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Abstract A complete CFD design methodology is presented. The main components of this
methodology are a general edge-based compressible/incompressible flow solver; a continuous
adjoint formulation for the gradient computations; a steepest descent technique for the change of
design variables; evaluation of the gradient of the discretized flow equations with respect to mesh
by finite differences; a CAD-free pseudo-shell surface parametrization, allowing every point on the
surface to be optimized to be used as a design parameter; and a level type scheme for the
movement of the interior points. Several examples are included to demonstrate the methodology
developed.

1. Introduction
The relentless advance in numerical methods and computer power has made accurate
flow simulations involving realistic geometries a reality. Such simulations are
increasingly reducing the amount of lengthy (and costly) experiments in the aerospace,
car, train and shipbuilding industries, substituting them for high fidelity CFD runs.
This way of utilizing CFD is nothing more than an exchange of real for virtual
experiment. However, CFD and its underlying mathematics offers the possibility to
step beyond the capabilities of any experiment. While the experiment (or stand alone
CFD run) only measures the performance of the product “as is”, numerical methods can
also predict the effect of changes in the shape of the product. This has led, over the last
decade, to a large body of literature on optimal shape design (Anderson and
Venkatakrishnan, 1997; Drela, 1998; Dreyer and Matinelli, 2001; Elliott and Peraire,
1997, 1998; Gumbert et al., 2001; Jameson, 1988, 1995; Korte et al., 1997; Kuruvila et al.,
1995; Li et al., 2001; Medic et al., 1998; Mohammadi, 1997; Mohammadi and Pironneau,
2001; Nielsen and Anderson, 1998; Reuther et al., 1999; Soto and Löhner, 2001a, b, 2002;
Soto et al., 2002). In order to compare the merit of different designs, a function I is
defined. This cost function depends on design parameters b, and the changes in flow
variables u(b) due to them. The aim is then to minimize (or maximize) this cost
function:

I ðb;uðbÞÞ! min; ð1Þ

subject to the following constraints:
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. PDE constraints:

RðuÞ ¼ 0; ð2Þ

. Geometric constraints:

gðbÞ $ 0; ð3Þ

. Physical constraints:

hðuÞ $ 0: ð4Þ

Examples for the cost function I are drag or prescribed pressure, for PDE constraints
R(u) the Euler/Navier-Stokes equations, for geometric constraints g(b) the volume or
wing area cross section, and for physical constraints h(u) a minimal pressure to
prevent cavitation.

The simplest (and most expensive) way to proceed is by copying what nature has
done in the course of evolution: try variations of b, recalculate the flowfield and keep
the ones that minimize (i.e. improve) the cost function I(b, u(b)). This class of
optimization techniques are known as genetic algorithms (Crispin, 1994; Gage and
Kroo, 1993; Quagliarella and Cioppa, 1994). While simple to code and use, robust and
suited for “rough” cost functions, the number of the CFD runs required for N design
variables is at least of O(N 2). The speed of convergence is also strongly dependent on
the crossover, mutation and selection criteria.

The second class of optimization techniques is based on evaluating gradients of
I(b, u(b)). From a Taylor series expansion we have

I þ DI < I þ IT
;bDb: ð5Þ

This implies that if one chooses:

Db ¼ 2lI ;b; ð6Þ

for sufficiently small l the new functional has to diminish:

I þ DI ¼ I 2 lIT
;bI ;b # I : ð7Þ

There exist a variety of ways of computing the required gradients I,b. The easiest way
is via finite differences. For each bi, its value vary by a small amount, recompute the
cost function I, and measure the gradient with respect to bi. For central differences, this
implies O(2N) field solutions for each gradient evaluation. An alternative is to use
first-order differences with complex variables, which result in a difference scheme of
second-order for the desired real CFD variables (Newman et al., 1999). This requires
O(N) field solutions for each gradient evaluation, but at the cost of a flow solver with
complex variables. For “noisy” or “rough” cost functions, gradients may be computed
from the so-called response surfaces. The parameter space in a region close to the
present design is populated, and a low-order polynomial is fitted through these data
points. The gradients are then obtained from the low-order polynomial. This type of
technique also requires O(N) field solutions for each gradient evaluation. The only
alternative to obtain gradients in a more expeditious manner is via adjoint solvers.
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2. Gradients via adjoint variables
The main steps required for the evaluation of gradients based on adjoint variables are
well known (Elliott and Peraire, 1998; Jameson, 1988, 1995; Mohammadi and
Pironneau, 2001; Soto and Löhner, 2001a, b, 2002; Soto et al., 2002), and therefore only a
summary is given here. A variation in the objective function I and the PDE constraint
R result in:

