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Abstract. The structural strength evaluation of crash boxes is predicted by machine learning 

in this study. The training data was obtained from the dynamic elastic plastic analysis of the 

crash box. The input physical quantities are barrier angle, box thickness, material properties 

and mass equivalent to vehicle weight. The output physical quantity is the reaction force. 

Buckling occurs in the analysis and different directions of corruptions are one of the most 

interesting phenomenon from a point of engineering view.  We would like to propose an 

adaptive method for machine learning in structural evaluation that can be used for a wide range 

of structural evaluations. 
 

 

1 INTRODUCTION 

In the manufacturing industry, it is important to design better products within a certain period 

for shortening of product lifecycles. Since a large number of computational simulation cases 

are required in the initial stage of development. In order to shorten evaluation period, machine 

learning technologies and 1D-CAE become popular in addition to conventional CAE 

evaluation[1]. 

 The use of predictive models based on deep learning as a substitute for CAE is one of the 

evaluation methods. While we have much expectations for high accuracy, the applications to 

engineering problems are not enough to satisfy the expectations[2]. In the fields of material 

design and computational fluid dynamics, good results have been reported, because huge 

amounts of data are eventually generated in those research fields[3]. Therefore, the objective 

of this study is a construction of framework using machine learning technology to evaluate 

crash box corruption for a significant reduction of CAE analysis cost. 
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2 CRASH BOX ANALYSIS AND TRAINING DATA DESIGN 

2.1 Data sets 

2.1.1 Prediction Target 

  The learning and prediction were conducted on the dynamic elasto-plastic analysis of a crash 

box, which is a component fixed to the front and rear of a car. Crash box are attached to the 

front and rear of the frame and are responsible for protecting the body frame and occupants 

from front/rear collisions. The crash box are shaped like the parts shown in Figure 2.1.1, 

which absorb collision energy by collapsing themselves. 

 
Fig 2.1.1: Crash box 

2.1.2 Fundamental statistical evaluation of training data sets 

 The training data will be the physical quantities used in the dynamic elasto-plastic analysis 

of the crash box. The input physical quantities are the barrier angle, box thickness, material 

properties, and mass equivalent to the vehicle weight. In the analysis, physical phenomena 

buckling, are occurring depending on the conditions of the plate thickness and barrier angle. 

Figure 2.1.2 shows the frequency of the predicted maximum reaction force, which is the 

output. The larger the value, the fewer the number of data, representing an imbalanced 

frequency. 

 



K.Sugiyama,Y.Wada 

 3 

Fig 2.1.2: Output Frequency 

2.2  Convolutional Neural Network 

2.2.1  Convolutional Neural Networks Overview  

 

Deep learning has been attract attention because of its extremely high performance for 

image recognition tasks. Neural networks that have been developed specifically for image 

recognition are convolutional neural networks(hereafter referred to as CNN). 

 CNN is composed of multiple layers, and there are three types: convolutional, pooling, and 

Fully connected layer. The image is put into the convolutional layer, and the convolutional 

and pooling layers are repeated several times, leading to the all-join layer. The all-coupled 

layer is also repeated several times, and the last all-coupled layer is the output layer. This 

configuration is shown in Fig. 2.2.1. 

 

 
Fig 2.2.1: Convolutional neural network 

2.2.2 CNN-IPD（CNN with Input Parameters Design） 

In order to interpolate discrete physical quantities for feature extraction in CNN training, we 

estimated the distribution of output frequency according to input parameters  in advance and 

expanded the input data as shown in Figure 2.2.2. 

 
Fig 2.2.2: CNN-IPD 
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2.3 Augmentation of features 

2.3.1  Area-equivalent features value 

Based on the results of multiple regression analysis of the training data and from the 

viewpoint of material mechanics, features were added that were judged to be highly 

influential. The results of the multiple regression analysis (Table 2.3). From the results, the 

partial regression coefficients are larger than those of the other input factors, indicating that 

the thickness variable has a greater weight. Also, from the viewpoint of material mechanics, 

areas are highly important in the phenomenon of collision. 

