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Abstract. Aluminum alloy is a light-weight material with excellent corrosion resistance but low rigidity. When 

the aluminum alloy is used to a girder bridge, it takes high costs owing to the increment of its stiffness. Therefore 

in order to reduce a material cost, the cost minimization problem was performed on beam string structure (BSS) 

made of the aluminum alloy material based on the results of the topology optimization. We focused on the layout 

of the BSS and diameter of the cable. The conducted simulation made clear the effectivity of the BSS to the 

aluminum alloy material for a reduction of material cost and increment of the beam span.  

 

 

1 INTRODUCTION 

Aluminum alloy materials are lighter than steel materials at approximately one-third the 

density and have superior corrosion resistance, hence their life-cycle costs are considered lower 

than those of the steel bridges. On the other hand, the aluminum alloy materials are more 

expensive than the steel and are prone to deflection because their rigidity is approximately one-

third that of the steel. In the specification for highway bridges in Japan, the aluminum alloy 

materials are defined same deflection limits as the steel materials, which requires a larger cross 

section, resulting in higher material costs. 

Therefore, this study proposes a beam string structure (BSS) made of the aluminum alloy, 

which is expected to improve stiffness and reduce costs. The BSS is a structure in which the 

cable members are installed through the strut at the bottom of the beam. The cable members 

bear the tensile force, and the beam bears the compressive force. The lifting of the strut 

generates a negative bending moment in the beam, which suppresses deflection. 

In this study, two-stage optimization problem, that is a topology optimization and material 

cost minimization problem, is considered, as shown in Figure 1. An optimal form of BSS is 

created based on the groundstructure method. Then, the size optimization of the cross section 
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of each member is performed with considering material cost of the BSS in order to clear the 

one advantage of the aluminum alloy beam. Mathematica version 12.3 was used to solve the 

optimization problem. 

2 DESING OF BEAM STRING STRUCTURE BY TOPOLOGY OPTIMIZATION 

Topology optimization is performed for the design area with aspect ratios of 2:5 and 1:5 to 

in order to propose optimal structures.  

2.1 Formulation of topology optimization problem 

A groundstructure is created by connecting the nodes in the design area with the truss 

elements as shown in Figure 2. Then the axial forces are determined by a mathematical 

optimization method. In the groundstructure method, the remaining shape after removing the 

truss elements with small axial forces is the optimal structure. 

 In this study, the minimum volume solution (Pareto-optimal solution) under stress 

constraints is obtained by linear programming for the topology optimization problem 

concerning the total volume and compliance of members [1]. The Pareto-optimal solution of the 

truss structure under constant external force in this multi-objective optimization problem can 

be computed by simple equilibrium of forces. 

In a multi-objective optimization problem targeting the minimization of the total volume 𝑉 

 
 

Figure 1: Flowchart of optimization procedure 
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and compliance 𝐶 of the truss members, the problem is formulated as follows: 

{𝑉, 𝐶} ⟶ min. (1) 

{ 𝑉 = 𝑨T𝒍
𝐶 = 𝑵T𝜹

 
(2) 

where 𝑨 (= {𝐴1, … , 𝐴m}
T) is the cross-section of the members vector, 𝒍 (= {𝑙1, … , 𝑙m}

T) is the 

length of the members vector, 𝑵 (∈ ℛm) is the axial force vector of the member, and 𝜹 (∈ ℛm) 
is the axial deformation vector of the member.  

The relationship between the total volume of the truss members 𝑉 and compliance 𝐶 in the 

Pareto-optimal solution is 

𝐶 =
𝜎2𝑉

𝐸
 

(3) 

𝑉𝐶 =
(|𝑵|T𝒍)𝟐

𝐸
 

(4) 

where 𝜎 is the absolute value of stress in all members and 𝐸 is the elastic modulus of all 

members.  

Considering equations (4), the multi-objective optimization problem in equations (1) can be 

formulated as a linear programming problem as follows. This linear programming problem can 

be solved by the interior point method. 

