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Abstract. The essence of turbulence are the smallest scales of motion. They result from a subtle balance

between convective transport and diffusive dissipation. Mathematically, these terms are governed by

two differential operators differing in symmetry: the convective operator is skew-symmetric, whereas

the diffusive is symmetric and positive-definite. On the other hand, accuracy and stability need to be

reconciled for numerical simulations of turbulent flows around complex configurations. With this in

mind, a fully-conservative discretization method for general unstructured grids was proposed [Trias et

al., J.Comp.Phys. 258, 246-267, 2014]: it exactly preserves the symmetries of the underlying differential

operators on a collocated mesh. However, any pressure-correction method on collocated grids suffer from

the same drawbacks: the cell-centered velocity field is not exactly incompressible and some artificial

dissipation is inevitable introduced. On the other hand, for staggered velocity fields, the projection onto

a divergence-free space is a well-posed problem: given a velocity field, it can be uniquely decomposed

into a solenoidal vector and the gradient of a scalar (pressure) field. This can be easily done without

introducing any dissipation as it should be from a physical point-of-view. In this work, we explore the

possibility to build up staggered formulations based on collocated discrete operators.

1 INTRODUCTION

We consider the simulation of turbulent, incompressible flows of Newtonian fluids. Under these assump-

tions, the dimensionless governing equations in primitive variables read

∂tu+(u ·∇)u = ν∇2u−∇p, ∇ ·u = 0, (1)

where u is the velocity field, p is the kinematic pressure and ν is the kinematic viscosity. The basic

physical properties of the Navier-Stokes (NS) equations (1) can be deduced from the symmetries of the

differential operators. In a discrete sense, it suffices to retain such operator symmetries to preserve the

analogous (invariant) properties of the continuous equations [1]. However, for unstructured meshes, it

is still a common argument that accuracy should take precedence over the properties of the operators.

Contrary to this, our philosophy is that operator symmetries are critical to the dynamics of turbulence and
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Figure 1: Examples of DNSs computed using symmetry-preserving discretizations. Top: air-filled (Pr = 0.7)

Rayleigh-Bénard configuration studied in Ref. [3]. Instantaneous temperature field at Ra = 1010 (left) and instan-

taneous velocity magnitude at Ra = 1011 (right) for a span-wise cross section are shown. The latter was computed

on 8192 CPU cores of the MareNostrum 4 supercomputer on a mesh of 5.7 billion grid points. Bottom: DNS of

the turbulent flow around a square cylinder at Re = 22000 computed on 784 CPU cores of the MareNostrum 3

supercomputer on a mesh of 323 million grid points [4].

must be preserved [1, 2]. Namely, the convective operator is represented by a skew-symmetric coefficient

matrix and the diffusive operator by a symmetric, positive-definite matrix. These ideas are briefly revised

in the next section. Then, their extension to unstructured meshes is discussed in the following sections.

2 SYMMETRY-PRESERVING DISCRETIZATION

2.1 Starting point: staggered Cartesian meshes

The fully conservative discretization of the incompressible NS equations (1) is briefly described in this

section. Otherwise stated, we follow the same operator-based notation than in Ref.[1]. The symmetry

properties of the underlying differential operators are preserved: the convective operator is represented

by a skew-symmetric matrix and the diffusive operator by a symmetric positive-definite matrix. In short,

the temporal evolution of the spatially discrete staggered velocity vector, us ∈ R
m, is governed by the

following operator-based finite-volume discretization of Eqs.(1)

Ωs

dus

dt
+C(us)us +Dus −M

T pc = 0s, Mus = 0c, (2)
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where pc ∈ R
n is the cell-centered pressure scalar field. The dimension of these vectors, n and m, are

the number of control volumes and faces on the computational domain, respectively. The sub-indices

c and s refer to whether the variables are cell-centered or staggered at the faces. The diffusive matrix,

D∈R
m×m represents the integral of the diffusive flux −(µ/ρ)∇u ·n through the faces. Like the underlying

differential operator, ∇2 = ∇ ·∇, the diffusive operator consists of the product of a divergence matrix,