dI ¼ I ;bdbþ I ;udu; ð8Þ

dR ¼ R;bdbþ R;udu ¼ 0: ð9Þ

We can now introduce a Lagrange multiplier C to merge these two expressions:

dI ¼ I ;bdbþ I ;udu 2CT½R;bdbþ R;udu�: ð10Þ

After rearrangement of terms this results in:

dI ¼ ½I ;b 2CTR;b�dbþ ½I ;u 2CTR;u�du: ð11Þ

This implies that if we can solve:

CTR;u ¼ I ;u; ð12Þ

the variation of I is given by:

dI ¼ ½I ;b 2CTR;b�db ¼ ½GI �Tdb: ð13Þ

The consequences of this rearrangement are profound:
. the variation of I exhibits only derivatives with respect to b, i.e. no explicit

derivatives with respect to u appear; and
. the cost for the evaluation of gradients is independent of the number of design

variables (!).

The original equation for the adjoint is given by:

CTR;u ¼ IV;u þ IG;u ð14Þ

where I V denotes a cost function defined over the domain, and I G a cost function
defined over the boundary. We remark that for most shape optimization problems
I V¼ 0. In the sequel, the Einstein summation convention for double indices is adopted
unless explicitly noted.

2.1 Residuals with first derivatives
If R can be written as a system of conservation laws of the form:

R ¼ Fi
;i ¼ 0; ð15Þ

where F i(u) denotes a flux function with the property that FiðuÞ ¼ Aiu where Ai ¼
Fi
;u is the flux Jacobian, the following is obtained:
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R;udu ¼ Fi
;i

� �
;u
du ¼ dFi

;i ¼ ðdAiuÞ;i þ ðAiduÞ;i þ Oðdu2Þ: ð16Þ

Multiplying equation (16) by the adjoint variables, integrating by parts, and neglecting
the terms containing dA i to obtain a first-order approximation yields:Z

V

CTR;udu dV ¼ 2

Z
V

CT
;i A

idu dVþ

Z
G

CTAidu ni dG; ð17Þ

where ni is the ith component of the unit external normal vector on G. By combining
equations (14) and (17), the following PDE problem is obtained:

2½Ai�TC;i ¼ IVu ; ð18Þ

Z
G

½Aini�
TC dG ¼ IG;u: ð19Þ

2.2 Residuals with second derivatives
Suppose R can be written as a “Laplacian” of the form:

R ¼ 27m7w ¼ 0; ð20Þ

where m denotes a diffusion or viscosity, and w(u) a set of different (e.g. non-conserved)
variables. We can again obtain,

CTR;u ¼ 2CTð7m7wÞ;u ¼ 2CT7m7w;u ¼ 2CT7m7B ¼ I ;u; ð21Þ

where B ¼ w;u denotes the Jacobian of w. Repeated integration by parts allows us to
obtain the PDE for the adjoint:

2BT7m7C ¼ IV;u;2

Z
G

BT
;nmC dGþ

Z
G

BTmC;n dG ¼ IG;u: ð22Þ

Note that:

(1) A linear system of advection or diffusion equations is obtained.

(2) The eigenvalues of this system are the same as those of the original PDE.

(3) Owing to the negative sign in front of the Jacobians A i, the “advection
direction” for the adjoint is opposite to the advection direction of the original
PDE (R).

(4) The sign of the operator has not changed, i.e. diffusion of the adjoint variables
occurs in the same way as with the original PDE variables; this was to be
expected as the diffusion (Laplacian) operator is self-adjoint.

(5) The derivatives of the diffusion/viscosity with respect to the unknowns have
been neglected; this assumption may not be applicable to all cases (particularly
complex turbulence models and/or hypersonic flows), but has been found to
yield acceptable solutions over a wide range of flow regimes.
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(6) In most applications, the residual (or PDE describing the field solution) will
contain a combination of first and second spatial derivatives. As these are
additive, the same sum applies to the adjoints.

3. Steps required per design cycle
The complete design procedure is shown in Figure 1. In principle, after a new surface
has been obtained, a new mesh can be generated, and the solution restarted. Given that
typically the solution does not change appreciably between design cycles, it is far more
expedient to simply move the mesh based on the surface changes. This is the approach
taken here.