𝑓 = 𝒍𝐓𝑵+ + 𝒍𝐓𝑵− 

𝑷 = 𝑩𝑵+ − 𝑩𝑵− 
(5) 

 

2.2 Structure simplification by ESO method 

The optimal structure obtained from initial calculations is often a complex geometry with a 

mixture of members with low axial forces. In this study, the Evolutionary Structural 

Optimization (ESO) method [2] is used in combination with the groundstructure method to make 

the axial forces acting on the members more uniform and to derive a simpler form. In this study, 

a lower limit of axial force α𝑁max is defined based on the maximum value of axial force 𝑁max 

 
 

Figure 2: Example of ground-structure 
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obtained from the calculation, then, a new group of nodes is defined as the grandstructure for 

recalculation, excluding the group of nodes where unnecessary members are gathered, and the 

calculation is repeated. 

𝛼𝑁max
𝑘 < 𝑵𝑖

𝑘 ≤ 𝑁max
𝑘 (6) 

where 𝑖(= 1,2,3⋯ 𝑖max) is the number of members and 𝑘(= 1,2,3⋯𝑘max) is the number of 

calculations. The initial value of 𝛼 is 0, and it is increased by 0.01 for each calculation. 

2.3 Design model 

As shown in Figure 2, hinge and roller supports were placed at both ends of the top of the 

groundstructure, and the load was applied to the uppermost part of the structure. The design 

area was set so that the aspect ratio of the groundstructure was 2:5 and 1:5. 

2.4 Topology optimization results 

Figures 3 and 4 show the initial and final structures for the topology optimization, 

respectively. The members in red are subjected to compressive forces, while the members in 

blue are subjected to tensile forces. The thickness of the member indicates the magnitude of the 

axial force, and the thicker the member, the greater the axial force acting on it. 

In the process of the topology optimization, the number of members was reduced by 

approximately 26% and 51% for aspect ratios of 2:5 and 1:5, respectively. In all the resultant 

figures, a compression member appeared at the top where the load acts, and an arched tension 

member appeared at the bottom of the design area. Focusing on the final step, in Figure 4(a), a 

single vertical member joined by diagonal members was observed in the center of the span. In 

Figure 4(b), where the aspect ratio is larger, two diagonals are observed in the center of the 

span, indicating that the distance between the diagonals is wider. 

 

 

 

 

 

(a) Aspect ratio 2:5 
 

(b) Aspect ratio 1:5 

Figure 3: Topology optimization results (initial layout) 

 

 

 

 

(a) Aspect ratio 2:5 
 

(b) Aspect ratio 1:5 
Figure 4: Topology optimization results (final layout) 
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3 MATERIAL COST MINIMIZATION PROBLEM FOR ALUMINUM ALLOY 

BEAM USING BEAM STRING STRUCTURE 

We proposed the aluminum alloy beams using BSS with one or two struts and cables based 

on the topology optimization in previous section as shown in Figures 5 and 6. Then, material 

cost minimization was conducted under the simple supoprted condition. In addition, the steel 

and the aluminum alloy simple supported beam was considered as comparative models. 

3.1 Theoretical Model of Beam String Structure 

Okada derived a theoretical equation for the stress deformation behavior of a BSS with one 

strut based on the unit load method [3]. In this section, the theoretical equation is derived using 

the unit load method, including the case with two struts. 

 Figure 5 shows a mechanical model of the BSS with one strut under a distributed load 𝑄. 

where 𝑄 is the span of the BSS, 𝐸1𝐴1 is the elongation stiffness of the beam, 𝐸1𝐼1 is the bending 

stiffness of the beam, f is the height of the strut, 𝐸2𝐴2 is the elongation stiffness of the strut, 

𝐸3𝐴3  is the elongation stiffness of the cable material. The BSS with one strut is statically 

indeterminate structure. If the axial force on the strut of the BSS is a statically indeterminate 

force 𝑋, the displacements of the 0th and first systems can be expressed by the following 

equation: 

𝛿10 = 2∫
𝑀0𝑀1

𝐸1𝐼1

𝐿
2

0

𝑑𝑥 (6) 