Ms ∈R
m×m, and a gradient matrix. The divergence is discretized and the discrete gradient becomes minus

the transpose of the discrete divergence (multiplied by a diagonal scaling). This construction leads to a

symmetric, positive-definite, approximation of the diffusive operator given by D = νMsΩ
−1
v MT

s , where

Ωv ∈ R
m×m is a diagonal matrix containing the sizes of the control volumes associated with the faces

of the velocity control volumes. This equation corresponds to Eq.(37) in [1]. For further details about

the discretization of the diffusive operator the reader is referred to this work. The matrix M ∈ R
n×m

is the face-to-cell discrete divergence operator whereas the integral of the gradient operator is given by

minus the transpose of M. The diagonal matrix, Ωs ∈ R
m×m, describes the sizes of the staggered control

volumes and the approximate convective flux is discretized as in [1]. The resulting convective matrix,

C(us) ∈ R
m×m, is skew-symmetric, i.e.

C(us)+C
T (us) = 0. (3)

In a discrete setting, the skew-symmetry of C(us) implies that

C(us)vs ·ws = vs ·C
T (us)ws =−vs ·C(us)ws, (4)

for any discrete velocity vectors us (if Mus = 0c), vs and ws. Then, the evolution of the discrete energy,

‖us‖
2 = us ·Ωsus, is governed by

d

dt
‖us‖

2 =−us ·
(

D+D
T
)

us ≤ 0, (5)

where the convective and pressure gradient contributions cancel because of Eq.(3) and the incompress-

ibility constraint, Mus = 0c, respectively. Therefore, even for coarse grids, the energy of the resolved

scales of motion is convected in a stable manner, i.e. the discrete convective operator transports energy

from a resolved scale of motion to other resolved scales without dissipating energy, as it should be from

a physical point-of-view. It is noteworthy to mention that in the last decade, many DNS reference results

have been successfully generated using this type of discretization (see Figure 1 and references therein).

2.2 Unstructured meshes. Collocated or staggered?

Accuracy and stability need to be reconciled for numerical simulations of turbulent flows around complex

configurations. With this in mind, a fully-conservative discretization method for general unstructured

grids was proposed in Ref. [2]: it exactly preserves the symmetries of the underlying differential opera-

tors on a collocated mesh. In summary, and following the same notation, the method is based on a set of

five basic operators: the cell-centered and staggered control volumes (diagonal matrices), Ωc and Ωs, the

matrix containing the face normal vectors, Ns, the cell-to-face scalar field interpolation, Πc→s and the

cell-to-face divergence operator, M. Once these operators are constructed, the rest follows straightfor-

wardly from them. Therefore, the proposed method constitutes a robust and easy-to-implement approach

to solve incompressible turbulent flows in complex configurations that can be implemented in already
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existing codes such as OpenFOAM R© [5]. However, any pressure-correction method on collocated grids

suffer from the same drawbacks: the cell-centered velocity field is not exactly incompressible and some

artificial dissipation is inevitable introduced. Conversely, the projection of a staggered velocity onto a

divergence-free space is a well-posed problem: it can be uniquely decomposed into a solenoidal vector

and the gradient of a scalar (pressure) field. This can be easily done without introducing any dissipation

as it should be from a physical point-of-view. This is carefully analyzed in the next section.

3 PRESSURE-VELOCITY COUPLING: A UNIFIED FRAMEWORK

Roughly speaking, algorithms to solve the pressure-velocity coupling can be grouped into two families.

