reference to either the specimen boundaries or to the load introduction. Meshes are often structured, where the element size is refined around the area of interest (where damage is expected) and are courser towards the specimen boundaries. Such meshes have been used throughout literature for many simulation types [2,3]. However, other works have used circular specimens with swept meshes and hex elements or by using o-grid and mid-point subdivision methods [3–7].

Regardless of the aforementioned meshing methods, the alignment of the fibre within the lamina is independent of the mesh. That is to say that the mesh orientation and fibre orientation can be different. An alternative strategy, which has not been employed is to align the mesh based on the ply fibre directions. Fibre aligned meshes are now finding application within composite damage models [8–12] but have thus far been confined to mechanical analyses. This meshing strategy has not been investigated for other simulation types, such as thermal loading. Therefore, this work will assess the effects of fibre aligned meshing for thermal-electric modelling of simulated lightning strikes.

BACKGROUND

Lightning strike experiments

A sizeable amount of experimental research has been conducted on lightning strike damage in a laboratory environment and has typically focussed on the high peak current Waveforms A or D [13–20]. Authors have studied the influence of novel protection systems [13,15–18], paint layers [20], specimen fasteners [21,22] or sequential strikes using multiple waveforms [23–25]. Hirano et al. [19] presented the most complete set of lightning strike damage profiles and these have been used for model validation in literature. Foster et al. [26] used the results from [19] to define two descriptors for the specimen damage due to a strike. Moderate damage was defined as a broad surface region of shiny resin, fibre fracture, matrix cracking, delamination and fibre blow out. Severe damage was defined as a finite, deep region with char residue, fibre fracture and fibre blow out.

Lightning strike simulations and meshing strategies

Complementing experimental research are lightning strike simulations with the primary focus of these models on the thermal-electric effect in the specimen due to resistive heating [7,24,26–28]. Other works have focussed on pressure loading [29,30], thermal expansion [31,32] or the combination of all physics [33,34].

Thermal-electric models have developed incrementally over a number of years with works focussing on the material system [26,28], boundary conditions [2,26,32,35] and loading [7,26]. The majority of works have focussed on scaled Waveform A with some more recent works focussing on multiple or sequential waveforms applied to the specimen [24,35,36].

Authors have used different methods to generate their FE meshes for thermal-damage models. Some works have used limited refinement around the arc attachment area [37]. Structured meshes, those with refined loading areas, have been used more recently [7,26,28], while radial meshes have also been used [7]. More recently, some authors have reported mesh convergence studies [7,26].

As noted in the introduction the alignment of the fibre within the lamina has until now been independent of the mesh. An alternative strategy is to employ fibre direction mesh alignment. Fibre direction mesh alignment can be achieved in multiple ways but the most common is the use of diamond shaped elements [8,10], allowing the alignment of nodes through the thickness of the specimen, or rotation of square elements by the angle of the fibre orientation [9,11]. A number of works have used fibre aligned meshes for low velocity mechanical impact simulations [8,10,38].

The following section introduces the methodology to be used herein to compare the effects of specimen aligned meshing against a strategy to use fibre aligned meshing for thermal-electric modelling of simulated lightning strikes.
METHODOLOGY

Thermal-electric damage modelling
The thermal-electric simulations, replicating the specimen dimensions (150 x 100 x 4.704 mm), material (IM600/133, provided in a dataset available from ref. [39]) and layup ([45/0/-45/90]s) of ref. [19] were completed using a transient, fully coupled, thermal-electric step in ABAQUS. Lightning test Waveform A (40 kA, 4/20 µs) was applied to the specimen using arc movement and expansion behaviours from previous work [26]. A zero electrical potential boundary condition was applied to the side and bottom surfaces of the specimen model, as with other works in this field [7,26–28,40,41]. Interlaminar thermal and electrical conductivity were included by means of surface-to-surface contact. In all analyses DC3D8E elements were used [42].

Two test cases were compared in this work:

- Case-1, used the previously published mesh from ref. [26] which contained 4200 elements per ply (an in-plane mesh seed of 1.5 mm and 2 elements through the thickness of each ply).
- Case-2, used a refined mesh at the centre of the specimen with diamond shaped elements aligned with the ±45° orientation and the same mesh as Case-1 for the 0°/90° plies. This diamond pattern was created by means of part-level partitioning and meshing. Illustrations of the mesh in the centre of the specimen are shown for +45° plies from both models in Figure 1.

![FE meshes used in analysis.](image)

A mesh convergence study was conducted on Case-2 following the same procedure as refs. [7,26]. Convergence was assessed by comparing the size of the 300 °C and 500 °C contours on the top surface of the specimen (as these temperatures represent the moderate and severe damage areas and the same method undertaken by refs. [7,26] when converging the baseline case mesh for Case-1). The mesh size was governed by two main criteria; the in-plane mesh size, which corresponded to the size of each diamond and the extent of the refined region.