Thus, for every design cycle we require the following steps:

(1) a flow solver;

(2) an adjoint solver;

(3) the evaluation of gradients; and

(4) a mesh movement module;

In the following sub-sections, we describe each one of these steps in more detail.

3.1 Flow solver
The flow code used is FEFLO, an unstructured, edge-based, tetrahedral finite element
solver (Löhner, 2002). For the compressible Euler equations (see Appendix 1) consistent
numerical fluxes are obtained using the approximate Riemann solver of vanLeer, Roe,
AUSM+ or HLLE (Löhner, 2001). Fast convergence to steady-state is achieved via an
iterative algorithm based on the generalized minimal residuals (GMRES) with
lower-upper symmetric Gauss-Seidel (LU-SGS) preconditioning (Luo et al., 1998, 2001;
Sharov et al., 2000).

For the incompressible Euler/Navier-Stokes equations (see Appendix 2) consistent
numerical fluxes for the momentum equations are obtained using the approximate

Figure 1.
Design cycle
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Riemann solver of Roe. For the divergence equation a fourth-order pressure damping
operator is employed. The equations are advanced in time using a projection scheme
(Löhner, 2001; Löhner et al., 1999).

3.2 Adjoint solver
The adjoint equations to be solved are of the form:

C;t 2 ½Ai�TC;i ¼ BT7m7Cþ I V; ð23Þ

where

Ai ¼ Fi
;u; B ¼ w;u: ð24Þ

The same kind of edge-based, tetrahedral finite element solver as employed for the flow
solver is also used for the adjoint equations. At the beginning of the run, the steady
flow results from the flow solver are read in and the Jacobian matrices are computed
and stored. Consistent numerical fluxes are obtained using a blended second- and
fourth-order edge-based dissipation. The solution is advanced in time using explicit
Runge-Kutta timestepping schemes with residual smoothing.

3.2.1 Adjoint solver. Boundary conditions for the adjoint
Inviscid forces. The inviscid forces are given by

f ¼

Z
G

pn dG: ð25Þ

For a cost function of the form:

I ¼ f · cw; ð26Þ

where cw ¼ cx
w; c

y
w; c

z
w represent weights, we obtain, from equation (19):

n ·Cv ¼ cw · n; ð27Þ

i.e. the normal adjoint velocity is prescribed while the tangential adjoint velocity is free
to change. This condition is similar to the no-penetration boundary condition of
inviscid flows. No condition is required for the pressure.

Prescribed pressure. This condition is given by:

I p0
¼

Z
G

ð p 2 p0Þ
2 dG; ð28Þ

where p0 denotes the prescribed pressure. From equation (19) this implies:

n ·Cv ¼ 2ð p 2 p0Þ: ð29Þ

As earlier, the normal adjoint velocity is prescribed while the tangential adjoint
velocity is free to change. No condition is required for the pressure.

3.3 Gradient evaluation
The gradient evaluation with respect to the design variables b is separated into three
parts using the chain rule:
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›I

›bm
¼

›yj
l

›bm

›xi
k

›y j
l

›I

›xi
k

: ð30Þ

The different expressions on the right hand side represent the gradient of surface
points y with respect to changes in the design parameters b, the gradient of mesh
points x with respect to the movement of surface points y, and the gradient of the cost
function I with respect to the movement of the mesh points x. More importantly, they
represent different parts of a comprehensive design methodology. The first expression
is intimately linked to the choice of design variables and the second to the mesh
movement technique selected.

3.3.1 Choice of design variables. One of the main objectives of the present design
effort was to keep the algorithms as general as possible. This led to the decision to
allow every point on the surface to be a design parameter. In order to obtain smooth
surfaces with C 1 and C 2 continuity, a pseudo-shell approach (Soto and Löhner, 2002;
Soto et al., 2002) was adopted. In this way, the effect of a normal displacement for an
arbitrary surface point i on all the surface points can be obtained. Once these influence
coefficients have been obtained, the gradient y,b can be quickly evaluated. The LU
decomposition of the pseudo-shell matrix is obtained once and stored, speeding up the
evaluation of gradients. The pseudo-shell approach has the intrinsic benefit of always
providing a smooth surface, i.e. it has an inherent smoothing effect.