Namely, on one hand we find all the existing variants of the SIMPLE (Semi-Implicit Method for Pres-

sure Linked Equations) algorithm originally proposed by Patankar and Spalding [6], such as the SIM-

PLEC [7], SIMPLER [8] or PISO [9] among many others (the reader is referred to Ref.[10] for details

about all this family of SIMPLE-like algorithms). On the other hand, we have the so-called Fractional

Step Method (FSM) algorithm originally proposed by Chorin [11] and Teman [12]. SIMPLE-like algo-

rithms were originally intended to solve problems using an implicit time-integration for the non-linear

convective term. This implied a linearization of this term that is iteratively solved inside the SIMPLE

iterations. Therefore, this family of algorithms are typically used for the solution of laminar flow prob-

lems or RANS (also URANS) problems where time-steps significantly larger than the CFL condition can

be used. However, for highly unsteady problems such as DNS/LES of turbulent flows the time-step must

be necessarily small (typically order of the CFL condition); therefore, the implicit treatment of the con-

vective term becomes inefficient and it is usually replaced by a much simpler explicit treatment. In this

case, the pressure-velocity coupling can be solved with one single iteration of the FSM. Following the

philosophy of the work by Perot [13], all these different approaches can be viewed as an (approximate)

LU decomposition of the discrete system. Namely,
(

A ΩG
M 0

)(

un+1

p̃n+1

)

=

(

Ωun

0

)

+

(

r

0

)

, (6)

where Ω is a (diagonal) matrix that contains the size of control volumes associates with the discrete

velocity field, u, G is the discrete gradient operator and M is the integrated discrete divergence opera-

tor. For convenience, and without loss of generality, both momentum and mass equation are written in

integral form. Matrix A and vector r will depend on the particular choice for the spatial and temporal

discretization. For instance, for the finite-volume staggered discretization of the Navier-Stokes equations

given in Eq.(2) in conjunction with a second-order Adams-Bashforth scheme for the time-integration of

the convective and diffusive terms they read

A = Ωs; Ω = Ωs; G =−Ω
−1
s M

T ; M =M, (7a)

un+1 = un+1
s ; un = un

s ; p̃n+1 = ∆t pn+1
c , (7b)

r =
3

2
R(un

s )−
1

3
R
(

un−1
s

)

, (7c)

where R(us)≡−C(us)us −Dus and ∆t is the time-step. Omitting the fact that the (pseudo-)pressure, p̃,

is indefinite, the linear system given in Eq.(6) can be solved via a block LU decomposition
(

A ΩG
M 0

)

=

(

A 0

M −L

)(

I A−1ΩG
0 I

)

where L = M A−1ΩG , (8)
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where −L is the Schur complement matrix. Assuming that this block LU decomposition can be inverted,

the original system given in Eq.(6) is solved in two steps:

(

A 0

M −L

)(

u∗

p̃n+1

)

=

(

Ωun

0

)

+

(

r

0

)

(9a)

(

I A−1ΩG
0 I

)(

un+1

p̃n+1

)

=

(

u∗

p̃n+1

)

, (9b)

where u∗ is an intermediate velocity. Notice that for the particular choice given in Eqs.(7) this LU

decomposition becomes

(

Ωs 0

M −L

)(

u
p
s

p̃n+1
c

)

=

(

Ωsu
n

0

)

+

(

3
2
R(un

s )−
1
3
R
(

un−1
s

)

0

)

(10a)

(

I G

0 I

)(

un+1
s

p̃n+1
c

)

=

(

u
p
s

p̃n+1
c

)

, (10b)

where L =MG = −MΩ−1
s MT is the standard discrete Laplacian operator and u

p
s is a predictor velocity.

Solving this block LU decomposition is exactly the same than the classical Fractional Step Method, i.e.

up
s = un

s +Ω
−1
s

(

3

2
R(un

s )−
1

3
R
(

un−1
s

)

)

, (11a)

p̃n+1
c = L

−1
Mup

s , (11b)

un+1
s = up

s −G p̃n+1
c . (11c)

As mentioned above, solving the pressure-velocity coupling on a staggered mesh (with an explicit time-

integration scheme) is a well-posed problem. Difficulties arise for other set-ups. For instance, a col-

located arrangement of variables leads to a discrete Laplacian operator with numerical pathologies (the

so-called checkerboard problem, i.e. nonphysical components of pressure field belong to its kernel). Fur-

thermore, the implicit treatment of the convective or/and diffusive term leads to non-diagonal forms of

the matrix A ; therefore, its exact inversion, A−1, becomes impractical especially for the construction of

the Laplacian operator, L = M A−1ΩG , and its subsequent inversion. A similar problem arises for in-

compressible multiphase flows, even for fully-explicit time-integration schemes. In this case, the matrix