𝛿11 = 2∫
𝑀1

2

𝐸1𝐼1

𝐿
2

0

𝑑𝑥 +
𝑁1

2

𝐸1𝐴1
𝐿 +

𝑓

𝐸2𝐴2

+ 2
𝑇1

2

𝐸3𝐴3

√(
𝐿

2
)
2

+ 𝑓2 (7) 

 where 𝑀𝑖and 𝑁𝑖 are the bending moment and axial force of the beam in the 𝑖-th system. The 

tension 𝑇1 in the cable material of the first system under unit load can be expressed by the 

following equation:  

𝑇1 =
√(

𝐿
2
)
2

+ 𝑓2

2𝑓
 

(8) 

Therefore, from the displacement compatibility, the statically indeterminate force 𝑋 =
(−𝛿10/𝛿11) on the strut can be obtained as follows: 

  

  
 

Figure 5: Beam string structure with a strut 
 

Figure 6: Beam string structure with two struts 
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𝑋 = −

5𝑄𝐿4

384𝐸1𝐼1
𝐿3

48𝐸1𝐼1
+

𝑓
2𝐸1𝐴1

 (2𝛼 + 𝛽(1 +
3
2
𝛾3) + 𝛾3)

 (9) 

where α = 𝐸1𝐼1/ 𝐸2𝐴2, β = 𝐸1𝐴1/ 𝐸3𝐴3,𝛾 = 𝐿/2𝑓. Using the derived statically indeterminate 

force 𝑋, it is possible to obtain the axial force 𝑁𝐵, bending moment 𝑀𝐵, deflection 𝛿𝐵 , and 

axial force of the cable. 

 Similarly, the statically indeterminate force 𝑋 on the struts of the BSS with two struts under 

the distributed load 𝑄 shown in Figure 4 is given by the following equation.  

𝑋 = −

𝑄(𝐿2 + 𝐿 −  2)(𝐿 −  ) 
12𝐸1𝐼1

(3𝐿 + 2 ) 2

3𝐸1𝐼1
+

2𝑓
𝐸1𝐴1

(1 + 𝛼 + (1 + 𝛽)𝛾𝛿2 + (
3
2
− 𝛽)𝛿3)

 (10) 

where α = 𝐸1𝐼1/ 𝐸2𝐴2 , β = 𝐸1𝐴1/ 𝐸3𝐴3 , γ = 𝐿/2𝑓  and 𝛿 =  /𝑓 . where   is the distance 

from the support to the strut. 

 

3.2 Load conditions and cost index 

For the load acting on the BSS, a crowd load of 𝑄𝑙 =350N/mm2 was used, assuming a 

pedestrian bridge. The aluminum alloy A6061-T6 and the steel SS400 were assumed for the 

beam and struts. Three types of structural stainless steel wire ropes (JIS G 3550) with different 

cable diameters were used as the cable materials. The material properties of each material and 

cable material are shown in Tables 1 and 2, respectively. To simplify the material cost in this 

study, we used the relative cost per unit mass [4]. In other words, the cost indices listed in Tables 

1 and 2 indicate that the price of the aluminum alloy material is 6.5 times and the stainless steel 

material is 6.0 times the price of the steel material when the price of the steel material is 1.0. 

 
Table 1: Materials properties of steel and aluminum alloy 

 

materials Aluminum alloy (A6061-T6) Steel (SS400) 

Modulus of elasticity [GPa] 70.0 200.0 

Density [ton/mm3] 2.7×10-9 7.9×10-9 

Yield stress [N/mm²] 235.0 255.0 

Poisson’s ratio 0.34 0.30 

Cost index [1/ kg] 6.5 1.0 

 
Table 2: Material properties of cable 

 

Diameter [mm] 14 20 28 

Cross-sectional area [mm²] 93.5 191.0 374.0 

Modulus of elasticity [GPa] 88.0 

Unit mass [kg/mm] 0.796×10-3 1.63×10-3 3.18×10-3 

Rupture load [N] 121 234 432 

Cost index [1/ kg] 6.0 (Stainless steel) 
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3.3 Formulation of the material cost minimization problem 

The material cost of the BSS can be expressed by the following equation using the cost index 

𝛼𝑖 and the mass 𝑊𝑖 of any member.  