3.3.2 Mesh movement. After each design cycle, a new surface is obtained. In order
not to regenerate the mesh, the interior grid points have to be moved in as smooth a
way as possible (Nielsen and Anderson, 2001). In order not to have to remesh in the
RANS region, a movement technique based on layer indexing is employed. Defining
levels li ¼ 0; . . .; n such that a point on the surface has li ¼ 0 and any given point with
li . 0 has at least one connection to a point of li21, the displacements vi for an arbitrary
point i are given by:

vi ¼
j[li21

P
wijvj

j[li21

P
wij

; ð31Þ

where the edge-weights wij are computed from the distance dij as wij ¼ d22
ij : For more

details, see Soto and Löhner (2002) and Soto et al. (2002).
3.3.3 Field gradient evaluation. The third term of equation (30) can be computed

independently of the design variables and mesh movement chosen. This gradient (of
length ndimn*npoin) is computed and stored. Let us consider this third expression in
more detail. Given the solution of the flow equations and the solution of the adjoint
equations, the task is to obtain the gradients with respect to the movement of a point:

›IL

›xi
k

¼
›I

›xi
k

2CT ›R

›xi
k

" #
: ð32Þ

This expression is evaluated using finite differences. Each point is moved in the x, y, z
direction, the residual R is evaluated and the gradient is computed. In theory, a new
residual evaluation would be required for each point, raising the cost to 2·3·Np

evaluations (2 for central differences, 3 for the dimensions, Np for the number of points).
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However, one can use the fact that even with higher order schemes the points are
connected by no more than nearest neighbours (+1) to reduce the required number of
residual evaluations. The points are grouped (or coloured) in such a way that the point
in each group are at least two neighbours away. This results in typically O(25-30) point
groups, i.e. a total of O(150-180) (explicit) residual evaluations. An outer loop over these
groups or colours is performed. The next inner loop is over the dimensions
(the movement directions). The next inner loop is over the positive and negative
increments. The geometrical parameters are recalculated, and a time step is performed
using an explicit solver. Rewriting the conservation law given by equation (15) as a
time-dependent problem:

u;t þ Fi
;i ¼ u;t þ R ¼ 0; ð33Þ

the increments in the unknowns are related to the residual by:

Ml
Du

Dt
¼ R; ð34Þ

where Ml denotes the lumped mass-matrix. From this expression, the residuals are
evaluated. Note that using this procedure, the gradient can be computed in “black box
fashion”, allowing the use of different flow solvers. For the evaluation of the finite
differences, the movement of each point typically corresponds to 1 per cent of the
typical element length.

3.4 Optimization algorithm
Once the gradients I,b have been obtained, the solid boundary is updated using a
steepest-descendent method as follows:

x i :¼ x i 2 lI ;bm
dmi; ð35Þ

where d mi is the deformation mode associated with the design variable m (i.e. the
displacement of the nodal point i induced for an imposed unitary displacement of
design variable m), and l a positive real constant. l is taken in such a way that the
total displacement of a gridpoint is only a fraction of the average length (li) of the edges
surrounding the point (between 0.1 and 1.0li), provided the gradient is greater than a
small threshold value.

4. Geometric constraints
The optimization process typically involves a compromise of many factors. The
classic example cited so often for fluid dynamics is the reduction of drag. It is well
known that for a non-lifting body, the flat plate represents the optimum optimorum.
Yet, flat plates, devoid of volume, cannot carry a payload, a prime requirement for a
device. Therefore, a compromise between volume and drag is required. Another
example from aerodynamics is the wing. In the transonic regime, thickness again
increases (wave) drag. A thin wing, on the other hand, requires a stronger structure,
i.e. more weight. Fuel capacity may at some stage also become a problem. As earlier,
a compromise between volume and performance must be reached. The volume
constraint is one of the many possible geometric constraints. Other constraints of this
kind include:
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. prescribed (min/max) volume;

. prescribed (min/max) cross-sectional area;

. prescribed (min/max) sectional thickness;

. prescribed (min/max) deviation from original shape; and

. prescribed (min/max) surface curvature;

These constraints may be treated in a variety of ways by:
. inclusion in the cost function;
. projection of the gradient; and
. post-processing the new shape; etc.