A is diagonal but it changes over time due to the density variations. This leads to a discrete Laplacian

operator with non-constant (in time) coefficients. In general, these situations are usually tackled with an

approximation of the exact LU decomposition given in Eq.(8)

F = LF UF where F =

(

A ΩG
M 0

)

, LF =

(

A 0

M −L

)

, UF =

(

I A−1ΩG
0 I

)

. (12)

For instance, in the case of the SIMPLE algorithm (also some variants) the A−1 is approximated by a

diagonal matrix, Ã−1. This leads to the following approximation of the LU decomposition

F̃ = L̃F ŨF where F̃ =

(

A AÃ−1ΩG
M 0

)

, L̃F =

(

A 0

M −L̃

)

, ŨF =

(

I Ã−1ΩG
0 I

)

, (13)
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Time Basic set of discrete operators Approximations (if needed)

Algorithm int. A Ω G M L L̃ Ã

SIMPLE Impl. A Ω G M M A−1G M Ã−1G diag(A)

SIMPLEC Impl. A Ω G M M A−1G M Ã−1G [Ã ]ii = ∑ j |[A ]i j|
Stg FSM Expl. Ωs Ωs G M L=MG − −

Stg FSM 2-fluid Expl. PsΩs Ωs G M MP−1
s G ρ−1

0 L −
Col FSM Expl. Ωc Ωc Gc Mc Lc =McGc L −

Table 1: Summary of the pressure-velocity coupling algorithms outlined in this paper.

where the approximate discrete Laplacian is given by L̃ = M Ã−1ΩG . Then, the SIMPLE algorithm can

be viewed as a stationary iterative solver [14]

F̃ xk+1 = b+
(

F̃ −F
)

xk −→ xk+1 = F̃ −1b+
(

I− F̃ −1F
)

xk where x =

(

u

p̃

)

, (14)

where k refers to the outer loop iterations of the SIMPLE algorithm. In the original SIMPLE algo-

rithm [6], the diagonal matrix Ã is given by the diagonal elements of A , i.e. [ÃSIMPLE ]i j = [A ]i jδi j,

where δi j is the Kronecker delta. However, the stability of this iterative procedure is only guaranteed if

the spectral radius of the associated transfer function, I− F̃ −1F , is smaller or equal to one,

ρ(I− F̃ −1F )≤ 1, (15)

which is not always satisfied in the original SIMPLE algorithm. This motivated the use of under-

relaxation factors (for pressure) to alleviate this problem [8]. Other interesting approaches to tackle

these stability issues are the subsequent modifications of the SIMPLE algorithm, such as the SIMPLE

Consistent (SIMPLEC) algorithm [7] where the diagonal matrix Ã is given by sum by rows of the ele-

ments of A in absolute value, i.e. [ÃSIMPLEC]ii = ∑ j |[A ]i j|.

As mentioned above, approximations of A may be needed for incompressible multiphase problems. Let’s

assume that we use the same staggered formulation in conjunction with a second-order Adams-Bashforth

scheme that, for the single phase case, led to the LU decomposition given in Eq.(10). However, for

incompressible multiphase flows with interface tracking, density is not constant [15]. This necessarily

leads to a modification of the block system of equations. Namely,

F
P

s ≡

(

PsΩs ΩsG

M 0

)

=

(

PsΩs 0

M −LP

)(

I P−1
s G

0 I

)

, (16)

where Ps ∈ R
m×m is a diagonal matrix that contains the density defined at the faces. Although this

system is well-posed, the discrete Laplacian operator, LP ≡ MP−1
s G = −MP−1

s Ω−1
s MT , becomes very

ill-conditioned for high-density ratios and, even worse, the matrix LP is changing every time-step due

to the movement of the interface, i.e. Ps(t). This may require efficient and easy-to-built preconditioning

techniques [16] or/and approximations that rely on the Laplacian operator with constant coefficients [17].