Initially, the central region was held constant at 30 x 30 mm, shown in Figure 2a, and the diamond size was varied from 1 - 2 mm in 0.5 mm increments. The central region was extended to 50 x 50 mm, shown in Figure 2b, and the diamond size was again varied from 1 - 2 mm in 0.5 mm increments.
RESULTS

Mesh Convergence for Case-2
Results for the mesh convergence study for Case-2 are presented in Table 1 and shown graphically in Figure 3. Examining Table 1, the mesh convergence study indicates that increasing degrees of freedom, mesh density, progressively increased the size of both the 300°C and the 500°C contours but had less noticeable effect on the damage depth and peak temperature. Moreover, such mesh variation resulted in limited change to the simulation runtime up to Case-2D. Case-2E produced an outlying result for the 300°C contour area, however, the area for the 500°C contour matched the expected trend. Comparing Case-2D and Case-2F the 300 °C contour increases by 3% while the 500 °C contour increases by 9%. However, the increase in runtime was much more pronounced increasing by around 150%.

Due to the large run-time of Case-2F (>5 days), the outlying result for the 300 °C contour from Case-2E and the comparable run-time and element count (4220 per ply) with Case-1, ref. [26] (4200 per ply), the mesh was considered to be converged in Case-2D. Results comparing the effect of mesh orientation, using Case-1 and Case-2D will now be discussed.
Table 1 - Mesh convergence results for Case 2 thermal-electric simulation.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Mesh Description</th>
<th>DoF</th>
<th>300°C Contour Area (mm²)</th>
<th>500°C Contour Area (mm²)</th>
<th>Depth (plies)</th>
<th>Peak Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-2A</td>
<td>50x50 – 2.0mm</td>
<td>148,390</td>
<td>2552</td>
<td>809</td>
<td>6</td>
<td>980</td>
</tr>
<tr>
<td>Case-2B</td>
<td>50x50 – 1.5mm</td>
<td>212,102</td>
<td>2519</td>
<td>898</td>
<td>7</td>
<td>1018</td>
</tr>
<tr>
<td>Case-2C</td>
<td>30x30 – 2.0mm</td>
<td>273,922</td>
<td>2690</td>
<td>959</td>
<td>7</td>
<td>1127</td>
</tr>
<tr>
<td>Case-2D</td>
<td>30x30 – 1.5mm</td>
<td>372,130</td>
<td>2959</td>
<td>1059</td>
<td>8</td>
<td>1028</td>
</tr>
<tr>
<td>Case-2E</td>
<td>50x50 – 1.0mm</td>
<td>384,890</td>
<td>2523</td>
<td>1068</td>
<td>8</td>
<td>1009</td>
</tr>
<tr>
<td>Case-2F</td>
<td>30x30 – 1.0mm</td>
<td>653,906</td>
<td>3039</td>
<td>1142</td>
<td>8</td>
<td>1018</td>
</tr>
</tbody>
</table>

Figure 3 - Case 2 mesh convergence plots.

Thermal-electric results between meshes

Thermal-electric results for the standard mesh (Case-1) and the converged, fibre-aligned mesh (Case-2D) simulations are shown in Figure 4. It can be seen that the fibre-aligned mesh produced much more accurate surface contour predictions when compared with the standard mesh. Visually, the contours now better match the shape of those from the experimental analysis, ref. [19]. The 300°C contour narrows toward both long edges of the specimen using the fibre-aligned mesh, rather than one side for the standard mesh. The 500°C contour, using the fibre-aligned mesh, also produced a damage pattern very close to that of the experiment, in terms of shape and size.

Indeed, comparing the predictions given in Table 2, it can be seen that the use of a fibre-aligned mesh significantly improves predictions. Values for the moderate and severe damage areas were within ±4% and ±1% of the experimental results of Hirano et al. [19], respectively. While the standard mesh overpredicted the moderate damage area by 28% and underpredicted the severe damage area by 8%.
Figure 4 - Comparison of thermal-damage with and without a fibre aligned mesh.

Table 2 - Damage results summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Moderate Damage Area (mm^2)</th>
<th>Severe Damage Area (mm^2)</th>
<th>Damage Depth (plies/mm)</th>
<th>Peak Temperature $(^\circ\text{C})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirano et al. [19]</td>
<td>2833</td>
<td>1061</td>
<td>8 / 1.1</td>
<td>-</td>
</tr>
<tr>
<td>Foster et al., Case 9 [26]</td>
<td>3649</td>
<td>975</td>
<td>7 / 1.029</td>
<td>1089</td>
</tr>
<tr>
<td>Fibre Aligned Mesh</td>
<td>2959</td>
<td>1059</td>
<td>8 / 1.176</td>
<td>1028</td>
</tr>
</tbody>
</table>
CONCLUSIONS

The work in this paper has, for the first time, demonstrated the influence of fibre mesh alignment on thermal damage predictions for lightning strike simulations of unidirectional fibre reinforced composites. A mesh convergence study has been completed to show that equivalent standard and fibre-aligned meshes with similar element counts can be directly compared. The use of this meshing strategy has been shown to significantly improve the prediction of both moderate and severe thermal damage profiles, when compared with the standard meshes used in previous research. Predictions of moderate and severe thermal damage were within 4% and 1% of experimental results, respectively.

REFERENCES

[27] Millen SLJ, Murphy A, Abdelal G, Catalanotti G. Specimen Representation on the Prediction of Artificial Test Lightning Plasma, Resulting Specimen Loading and Subsequent Composite

[39] Millen SLJ, Murphy A. Spatial and temporal Waveform A and B loading and material data for lightning strike simulations based on converged FE Meshes 2021. https://doi.org/10.17034/ef3ff864-78d3-4ce4-9c0f-fec7b4c408a0.