4.1 Volume constraint
This most common constraint may be added to the cost function in the form:

I ¼ I 0 þ I V ¼ I 0 þ cV
V 2 V O

V O

� �	 
q

; ð36Þ

where cV, VO denote a weight factor and a reference volume, respectively, and I0 is the
unconstrained cost function. The derivative is given by:

IV
; x ¼ cV2q

V 2 V O

V O

� �2
" #q21

2
signðV 2 V OÞ

V O
V ; x: ð37Þ

Observe that for the common choice q ¼ 1=2; the first term becomes unity, i.e. there is
no effect from the deviation from the desired volume V0, but the gradient simply flips
from positive to negative with a constant weight factor. For this reason, we favour
either q ¼ 1 or 0.75. Numerically, the volume can be evaluated by:

. summing up the volumes of all elements (and subtracting it from a reference
volume); and

. utilizing the divergence theorem.

We discuss the second option in more detail. The divergence theorem states that:Z
V

7 · v dV ¼

Z
G

v · n dG: ð38Þ

Given that the volume is Z
V

dV;

we desire 7 · v ¼ 1; which can be obtained in a variety of ways, e.g. v ¼ ðx; y; zÞ=3:
We therefore, have:
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V ¼
1

3

Z
G

ðx; y; zÞ · n dG: ð39Þ

This expression can be separated into x, y, z components, yielding

V ¼
1

3
id¼1;3

X
V id ¼

1

3
id¼1;3

X Z
G

xidnid dG: ð40Þ

The separation into components is useful cases with planes of symmetry or unclosed
objects, where one or more of the Vid components are incomplete.

5. Multipoint optimization
Shapes that are optimal for one given flow (angle of attack, speed, height), seldomly
work well across a wide range of flight conditions (Drela, 1998; Li et al., 2001). The
classical example of this phenomenon is the Korn airfoil, which exhibits a shock-free
behaviour at a certain Mach number and angle of attack. However, just changing
slightly the Mach number or the angle of attack leads to the appearance of very strong
shocks, making this type of airfoil unsuitable for airplanes. It has been observed
(Jameson, 1988; Li et al, 2001; Reuther et al., 1999) that the best way to steer a design
away from such singular behaviour is to conduct a so-called multipoint optimization.
In this case, the design has to produce a favourable cost-function for several flight
conditions. This can be cast in the form:

I ¼
i

X
giI ðMai;aiÞ; ð41Þ

where I denotes the original cost function and Mai, ai the flight conditions for which
the multipoint design is carried out. Several schemes have been proposed to choose the
weights gi (Li et al., 2001), although in most cases they have been kept constant during
optimization. Note that this is an additive cost function of different flight conditions
(states), implying that gradient evaluations are also additive. The flow and adjoint
solutions have to computed for each flight condition. Given that the CPU requirement
of each one of these solutions is similar, this lends itself naturally to parallel
processing. A current topic of research is concerned with the optimal (smallest) number
of design points required to ensure a so-called robust design (Li et al., 2001).

6. Examples
6.1 Nozzle
This example considers the thrust maximization of a nozzle for two different external
Mach numbers: Ma ¼ 3:0 and 5.0, with equal weighting for each Mach number. Hence,
two flow and adjoint solutions were required per design cycle. The rest of the variables
were set at the nozzle exit as follows: r ¼ 1:0; v ¼ 1:0; pr ¼ 0:7; a ¼ 0:08: The mesh
consisted of 33 Ktet elements and 7 Kpts (2D example run with a 3D code). Figures 2-4
show the evolution of the shape, and the initial and final pressure and Mach number
distributions for the first case. The thrust increased by approximately 78 per cent for
both cases. Although 98 design cycles were run for the 307 design variables (every
point on the nozzle surface), after 50 design cycles the additional benefit is small
(Figure 5). The “buzzing” observed was due to the size of the descent step l chosen.
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Figure 2.
Nozzle – evolution of
shape

Figure 3.
Nozzle – Mach numbers
for first and last shape
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At the beginning, this choice led to a smooth decrease of the objective function.
However, as the design approaches the optimum, smaller steps should have been
taken.

6.2 External nozzle
This example considers an external nozzle, typical of those envisioned for the X-34
airplane. There are no constraints on the shape. The objective is to maximize the thrust
of the nozzle. The flow conditions were set as follows:

. Inflow (external flowfield): Ma ¼ 3:00;

. r ¼ 0:5; v ¼ 1:994; pr ¼ 0:15; a ¼ 0:08;

. Nozzle exit: Ma ¼ 1:01;

. r ¼ 1:0; v ¼ 1:000; pr ¼ 0:18; a ¼ 245:08

Figure 4.
Nozzle – pressure for first

and last shape
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Although this is in principle a 2D problem, the case was run in 3D. The mesh had
approximately 51 Kpts and 267 Ktet. Figures 6-13 show the initial and final Mach
numbers and pressures, as well as the evolution of the shape and the thrust.