In the latter case, LP is replaced by ρ−1
0 L where ρ0 is the (constant) density corresponding to the light

phase. However, this type of modification of the LU decomposition leads to an error in the mass conser-

vation equation

F̃
P

s ≡

(

PsΩs ΩsG

M LP−ρ−1
0 L

)

=

(

PsΩs 0

M −ρ−1
0 L

)(

I P−1
s G

0 I

)

, (17)
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Figure 2: Schematic summary of existing pressure-velocity coupling approaches. Horizontal axis represents the

amount of artificial dissipation introduced by the pressure gradient term in the momentum equation whereas verti-

cal axis represents the appearance of checkerboard modes in the numerical solutions.

that will be given by Mun+1
s =−(LP−ρ−1

0 L)p̃n+1
c 6= 0c. This error can be significantly reduced providing

an approximation of the pressure field, p̃
p
c , in the right-hand-side of the system,

(

PsΩs ΩsG

M LP−ρ−1
0 L

)(

un+1
s

p̃′c

)

=

(

PsΩsu
n
s + rs

0c

)

+

(

0 −ΩsG

0 0

)(

un
s

p̃
p
c

)

, (18)

where p̃′c = p̃n+1
c − p̃

p
c is a (pseudo)pressure correction. Likewise for the SIMPLE algorithm, this algo-

rithm can also be viewed as a stationary iterative solver (with only one iteration per time-step)

F̃
P

s xn+1 = b+
(

F̃
P

s −F
P

s

)

xn −→ xn+1 = (F̃Ps )
−1b+

(

I− (F̃Ps )
−1
F
P

s

)

xn (19a)

where x =

(

us

p̃c

)

and b =

(

PsΩsus + rs

0c

)

. (19b)

Hence, once again the stability of the algorithm will depend on the spectral radius of the transfer function,

I− (F̃Ps )
−1FPs . The particular choice LP → ρ−1

0 L proposed by the authors [17] can be justified in this

context.

A very similar problem exists from collocated formulations. In this case, the discrete Laplacian, Lc, that

arises from the LU decomposition of the system

Fc ≡ LFc
UFc

where Fc =

(

Ωc ΩcGc

Mc 0

)

, LFc
=

(

Ωc 0

M −Lc

)

, UFc
=

(

I Gc

0 I

)

, (20)

reads Lc = McGc where Mc ≡ MΓc→s and Gc ≡ Γs→cG are respectively the collocated divergence and

the gradient operators. These are based on the already-defined face-to-cell divergence operator, M, and

the cell-to-face gradient operator, G, in conjunction with a cell-to-face, Γc→s, and a face-to-cell, Γs→c,

interpolations. For details about the construction of these discrete operators the reader is referred to [2].

The collocated Laplacian operator contains nonphysical pressure components in its kernel, i.e. the well-

known checkerboard problem. Traditional cure for this, especially in the context of the above-explained

SIMPLE-like algorithm, is the pressure-weighted interpolation (PWI) approach proposed by Rhie and

Chow [18]. In the context of the FSM, a very similar approach appear ’naturally’ replacing the wide-

stencil collocated Laplacian operator, Lc, by the compact one, L. In this case, the FSM method for

7



F.X.Trias, N.Valle, A.Gorobets and A.Oliva

collocated meshes reads

F̃c ≡ L
F̃c

U
F̃c

where F̃c =

(

Ωc ΩcGc

Mc Lc −L

)

, L
F̃c

=

(

Ωc 0

M −L

)

, U
F̃c
=

(

I Gc

0 I

)

. (21)

Once again, this implies that the method has an intrinsic error in the mass conservation equation given by