𝐶 = 𝛼𝑖𝑊𝑖 = 𝛼B𝑊B + 𝛼T𝑊T + 𝛼C𝑊C (11) 

where 𝛼B𝑊B denotes the material cost of the beam, 𝛼T𝑊T denotes the material cost of the strut, 

and 𝛼C𝑊C denotes the material cost of the cable material, respectively. The member mass  𝑊𝑖 

of the BSS can be expressed by the following equation: 

𝑊𝑖 = 𝜌𝑖𝐴𝑖𝑙𝑖  (12) 

where 𝜌𝑖  is the material density, 𝐴𝑖  is the cross-sectional area, and 𝑙𝑖 is the member length. To 

solve the cost minimization problem, the beam and struts are assumed to have rectangular cross 

sections and the cable members have circular cross sections. The design variable 𝑋 is defined 

as follows: 

𝒙 = {𝒙𝐁, 𝒙𝐓, 𝒙𝐂} (13) 

where the design variables 𝒙𝐁 for beams, 𝒙𝐓 for struts, and 𝒙𝐂 for cables can each be expressed 

by the following equation: 

𝒙𝐁 = {𝑏B, 𝐿} 

𝒙𝐓 = {𝑏T, 𝑓,  } 

𝒙𝐂 = {𝐷} 

(14) 

(15) 

(16) 

where 𝐿 is the span of the beam, 𝑏B is the height of the beam, 𝑏T is the thickness of the strut, 𝑓 

is the height of the strut,   is the distance from the support to the strut, and 𝐷 is the diameter of 

the cable material. The beam and strut widths  ℎB,  ℎT are uniformly 1500 mm, and the 

diameters of the cable materials 𝐷 are given as 14, 20 and 28 mm, as shown in Table 2. 

In the cost minimization optimization, the span 𝐿 was evaluated every 5 m, and the material 

cost was considered up to the maximum span 𝐿max, which no longer satisfies the constraint 

condition. The optimization problem is formulated as follows for the objective function 𝑓(𝒙) 
led in equation (11), with constraints on the beams, struts, and cable. 

Min. 

s.t. 

𝑓(𝒙) 

{
 
 

 
 |𝜎B| ≤ Min. (𝜎cr, 𝜎𝑦)

|𝜎T| ≤ Min. (𝜎crT, 𝜎𝑦)

𝜎C ≤ 𝜎y
𝛿max ≤ 𝛿y

 
(17) 

where 𝒙 denotes the design variable satisfying with the following equation. 

{

𝑏B ≤ 200
𝑏T ≤ 200

0.05𝐿 ≤ 𝑓 ≤ 0.5𝐿
 < 0.5𝐿

 (18) 

Here, the strut height 𝑓 is limited to half of the span. In the case of two struts, the distance   

from the support to the strut is assumed to vary so that the struts do not overlap each other. The 

𝜎B, 𝜎T and 𝜎c on the left-hand side of the constraints are the maximum or minimum stresses in 
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beams, struts, and cables, and 𝛿max is the maximum deflection of the BSS. On the right-hand 

side of the constraints, 𝜎cr is the buckling stress of the beam calculated from the Bernulli-Euler 

beam, 𝜎crT is the buckling stress of the strut calculated from the Timoshenko beam, 𝜎𝑦 is the 

yield stress of the material and 𝛿y is the deflection limit. The deflection limit was set to 𝐿/600. 

Local buckling of flanges and lateral buckling of beams were not considered to simplify the 

calculations. 

3.4 Results of material cost minimization problem 

In this section, the optimal solutions for the aluminum alloy using the BSS with one and two 

struts are described in comparison with simple supported beams. 

3.4.1 Results for simple supported beams 

Figure 7 shows the results of the cost minimization problem for the steel and aluminum 

simple supported beams as a comparison for the aluminum alloy BSS. Figure 7 shows the 

relationship between material cost and span, respectively. In addition to the 2.5 m span, 

numerical optimization was performed in 5 m increments starting from 5 m span. When the 

constraint condition was no longer satisfied, the maximum span was defined as the largest span 

that satisfied the constraint condition, calculated in 0.5 m increments from the immediately 

preceding span. The black line in the figure indicates the optimal solution for the steel simple 

supported beams (SS-ST) and the red line indicates the optimal solution for the aluminum alloy 

simple supported beams (SS-AL). The X -marc in the figure indicates the result for the 

maximum span. 