6.3 KRISO container ship (KCS)
This example considers a modern container ship with bulb bow and stern. The
objective is to modify the shape of the bulb bow in order to reduce the wave drag. As an
initial test, there are no constraints on the shape. The Froude-number was set to
Fr ¼ 0:25: The mesh had approximately 100 Kpts and 500 Ktet. The free surface had

Figure 5.
Nozzle – objective
function evolution

Figure 6.
External nozzle – Mach
number for the first shape
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approximately 10 Kpts and 20 Ktria. Figure 14 shows both original and final mesh in
the bulb bow region that correspond to the shape of the original and final bulb bow.
Figure 15 shows the comparison of wave patterns generated by original hull form and
final hull form. Figure 16 shows the comparison of wave drag coefficient obtained for
both hull forms during the convergence of the flow solver to a steady-state. The wave

Figure 7.
External nozzle – Mach

numbers for the last shape

Figure 8.
External nozzle – pressure

for the first shape

Figure 9.
External nozzle – pressure

for the last shape
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drag reduction was of the order of 4 per cent, which is considered significant given that
the original shape was already deemed to be a very good design.

6.4 Air conditioning duct exit
The idea of this example is to obtain a quasi-uniform flow at the outlet of an
air-conditioning duct. The initial mesh and geometry of the duct can be observed in

Figure 10.
External nozzle – surface
mesh for the first shape

Figure 12.
External nozzle –
evolution of shape

Figure 11.
External nozzle – surface
mesh for the last shape
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Figure 17. This is a 2D incompressible flow application with a Reynold number,
calculated with the width of the duct, of Re ¼ 3:333 approximately. A Smagorinsky
type turbulent model was utilized to obtain fully converged flow solutions. At the walls
the normal velocity was set to zero, and a logaritmic law-of-the-wall tangential
stress was applied. The pressure was set to zero at the outflow boundary, and a
uniform velocity profile was prescribed at the inflow. For the adjoint problem,
equation (19) dictates that at the outflow boundary the adjoint pressure must be set to

Figure 13.
External nozzle –

evolution of thrust

Figure 14.
KCS – surface mesh
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Cp ¼ 2ðu0 2 unÞ where u0 is the target outflow velocity, and un the normal velocity
obtained from the flow solver. At the same boundary, the adjoint velocities were
prescribed zero. At the inflow, the adjoint pressure was set to zero and the adjoint
velocities were left free to change. The normal adjoint velocity was set to zero at the
walls, and the tangential one were left free. It can be demonstrated that such a set of
boundary conditions are totally compatible with equation (19), making the problem
well-posed. In Figure 18 the evolution of the shape can be observed. Note that towards
the end, the cost function increases. This was again due to a stepsize l that was too

Figure 15.
KCS – wave pattern

Figure 16.
KCS – wave drag
coefficient
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large. Only the curved part of the duct was allowed to change. The initial and final
pressure distributions can be seen in Figure 19. It is noticeable how the pressure
contours tend to be parallel to the outflow boundary to attempt to satisfy the required
uniformity of the flow. The objective function was reduced from I ¼ 0:010 to 0.005 in
six design cycles, using 268 design variables (every point on the curved portion of the
duct). This means a improvement of 50 per cent (Figure 20).

6.5 Generic sports utility vehicle
This numerical example considers the minimization of drag over the top part of a
generic sports utility vehicle (SUV), subject to the constraint of minimum shape
change. The initial mesh and geometry of the car can be observed in Figure 21.
Taking advantage of the problem symmetry, just one half of the car was treated.
This 3D incompressible application has a Reynolds number of 2 £ 106; computed
with the height of the car. Again, a Smagorinsky turbulence model was utilized to
obtain fully converged flow solutions. At the car walls the normal velocity was set to
zero, and a logaritmic law-of-the-wall tangential stress was applied. The pressure
was set to zero at the outflow boundary, and a uniform velocity profile was
prescribed at the inflow. In the rest of boundaries, the normal velocity was set to
zero, and the tangential one remained free to change (symmetric planes). For the
adjoint problem, equation (19) dictates that the right boundary condition for

Figure 17.
Duct exit – mesh of 7,718
elements and 4,023 points
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the adjoint velocity on the surface to be optimized (the car surface), must be
Cu ¼ 2ed; where ed is the drag direction: (1,0,0) for this case. The adjoint pressure
was set to zero at the inflow boundary, and the same value was given to the adjoint
velocities at the outflow boundary. Only the adjoint normal velocity was prescribed
zero in the rest of the boundaries.