Table 2.3: The partial regression coefficients 

 

2.3.1  Sectional secondary moment and stiffness 

The nodal outputs in the analysis are incorporated into the training data for generalization 

to crash boxes of other shapes. The cross-sectional quadratic moments of the three surfaces of 

the crash box (front, middle, and rear surfaces) are calculated using the following method. (𝐼: 
sectional secondary moment, 𝑏: plate thickness, ℎ: nodal distance, 𝐸: Young's modulus, 𝑀: 

Bending rigidity) 

𝐼1=𝑏1 (
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3+ℎ3

3…+ℎ17
3
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(1) 

 

𝐼2=𝑏2 (
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3…+ℎ17
3

12
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𝐼 = 𝐼1 + 𝐼2 
(3) 

 

The bending rigidity is then derived by multiplying by 200 GPa, the Young's modulus of 

steel. 

M = EI 
(4) 

Name Weight

Box Thickness1 -267.8

Box Thickness2 -365.9

Material Properties -0.334

Barrier Angle 34.12

Vehicle Weight 0.461
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3 PREDICTION RESULTS 

3.1 Before adding features value 

Figure 3.1.1 shows the prediction results and loss function before the addition of the 

features value. The results of the forecast accuracy validation are also shown in Table 3.1. 

Validation loss is 1.37 × 10−4 and Train loss is 1.11 × 10−4. In Fig.3.1.1 we consider 

that learning has been achieved. The correlation coefficient between the reference and 

predicted values is also high at 0.954. However, there are some points deviated from reference 

values. In particular, the outlier around No. 100 is not well predicted, even though the 

adjacent points are predicted with high accuracy. 

 
Fig 3.1.1: Prediction Results and Loss Functions 

Table 3.1: The prediction accuracy validation 

 

3.2 After adding features value 

Figure 3.2.1 shows the prediction results and loss function after the addition of the 

features value. The results of the forecast accuracy validation are also shown in Table 3.2.    

Validation loss is 6.69 × 10−5 and Train loss is 1.74 × 10−4, showing an improvement in 

accuracy compared to before the addition of features value.The results of other prediction 

accuracy validation, such as correlation coefficients, also show higher accuracy, indicating 

that accuracy improves with the addition of additional features value. 

      As for outliers, the number of points exceeding 10% and the maximum error are reduced, 

but no essential improvement is achieved. 

 

Maximum error 32.50%

Minimum error 0.00%

Error average 1.34%

Correlation coefficient 0.954

The outlier 8

Accuracy validation 
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Fig 3.2.1: Prediction Results and Loss Functions 

Table 3.2: The prediction accuracy validation 

 

4 DISCUSSION 

We pursued the cause of the outlier because it would be difficult to use the system in the 

actual field if it is not known. The target is an outlier around No.100, where all but the outlier 

could be learned with high accuracy. 

There is a difference in the physical phenomenon of longitudinal reaction force between the 

outlier data and the data with the same output as the outlier, as shown in Figure 4.1. 

 

 
 

Fig 4.1: Comparison of longitudinal reaction forces 

The data used for outliers indicates that the reaction force is applied only in the positive 

direction, while the data included in the training data indicates that the reaction force is also 

applied in the negative direction. 

Based on these results, it is necessary to take countermeasures against this outlier. In 

addition, since the current outlier does not contain the features necessary for learning, we will 

propose an effective improvement method for this outlier and verify it with other outliers. 

Maximum error 29.00%

Minimum error 0.00%

Error average 0.75%

Correlation coefficient 0.970

The outlier 4

Accuracy validation 
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5 CONCLUSION 

In this study, a surrogate model is constructed to predict the maximum reaction force from 

the input physical quantities in the dynamic elasto-plastic analysis of a crash box as an 

alternative model for CAE analysis, and the following results were obtained. 

 

･We extended the regression problem to image-like data and showed that learning with CNN 

is possible. In learning physical phenomena, it is important to design training data considering 

physical laws, properties, and the shape of the equations. 

 

･Predictions can be made more accurate by deriving physically meaningful values and adding 

new features value. 

 

･Need to design training and validation data that take into account possible physical phenomena 

for large outlier 
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