Figure 7 shows that the material cost of the aluminum alloy simple supported beams was 

always higher than that of the steel simple supported beams. For example, the material cost of 

the aluminum alloy simple supported beam at L=10 m was 44057, which was 3.2 times that of 

the steel one, 13976. Comparing the maximum spans of both simple supported beams, the 

maximum span of the aluminum-alloy simple supported beam was 𝐿max = 11.5m, which is 

approximately 30% shorter than that of the steel simple supported beam. This is because the 

 

 
 

Figure 7: Material cost of simple supported beam versus span 
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aluminum alloy material is less rigid than the steel material and no longer satisfies the deflection 

limit at the early stage, resulting in the shorter maximum span. 

3.4.2 Results for BSSs with one strut 

The results of the cost minimization problem for the aluminum alloy BSSs with one strut are 

shown in Figure 8. The vertical and horizontal axes in the figure are the same as in Figure 7. 

The blue dotted, dashed, and solid lines in the figure indicate the optimal solutions for cable 

diameters of 𝐷 = 14, 20 and 28mm, respectively.  

Figure 8 shows that the cost of the aluminum alloy BSS with one strut is reduced for all 

cable diameters and the maximum span is increased compared to the aluminum alloy simple 

supported beam. For example, in the case of 𝐿 = 10m, the cost of the aluminum alloy simple 

supported beam is 𝐶 = 44057, while it decreases as the cable diameter 𝐷 changes from 14,20, 
to 28mm, 𝐶 = 33248 (25% reduction), 16508 (63% reduction), 12987 (71% reduction). The 

cost of a tension beam with a cable diameter of 𝐷 = 28mm was almost equal to that of the steel 

simple supported beam. The maximum span of the BSS with 𝐷 = 28mm was 𝐿max =  25.5m, 

1.5 times longer than that of the steel simple supported beam. 

3.4.3 Results for BSSs with two struts 

The results of the cost minimization problem for the aluminum alloy BSS with two struts 

are shown in Figure 9. The vertical and horizontal axes as well as the black and red lines in the 

figure follow Figure 7. The green dotted, dashed, and solid lines in the figure indicate the 

optimal solutions when the cable diameter is 𝐷 = 14, 20 and 28mm, respectively. 

 Figure 9 shows that the BSS with two struts has a lower cost and a higher maximum span 

than the aluminum alloy simple supported beam, as well as the BSS with one strut. For example, 

for 𝐿 = 10m, changing the cable diameter to 𝐷 = 14, 20 or 28mm resulted in 𝐶 = 31182 

(29% reduction), 10253 (77% reduction) and 8836 (80% reduction), indicating that the cost of 

  

  
 

Figure 8: Material cost of BSSs with a strut  

versus span 

 

Figure 9: Material cost of BSSs with two struts 

versus span 
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the BSSs with 𝐷 = 28mm cable diameter was lower than that of the steel simple supported 

beams. The maximum span of the BSSs with 𝐷 = 28mm was 𝐿max =  30.5m, 1.8 times longer 

than that of the steel simple supported beam. 

4 CONCLUSION 

In this study, we proposed the BSS based on the topology optimization for the aluminum 

alloy materials, which are still rarely applied as the materials in civil engineering. The 

superiority of the material cost over steel materials was evaluated from the viewpoint of the 

material cost minimization problem. The results of this study are summarized as follows: 

 

(1) The cost of the aluminum alloy simple supported beam was approximately 3 times higher 

than that of the steel one. However, the use of the BSSs allows a longer span and lower cost 

than the steel simple supported beam, indicating the usefulness of the BSSs.  

(2) The maximum span was longer when the number of struts in the BSSs was greater. And, 

the cost was found to decrease as the cable diameter increased regardless of the number of 

struts. 
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