Mcun+1
c =−(Lc −L)p̃n+1

c 6= 0. Even more important, the method has an error in terms of kinetic energy

given by p̃n+1
c (Lc−L)p̃n+1

c 6= 0. This error can have severe implications for DNS/LES simulations of tur-

bulent flows since this artificial dissipation can significantly affect the dynamics of the small scales even

overwhelming the dissipation introduced by the subgrid-scale LES models. This was clearly observed

for LES simulations using the standard implementation of OpenFOAM R© [19]. In this regard, Figure 3

schematically represents some of the exiting pressure-velocity coupling algorithms. It is worth to no-

tice that the ideal target, i.e. no artificial dissipation and no checkerboard, can be achieved by explicitly

removing those nonphysical components of the pressure field that belong to the kernel of Lc. This was

proposed and successfully tested in [20] for Cartesian meshes where these nonphysical pressure modes

are known a priori. In theory, this approach is also applicable to unstructured meshes; however, for

practical problems it becomes far too expensive to compute. Alternatively, it is possible to minimize the

amount of dissipation while still keeping the solution virtually free of checkerboard modes by preserving

the symmetries of the discrete operators [2]. The unified framework presented here facilitates this type of

analysis. Namely, the source and type of errors become more clear. For instance, for collocated formu-

lations there is an unavoidable error in terms of mass, Mcun+1
c =−(Lc −L)p̃n+1

c 6= 0 and kinetic energy,

p̃n+1
c (Lc − L)p̃n+1

c 6= 0 due to the approximation introduced in the Schur complement matrix, Lc ≈ L.

Since we cannot avoid this (Lc has non-physical pressure modes in its kernel) we can try to do our best.

For instance, we can minimize physical dissipation adding a pressure prediction, p̃
p
c in the right-hand-

side term likewise in Eq.(18) leading to mass and kinetic energy errors in terms of pressure correction,

p̃′c. If pressure prediction is taken to p̃
p
c = p̃n

c , i.e. second-order Van Kan projection method [21], then the

error in kinetic energy becomes O(∆t4) instead of O(∆t2). This framework also allows to easily analyze

the stability of the method: likewise Eq.(19), it can be easily shown that the stability relies on the transfer

function, I− F̃−1
c Fc where Fc and F̃c are respectively defined in Eqs.(20) and (21). The analysis can be

simplified noticing that U
F̃c

= UFc
,

I− F̃
−1
c Fc = I− (L

F̃c
U

F̃c
)−1LFc

UFc

U
F̃c
=UFc
= U−1

Fc
(I−L−1

F̃c
LFc

)UFc
. (22)

Hence, the stability of the method finally relies on the matrix I−L−1

F̃c
LFc

. This can be simplified further

plugging the definitions of LFc
and L

F̃c
given in Eqs.(20) and (21), respectively,

I−L−1

F̃c
LFc

=

(

I 0

0 I

)

−

(

Ωc 0

M −L

)−1(
Ωc 0

M −Lc

)

=

(

0 0

0 I−L−1Lc

)

. (23)

Therefore, at the end, the stability of the method will only depend on the spectrum of the matrix L−1Lc.

This has been carefully analyzed in a companion paper [22] where restrictions on the interpolation op-

erators used to construct the wide-stencil Laplacian, Lc, have been imposed to guarantee the stability of

the method for any mesh. This type of approaches allows to compute DNS/LES simulations on complex

geometries with a very small amount of artificial dissipation [2, 5]. Apparently we cannot get rid of this

dissipation unless we use staggered formulations where the pressure-velocity coupled is a well-posed

problem. However, in this case, the numerical challenge to be addressed in the discretization of the

momentum equation on unstructured grid. This is briefly discussed in the next section.
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4 TOWARDS A STAGGERED DISCRETIZATION BASED ON COLLOCATED OPERATORS

Finite-volume collocated discretizations on unstructured meshes is the solution adopted by most of

the general-purpose CFD codes such as ANSYS-FLUENT R©, OpenFOAM R©, etc. Despite the above-

explained intrinsic errors due to the improper pressure-velocity coupling, this approach is usually pre-

ferred over a staggered one due to its simplicity to discretize momentum equations on unstructured grids.