In Figure 22, the evolution of the shape can be observed. The total normal
displacement of the points on the car surface was limited to a preset displacement to
avoid unrealistic solutions. In Figure 23, the drag evolution is shown. An improvement
of approximately 14 per cent was achieved in nine design cycles using 944 design
variables (every point on the car surface). Finally, in Figures 24 and 25 the pressure
and velocity fields on the final geometry are shown. The effect of the law-of-the-wall
stress over the velocity field can be noted.

Figure 18.
Duct exit – shape
evolution
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Figure 19.
Duct exit – initial and

final pressures

Figure 20.
Duct exit – objective

function evolution
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7. Conclusions and outlook
An optimal shape design procedure based on the solution of the continuous adjoint has
been implemented. Several results, spanning compressible and incompressible, viscous
and inviscid flow, demonstrate the usefulness of the capabilities developed.

Future developments will center on:

. inclusion of propulsion effects;

. euler/boundary layer coupling, in particular for preliminary design;

Figure 21.
SUV– mesh and geometry

Figure 22.
SUV – shape evolution
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Figure 23.
SUV – objective function

evolution

Figure 24.
SUV – pressure

distribution on the final
shape
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. unsteady problems;

. better treatment of constraints;

. hierarchical design, i.e. the progressive matching of information content and
physical realism; this implies combination of solvers (lifting line, potential, Euler,
RANS,. . .), optimization techniques (genetic, gradient-based,. . .), and different
representations of the design variables; and

. selection of proper cost function.
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Appendix 1. Compressible Euler equations
The compressible Euler equations are given by:

u;t þ 7 · F ¼ 0;

where

u ¼

r

rvi

re

8>><
>>:

9>>=
>>;; F j ¼

rvj

rvivj þ pdij

vjðre þ pÞ

8>><
>>:

9>>=
>>;:

Here r, p, e, vi denote the density, pressure, specific total energy and fluid velocity in the direction
xi, respectively. This set of equations is closed by providing an equation of state for the pressure,
e.g. for a polytropic gas:

p ¼ ðg2 1Þr e 2
1

2
vjvj

	 

;

where g is the ratio of specific heat. Denoting u ¼ v1; v ¼ v2; w ¼ v3; q ¼ u 2 þ v 2 þ w 2;
c1 ¼ g2 1; c2 ¼ c1=2; c3 ¼ 3 2 g; c4 ¼ ge 2 c1q; c5 ¼ ge 2 c2q; the Jacobian matrices are
given by:

Ax ¼

0 1 0 0 0

c2q 2 u 2 c3u 2c1v 2c1w c1

2uv v u 0 0

2uw w 0 u 0

2c4u c5 2 c1u 2 2c1uv 2c1uw gu

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

Ay ¼

0 0 1 0 0

2uv v u 0 0

c2q 2 v 2 2c1u c3v 2c1w c1

2uw 0 w v 0

2c4v 2c1uv c5 2 c1v 2 2c1vw gv

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;
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Az ¼

0 0 0 1 0

2uv w 0 u 0

2uw 0 w v 0

c2q 2 w 2 2c1u 2c1v c3w c1

2c4w 2c1uw 2c1uw c5 2 c1w 2 gw

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

Appendix 2. Incompressible Navier-Stokes equations
The incompressible Navier-Stokes equations are given by:

u;t þ 7·F ¼ 7m7w;

where

u ¼
p=c 2

vi

( )
; F j ¼

vj

vivj þ pdij

( )
; v ¼

0

vi

( )
:

Here p, c, vi denote the pressure, (infinite) speed of sound and fluid velocity in direction xi,
respectively. The Jacobian matrices and the B-matrix are given by:

Ax ¼

0 c 2 0 0

1 2u 0 0

0 v u 0

0 w 0 u

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; Ay ¼

0 0 c 2 0

0 v u 0

1 0 2v 0

0 0 w v

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; Az ¼

0 0 0 c 2

0 w 0 u

0 0 w v

1 0 0 2w

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

B ¼

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:
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