Attempts to construct staggered formulations goes back to the work by Perot [23] where NS equations

are discretized in rotational form which implies to compute vorticity, ω = ∇× u, at the edges of the

mesh. The easier alternative to combine collocated discrete operators was already suggested in the same

work [23] and subsequently explored by other researchers [24]. For a number of reasons, at the end, the

winner seems to be the collocated arrangement. This can be compactly written as follows

F̃cxn+1
c = Tcxn

c where Tc =

(

Ωc +∂c
t MT

0 0

)

and xc =

(

uc

p̃c

)

, (24)

and F̃c is given in Eq.(21) and ∂c
t represents all the terms (except pressure gradient) that contributes to

the time-derivative of the collocated velocity field, uc, in the momentum equation, i.e. convective and

diffusive terms (plus any other extra term in the momentum equation). Notice that the transpose of the

divergence, MT , is inside Tc to include the above-explained pressure-correction approach, i.e. second-

order Van Kan projection [21]. In this way, the one time-step iteration to numerically solve the NS

equations on a collocated grid would finally read

NSc ≡ F̃
−1
c Tc : xn

c −→ xn+1
c . (25)

On the other hand, the staggered counterpart should be

NSs ≡ F
−1
s Ts : xn

s −→ xn+1
s , (26)

where Fs represents the well-posed FSM method for staggered variables defined in Eqs.(10). At this

point, the difficulty arises in the construction of the discrete operator Ts that should compute the mo-

mentum equation (except the gradient of pressure) for the staggered velocity field, us,

Ts =

(

Ωs +∂s
t 0

0 0

)

. (27)

In this case, the transpose of the divergence, MT , is not included since the pressure-velocity coupling

is well-posed. Its inclusion would not change the solution of the NSs mapping. Hence, at the end,

everything depends on the way ∂s
t is computed. Here, as a preliminary study we have studied the effect

of changing the way the convective term (inside ∂s
t ) is constructed. For the sake of simplicity, we have

only considered implementations that are based on already implemented operators in any standard CFD

collocated code. First attempt consists on interpolating the staggered velocity field to cells, compute ∂c
t ,

and then interpolate it back to the faces,

∂s
t = Γs→c∂c

t Γc→s, (28)

where Γc→s and Γs→c are cell-to-face and face-to-cell interpolations which must be related via

Γs→c = Ω
−1
c ΓT

c→sΩs, (29)

9
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Figure 3: Results for a turbulent channel flow at Reτ = 180 for different meshes compared with the DNS [25].

Left: staggered approach proposed in Eq.(28). Right: staggered approach proposed in Eq.(30) with n = 2.
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Figure 4: Modified wave-numbers for different approximations of the convective term.

to preserve the (skew-)symmetry of the discrete collocated operators.

Results obtained for a turbulent channel flow at Reτ = 180 using the approach proposed in Eq.(28) are

displayed in Figure 3 (left). Apart from some details about the construction of the interpolation opera-

tors, Γc→s and Γs→c, this approach is essentially the same proposed by Perot [23] and later adapted by

Hicken et al. [24] using shift transformations. Although it is unconditionally stable and results for coarse

meshes are rather good (even better than standard staggered formulations), it is clear that it does not work

well since it does not converge to the DNS solution. The root of this problem is related to the dispersion

errors introduced by the interpolations. Alternatively we propose the following approximation,

∂s
t = F̃

nΓs→c∂c
t Γc→sF̃

n, (30)

where F̃ = Γs→cΓc→s can be view as a symmetric spatial filter that improves the spectral properties of

the convective operators (see Figure 4). Notice that for n = 0, Eq.(30) simplifies to Eq.(28). Results

obtained with n = 2 are displayed in Figure 3 (right) showing a great improvement respect to the other

approach. Results with n = 1 (not shown here) and n = 2 are very similar. This clear improvement may

10
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be explained as follows: back and forth interpolations in Eq.(28) worsen the numerical representation for

the highest wave-numbers. This additional filtering can be viewed as a regularization (smoothing) that

effectively damps the convective transport of scales smaller than twice the grid size (see Figure 4). To

study this in more detail, including tests for unstructured grids, is part of our near future research plans.
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